Supplementary material

Similar documents
Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Structure Report for J. Reibenspies

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supplementary Information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Supporting Information

Supplementary Information

Seth B. Harkins and Jonas C. Peters

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting Information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Supporting Information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Supplementary Information

Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains

Stereoselective Synthesis of (-) Acanthoic Acid

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Supporting Information

Electronic Supplementary Information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Supporting Information

Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Supporting information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Supporting Information. for

Supporting Information for. Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers. with High Porosity

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Supporting Information. Table of Contents

Supporting Information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Supporting Information. Table of Contents

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Electronic Supplementary Information (ESI)

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Science,

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Supporting Information

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Supporting Information. Pb 6 Ba 2 (BO 3 ) 5 X (X = Cl, Br): new borate halides with strong

Phase identification and structure determination from multiphasic crystalline powder samples by rotation electron diffraction

metal-organic compounds

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Supporting Information

A vanadium(iv) pyrazolate metal organic polyhedron with permanent porosity and adsorption selectivity

Electronic Supplementary Information. Noninvasive Functionalization of Polymers of Intrinsic Microporosity for Enhanced CO 2 Capture

An Anionic Metal Organic Framework For Adsorption and. Separation of Light Hydrocarbons

Local Deprotonation Enables Cation Exchange, Porosity. Modulation and Tunable Adsorption Selectivity in a. Metal-Organic Framework

Cages on a plane: a structural matrix for molecular 'sheets'

Supporting Information

Supplementary Material

in a Porous Metal-Organic Framework [Zn 2 (BPnDC) 2 (bpy)]

groups School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin Heilongjiang , China

CHEM 1310 Reading Day Study Session. 2. How many atoms of nitrogen are in g Ba(NO3)2?

1 Iodine reacts with chlorine to form dark brown iodine monochloride. I 2 + Cl 2 2ICl

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

SUPPLEMENTARY INFORMATION

Lead-free double-halide perovskite Cs 3 BiBr 6 with well-defined crystal structure and high thermal stability for optoelectronics

Supporting Information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Matter is anything that has mass and occupies space. Three physical states of matter

Supporting information

Selective aerobic oxidation of biomass-derived HMF to 2,5- diformylfuran using a MOF-derived magnetic hollow Fe-Co

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Functional Group Effects on Metal- Organic Framework Topology

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

Supplementary Figures

Two-electron oxidation of water to form hydrogen peroxide catalysed by Silicon-porphyrins

research papers V 2 O 2 F 4 (H 2 O) 2 H 2 O: a new V 4+ layer structure related to VOF 3 publcif Cameron Black and Philip Lightfoot* Abstract

Electronic Supporting information (ESI) for

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Supplementary Information. Single Crystal X-Ray Diffraction

BET Surface Area Analysis of Nanoparticles *

Supporting Information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Supporting Information

Aluminum Complexes with Bidentate Amido Ligands: Synthesis, Structure and Performance on Ligand-Initiated Ring-Opening Polymerization of rac-lactide

Transcription:

Supplementary material Cobalt selenium oxohalides: Catalysts for Water Oxidation Faiz Rabbani a,b, Henrik Svengren a, Iwan Zimmermann a, Shichao Hu a, Tanja Laine c, Wenming Hao a, Björn Åkermark c, Torbjörn Åkermark c, Mats Johnsson a a) Department of Materials and Environmental Chemistry, Stockholm University, SE- 106 91 Stockholm, Sweden b) Permanent address: Department of Chemistry, University of Engineering and Technology, Lahore - 54890, Pakistan c) Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden Table S1 Crystal data and structure refinement parameters for (1) Co 4 Se 3 O 9 Cl 2 and (2) Co 3 Se 4 O 10 Cl 2. Empirical formula Co 4 Se 3 O 9 Cl 2 Co 3 Se 4 O 10 Cl 2 Formula weight (amu) 687.50 723.53 Temperature (k) 292(3) 293(2) Wavelength (Å) 0.71073 0.71073 Crystal system Orthorhombic Monoclinic Space group Pnma (no. 62) C2/m (no. 12) Unit cell dimensions a = 7.9751(1) Å b = 14.4048(2) Å c = 9.7103(2) Å a = 7.197(1) Å b = 13.996(2) Å c = 5.8334(9) Å β = 107.52(2) º Volume (Å 3 ) 1115.52(3) 560.35(14) Z 4 2 Density (calculated) (g cm -3 ) 4.09 4.288 Absorption coefficient (mm -1 ) 16.143 17.900 F(000) 1264 662 Crystal colour Blue Purple Crystal habit Block Block Crystal size (mm 3 ) 0.20x0.04x0.04 0.07 x 0.05 x 0.03 Ө range for data coll. 3.30 to 32.24 3.31 to 27.25 Index ranges -11 h 8-21 k 20-14 l 14-7 h 9-17 k 15-7 l 5 Reflections collected 1938 621 Independent reflections 1576 [R(int) = 0.0344] 535 [R(int) = 0.0260] Data / restraints / parameters 1938 / 0 / 85 621 / 0 / 49 Goodness-of-fit on F 2 1.077 0.889 Final R indices [I > 2Sigma (I)] a R 1 = 0.0191 wr 2 = 0.0383 R 1 = 0.0294 wr 2 = 0.0778 R indices (all data) R 1 = 0.0286 WR 2 = 0.0409 R 1 = 0.0360 wr 2 = 0.1129 Largest diff. peak and hole (e Å -3 ) 0.891 and -1.267 1.042 and -1.662 a R 1 = Σ Fo - Fc /Σ Fo ; wr 2 = {Σ[w(F 2 o- F 2 o) 2 ]/ Σ[w(F 2 o)2]} 1/2 1

Table S2 Atomic coordinates and Equivalent Isotropic Displacement Parameters (Å 2 ) for (1) Co 4 (SeO 3 ) 3 Cl 2. Atom label Wyckoff x y z Uiso Se1 8d 0.52739(3) 0.57802(2) 0.28745(3) 0.00774(6) Se2 4c 0.24330(4) 1/4 0.04178(4) 0.00818(8) Co1 8d 0.53212(5) 0.37287(3) 0.23567(4) 0.01169(8) Co2 8d 0.29642(4) 0.47775(2) 0.00128(4) 0.00848(8) Cl1 8d 0.77173(8) 0.36862(5) 0.08602(7) 0.01444(14) O1 8d 0.3365(2) 0.59107(13) 0.35327(19) 0.0124(4) O2 8d 0.3634(2) 0.34223(12) 0.08675(19) 0.0113(4) O3 4c 0.0970(3) 1/4 0.1716(3) 0.0120(6) O4 8d 0.4914(2) 0.52081(13) 0.13349(18) 0.0108(4) O5 8d 0.6031(2) 0.47856(13) 0.36369(19) 0.0111(4) Table S3 Selected bond lengths (Å) and bond angles for (1) Co 4 (SeO 3 ) 3 Cl 2. Se1 O1 1.662(2) Se2 O2 x 2 1.695(2) Se1 O4 1.731(2) Se2 O3 1.718(3) Se1 O5 1.722(2) Co2 O1 2.043(2) Co1 O2 2.024(2) Co2 O2 2.187(2) Co1 O3 2.052(1) Co2 O4 2.110(2) Co1 O4 2.373(2) Co2 O4 v 2.139(2) Co1 O5 2.045(2) Co2 O5 2.024(2) Co1 Cl1 2.401(1) Co2 Cl1 v 2.431(1) Co1 Cl iii 2.704(1) O1 Se1 O5 104.48(8) O3 ii Co1 Cl1 iii 83.87(2) O1 Se1 O4 103.54(9) O4 Co1 Cl1 iii 100.54(5) O5 Se1 O4 91.91(9) Cl1 Co1 Cl1 iii 176.23(3) O2 Se2 O2 i 103.22(8) O5 iii Co2 O1 iv 93.63(7) O2 Se2 O3 x 2 101.23(6) O5 iii Co2 O4 99.53(7) O2 Co1 O5 141.31(7 O1 iv Co2 O4 162.44(7) O2 Co1 O3 ii 107.04(5) O5 iii Co2 O4 v 177.19(7) O5 Co1 O3 ii 107.79(6) O1 iv Co2 O4 v 89.13(7) O2 Co1 O4 78.82(7) O4 Co2 O4 v 77.67(6) O5 Co1 O4 67.89(7) O5 iii Co2 O2 86.87(7) O3 ii Co1 O4 172.98(5) O1 iv Co2 O2 87.74(7) O2 Co1 Cl1 95.23(5) O4 Co2 O2 81.46(7) O5 Co1 Cl1 99.59(5) O4 v Co2 O2 92.73(7) O3 ii Co1 Cl1 92.46(3) O5 iii Co2 Cl1 v 92.89(6) O4 Co1 Cl1 83.04(5) O1 iv Co2 Cl1 v 94.61(6) O2 Co1 Cl1 iii 86.67(5) O4 Co2 Cl1 v 96.28(5) O5 Co1 Cl1 iii 80.81(5) O4 v Co2 Cl1 v 87.40(5) O2 Co2 Cl1 v 177.65(5) (i) x, 0.5-y, z; (ii) 0.5+x, y, 0.5-z; (iii) -0.5+x, y, 0.5-z; (iv) 0.5-x, 1-y, -0.5+z; (v) 1-x, 1-y, -z. 2

Table S4 Results from Bond Valence Sum (BVS) calculations for (1) Co 4 (SeO 3 ) 3 Cl 2. Atoms Bonding distance Bond valence Atoms Bonding distance Bond valence Se1 O1 1.662(2) 1.496 Cl1-Co1 2.401(1) 0.348 Se1 O4 1.731(2) 1.241 Cl1 iii -Co1 2.704(1) 0.153 Se1 O5 1.722(2) 1.272 Cl1 v -Co2 2.431(1) 0.321 4.0 0.8 Se2 O2 x 2 1.695(2) 1.368 O1-Se1 1.662(2) 1.496 Se2 O3 1.718(3) 1.368 O1-Co2 2.043(2) 0.387 4.1 1.9 Co1 O2 2.024(2) 0.408 O2-Se2 1.695(2) 1.368 Co1 O3 2.052(1) 0.378 O2-Co1 2.024(2) 0.408 Co1 O4 2.373(2) 0.159 O2-Co2 2.187(2) 0.262 Co1 O5 2.045(2) 0.385 2.0 Co1 Cl1 2.401(1) 0.370 Co1 Cl1 iii 2.704(1) 0.163 O3-Co1 x 2 2.052(1) 0.378 1.9 O3-Se2 1.718(3) 1.368 2.1 Co2 O1 2.043(2) 0.387 Co2 O2 2.187(2) 0.262 O4-Co1 2.373(2) 0.159 Co2 O4 2.110(2) 0.323 O4 v -Co2 2.139(2) 0.299 Co2 O4 2.139(2) 0.299 O4-Co2 2.110(2) 0.323 Co2 O5 2.024(2) 0.408 O4-Se1 1.731(2) 1.241 Co2 Cl1 v 2.431(1) 0.340 2.0 2.0 O5-Se1 1.722(2) 1.272 O5-Co1 2.045(2) 0.385 O5-Co2 2.024(2) 0.408 2.1 The bond valence parameters of two atoms i and j were calculated according to the formula Vij = exp{[r 0 -r ij ] B} where r ij is the inter atomic distance. The r 0 values are 1.811 for Se-O, 1.692 for Co-O and 2.033 for Co-Cl with B = 0.37 [S1]. 3

Table S5 Atomic coordinates and Equivalent Isotropic Displacement Parameters (Å 2 ) for (2) Co 3 Se 4 O 10 Cl 2. Atom x y z U(eq) Se(1) 0.85022(9) 0.66102(5) 0.22435(11) 0.0109(4) Co(1) ½ ½ 0 0.0088(5) Co(2) ½ 0.62822(10) ½ 0.0102(4) Cl(1) 0.2861(3) ½ 0.2513(4) 0.0115(5) O(1) 0.6424(7) 0.6082(4) 0.2348(9) 0.0119(11) O(2) 0.1865(7) 0.2260(4) 0.7160(9) 0.0159(11) O(3) 0 0.6132(6) ½ 0.0250(19) Note. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. Table S6 Selected Bond Lengths (Å) and Angles (º) for (2) Co 3 Se 4 O 10 Cl 2. Se1 O2 1.657(5) Co2 O1 x2 2.116(5) Se1 O1 1.686(5) Co2 O2 x2 2.060(5) Se1 O3 1.776(3) Co2 Cl1 x2 2.520(1) Co1 O1 x4 2.091(5) Co1 Cl1 x2 2.424(2) O2 Se1 O1 102.2(3) O2 Co2 O1 x2 90.6(2) O2 Se1 O3 105.2(3) O2 Co2 O1 x2 99.5(2) O1 Se1 O3 96.0(2) O1 iii Co2 O1 viii 164.8(3) O1 Co1 O1 x2 87.2(3) O2 vi Co2 O2 vii 96.7(3) O1 Co1 O1 x2 180.0(2) O2 Co2 Cl1 x2 176.22(16) O1 Co1 O1 x2 92.8(3) O2 Co2 Cl1 x2 87.04(15) O1 Co1 Cl1 x2 96.95(14) O1 iii Co2 Cl1 80.28(14) O1 Co1 Cl1 x4 83.05(14) O1 Co2 Cl1 x2 88.86(16) O1 Co1 Cl1 x2 96.95(14) O1 viii Co2 Cl1 iii 80.27(15) Cl1 Co1 Cl1 v 180.0(1) Cl1 Co2 Cl1 iii 89.18(9) Note. Symmetry transformations used to generate equivalent atoms: (i) x, y, -1+z; (ii) 1-x, y, 1-z; (iii) 1-x, 1-y, 1-z; (iv) x, 1-y, -1+z; (v) 1-x, 1-y, -z; (vi) 0.5+x, 0.5+y, z; (vii) 0.5-x, 0.5+y, 1-z; (viii) x, 1-y, z; (ix) x, y, 1+z; (x) -0.5+x, -0.5+y, z; (xi) -x, y, 1-z. 4

Table S7 Results from Bond Valence Sum (BVS) calculations of (2) Co 3 Se 4 O 10 Cl 2. Atoms Bonding distance Bond valence Atoms Bonding distance Bond valence Se1 O2 1.657(5) 1.5 O1 Co1 2.091(5) 0.33 Se1 O1 1.686(5) 1.4 O1 Co2 2.116(5) 0.31 Se1 O3 1.776(3) 1.1 O1 Se1 1.686(5) 1.40 4.0 2.0 Co1 O1 i 2.091(5) 0.33 O2 Co2 iv 2.060(5) 0.36 Co1 O1 ii 2.091(5) 0.33 O2 Se1 1.657(5) 1.52 Co1 O1 iii 2.091(5) 0.33 1.9 Co1 O1 iv 2.091(5) 0.33 Co1 Cl1 2.424(2) 0.33 O3 Se1 1.776(3) 1.1 Co1 Cl1 v 2.424(2) 0.33 O3 Se1 viii 1.776(3) 1.1 2.0 2.2 Co2 O2 vi 2.060(5) 0.36 Cl1 Co1 2.424(2) 0.33 Co2 O2 vii 2.060(5) 0.36 Cl1 Co2 2.520(1) 0.25 Co2 O1 iii 2.116(5) 0.31 Cl1 Co2 iv 2.520(1) 0.25 Co2 O1 viii 2.116(5) 0.31 0.8 Co2 Cl1 2.520(1) 0.25 Co2 Cl1 iii 2.520(1) 0.25 1.9 Figure S1 [Co 3 O 8 Cl 2 ] chains made up of edge charing [Co(1)O 4 Cl 2 ] octahedra and [Co(2)O 4 Cl 2 ] octahedra extend along [001] in (2) Co 3 Se 4 Cl 2 O 10. 5

Oxidation experiments Figure S2 Raw pressures from the mass spectrometer from the analysis of Co 3 Se 4 O 10 Cl 2 (2) shown in fig. 3, the oxohalide catalyst showing the lowest oxygen evolution. The graph indicate the stability of the closed system during analysis. The total pressure in the reaction chamber during this experiment was 20 mbar, mainly constituted by partial pressures from H 2 O (15 mbar at 13 C) and the reference gas He (5 mbar). The atmospheric gases N 2 and Ar show constant linear trends during the experiment indicating no addition of atmospheric O 2 after start of the oxygen evolving reaction at time zero. The unchanged H 2 O pressure indicates isothermal conditions. No significant CO 2 evolved during the reaction indicating that the Ru 3+ (bpy) 3 (PF 6 ) 3 complex have not fully oxidized to C 4+. 6

Figure S3 Turnover number for a fixed amount of catalyst 1 (1.45 µmol bulk [Co]), as shown in fig. 5, plotted against the amount of Ru 3+ (bpy) 3 (PF 6 ) 3 used. The magnitude of the turnover number follows a linear trend with increasing amount of Ru 3+ (bpy) 3 (PF 6 ) 3. Figure S4 Linear regression fit of the initial kinetic slope of the curve for the selected experiment with TN = 1.0 for compound 1 (1.45 µmol bulk [Co], 22.4µmol Ru III (bpy) 3 (PF 6 ) 3 ) presented in fig. 5 as indicated between brackets at T = 33 sec. and T = 115 sec. and TN = 0.443. 7

Figure S5 Trends using only Ru 3+ (bpy) 3 (PF 6 ) 3 in 0.1 M phosphate buffer at ph 6.1 and ph 5.7. Neither any significant evolution of O 2 and CO 2 (<0.01 µmol) in relation to the atmospheric gas N 2, nor any significant change of color from green (Ru 3+ ) to orange (Ru 2+ ) could be observed. Blue and red lines indicate ph = 6.1, purple and green lines indicate ph 5.7. Figure S6 Local arrangements around the Co atoms in the three different oxohalide compounds. 1-3 (left to right). The Co(II) octahedra are edge sharing in compounds 1 and 2 and can be depicted to two connected open faced cubanes. Compound 3 is less regular and display both corner- and edge sharing octahedra. 8

Table S8 figures. Amount of chemicals used in the water oxidation experiments shown in the Figure Formula Weig hed amou nt (mg) Correspond ing amount bulk Co ( mol) Weighed amount Ru III (bpy) 3 (PF 6 ) 3 oxidant (mg) Correspondi ng amount Ru III ( mol) Phosphate buffer 0.1M ph 6.0 (ml) 3 Co 4 Se 3 O 9 Cl 2 (1) 2.03 11.81 2.12 2.11 0.75 3, S2 Co 3 Se 4 O 10 Cl 2 2.85 11.82 2.08 2.07 0.75 (2) 3 Co 5 Se 4 O 12 Cl 2 2.03 11.62 2.03 2.02 0.75 (3) 3 CoCl 2 1.54 11.86 2.02 2.01 0.75 3 CoO 0.86 11.52 1.99 1.98 0.75 4 Co 4 Se 3 O 9 Cl 2 (1) 2.27 13.21 1) 2.06 2) 2.14 1) 2.05 2) 2.13 0.75 5 Co 4 Se 3 O 9 Cl 2 (1) 0.50 2.90 5.58 5.55 0.75 6, S3, Co 4 Se 3 O 9 Cl 2 (1) 0.25 1.45 22.5 22.40 1.00 S4 6, S3 Co 4 Se 3 O 9 Cl 2 (1) 0.25 1.45 11.26 11.21 0.50 5, 6, S3 Co 4 Se 3 O 9 Cl 2 (1) 0.25 1.45 5.6 5.57 0.50 6, S3 Co 4 Se 3 O 9 Cl 2 (1) 0.25 1.45 2.0 1.99 0.75 S5 2.3 2.29 0.75; ph 6.1 S5 2.1 2.09 0.75; ph 5.7 S6 Co 4 Se 3 O 9 Cl 2 (1) 0.32 1.86 5.80 5.77 0.50; 15% H 18 2 O 9

Figure S7 Evolution of oxygen isotopes from water oxidation performed in presence of 15% H 2 18 O using Ru III (bpy) 3 (PF 6 ) 3 as oxidant and compound Co 4 Se 3 O 9 Cl 2 (1) as catalyst shows that at least 90% of the evolved O 2 (g) was derived from water. 10

Figure S8 Thermal gravimetric analysis of decomposition of (1) in air and in nitrogen. The compound starts to decompose at 500 C by giving off SeO 2 and Cl 2. At 600 C CoO is left according to the weight loss (theoretically 43% left). The slight weight increase from 600 C to 850 C (in N 2 ) is most likely due to oxidation of CoO to Co 2 O 3 (theoretically 48% left), reduction of Co 2 O 3 to CoO seems to start at ca 850 C. The reactions are postponed to higher temperatures when taking place in O 2 (g). 11

Figure S9 Thermal gravimetric analysis of decomposition of (2) in air and in nitrogen. This compound starts to decompose already below 100 C and SeO 2 and Cl 2 leave the sample in different steps. A mixture of Co 2 O 3 and CoO remains at 600 C according to the weight loss (theoretically 31.1% left in case only CoO remains and 34.4% if only Co 2 O 3 remains). When the decomposition takes place in N 2 a reduction of formed Co 2 O 3 to CoO seems to take place at ca 775 C. 12

Quantity Adsorbed (mmol/g) Electronic Supplementary Material (ESI) for Dalton Transactions Nitrogen and carbon dioxide adsorption data of (1) Nitrogen adsorption Nitrogen adsorption isotherms were measured at 77 K using a Micromeritics ASAP 2020 device. Before conducting the adsorption experiments, samples were degassed under conditions of dynamic vacuum at a temperature of 150 ºC for 1 h. Specific surface areas (S BET ) were calculated using standard expressions for Brunauer Emmet Teller (BET) isotherms. For BET analyses, uptake of nitrogen at relative pressures of p/p 0 = 0.06-0.29 were used. The total pore volume (V t ) was estimated from the uptake at a p/p 0 = 0.99. 0,16 0,12 0,08 0,04 0,00 0,0 0,2 0,4 0,6 0,8 1,0 Relative Pressure (p/p o ) Figure S10 N 2 -adsorption isotherm of (1) at 77K BET surface area: 1.94 m²/g Total pore volume: 0.00430 cm³/g Hysteresis starts at relative pressure 0.5 is attributed to the capillary condensation. The big loop at high relative pressure is related to the large pores from accumulation of the particles. The fact that the loop does not close can, speculatively, be related to insufficient degassing. (The samples were degassed at only 150 C). Carbon dioxide adsorption Carbon dioxide adsorption isotherms were measured at 273 K using a Micromeritics ASAP 2020 device. Before conducting the adsorption experiments, samples were degassed under conditions of dynamic vacuum at a temperature of 150 ºC for 1 h. 13

Quantity Adsorbed (mmol/g) Electronic Supplementary Material (ESI) for Dalton Transactions 0,030 0,025 0,020 0,015 0,010 0,005 0,000 0,000 0,005 0,010 0,015 0,020 0,025 0,030 Relative Pressure (p/p o ) Figure S11 CO 2 -adsorption isotherm of (1) at 273K The sample does not adsorb much CO 2, so the uptake is very low. 14

a) Co 4 Se 3 O 9 Cl 2 (1) b) Co 3 Se 4 O 10 Cl 2 (2) c) Co 5 Se 4 O 12 Cl 2 (3) d) CoO Figure S12 SEM images of compounds 1, 2, 3 and CoO. 15

References [S1] I.D. Brown and D. Altermatt, Acta Cryst. (1985) B41 244-247. 16