Testing SUSY Dark Matter

Similar documents
Geneva, November 6, Outline

Positron Fraction from Dark Matter Annihilation in the CMSSM

Amsterdam, December 13, Outline


LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Framework for functional tree simulation applied to 'golden delicious' apple trees

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

An Example file... log.txt

Radiative Electroweak Symmetry Breaking with Neutrino Effects in Supersymmetric SO(10) Unifications

Optimal Control of PDEs

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Where is SUSY? Institut für Experimentelle Kernphysik

Dark Matter Implications for SUSY

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

New BaBar Results on Rare Leptonic B Decays

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

Minimal SUSY SU(5) GUT in High- scale SUSY

arxiv:hep-ph/ v1 4 Apr 1997

(Non-minimal) SUSY Phenomenology of the minimal R-symmetric SUSY model

Supersymmetry at the LHC

Dark Matter Direct Detection in the NMSSM

Examination paper for TFY4240 Electromagnetic theory

SUPERSYMETRY FOR ASTROPHYSICISTS

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Probing SUSY Contributions to Muon g-2 at LHC and ILC

Crosschecks for Unification

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

How high could SUSY go?

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Split SUSY at LHC and a 100 TeV collider

Search for physics beyond the Standard Model at LEP 2

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Yukawa and Gauge-Yukawa Unification

Loop parallelization using compiler analysis

Detecting Higgs Bosons within Supersymmetric Models

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

Slepton, Charginos and Neutralinos at the LHC

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

P. Sphicas/SSI2001. Standard Model Higgs

THE STATUS OF NEUTRALINO DARK MATTER

Natural SUSY and the LHC

The Egret Excess, an Example of Combining Tools

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Implications of a Heavy Z Gauge Boson

Vectors. Teaching Learning Point. Ç, where OP. l m n

TELEMATICS LINK LEADS

An Introduction to Optimal Control Applied to Disease Models

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

SEARCHES FOR THE NEUTRAL HIGGS BOSONS OF THE MSSM

Cold Dark Matter beyond the MSSM

ETIKA V PROFESII PSYCHOLÓGA

INTRODUCTION TO EXTRA DIMENSIONS

The Forward-Backward Top Asymmetry in a Singlet Extension of the MSSM

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

SUSY Phenomenology & Experimental searches

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Redoing the Foundations of Decision Theory

DARK MATTER MEETS THE SUSY FLAVOR PROBLEM

Supersymmetry at the ILC

Lecture 4 - Beyond the Standard Model (SUSY)

Accurate Neutralino Relic Density. Paolo Gondolo

The discrete beauty of local GUTs

SUSY w/o the LHC: Neutralino & Gravitino LSPs

sin(2θ ) t 1 χ o o o

Supersymmetry at the LHC

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Signals from Dark Matter Indirect Detection

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Flavor violating Z from

LHC Capability for Dark Matter

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Matrices and Determinants

Search for Supersymmetry at LHC

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

Introduction to Supersymmetry

Revisiting gravitino dark matter in thermal leptogenesis

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

LHC Studies on the Electroweak Sector of MSSM


Searching for sneutrinos at the bottom of the MSSM spectrum

Planning for Reactive Behaviors in Hide and Seek

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

4.3 Laplace Transform in Linear System Analysis

SUSY at Accelerators (other than the LHC)

Neutrino Oscillation Experiments. Kevin McFarland University of Rochester. Workshop on Nuclear and Particle Physics at JHF GeV PS KEK 10 December 2001

Status of low energy SUSY models confronted with the 125 GeV Higgs data

Beyond the SM: SUSY. Marina Cobal University of Udine

Searches for Supersymmetry at ATLAS

Precision calculations for

Damping Ring Requirements for 3 TeV CLIC

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Transcription:

Testing SUSY Dark Matter Wi de Boer, Markus Horn, Christian Sander Institut für Experientelle Kernphysik Universität Karlsruhe Wi.de.Boer@cern.ch http://hoe.cern.ch/ deboerw SPACE Part Elba, May 7, CMSSM Constraints Outline Positron fraction in the CMSSM Paraeter Space Coparison with HEAT data Suary Wi de Boer Space Part, Elba, May 7,

!! Typical Fits to HEAT Data + + e - ) fraction e + /(e bg + 7700 signal χ =30.3 bg (ep-scaling=0.9) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 + + e - ) fraction e + /(e bg+50 signal χ =4. bg (ep-scaling=0.9) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 - - t t W + W - - - b b + - -3 positron energy -3 positron energy + + e - ) fraction e + /(e bg + 3 signal χ =37.9 bg (ep-scaling=0.94) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 + + e - ) fraction e + /(e bg + 540 signal χ =4. bg (ep-scaling=0.9) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 - - b b b b - - -3 + - positron energy -3 t t + - positron energy Wi de Boer Space Part, Elba, May 7,

P b o ( o } Š g o o o b p p p ( d N CMSSM Fitprocedure Choose the GUT supergravity inspired paraeters: " #%$&" ')(+*$),.-0/3$&4-0/5 6 $879;: $5< =?>A@B$DC EF=G>H@B$DC IJ=G>H@B$KC LM=?>A@ Miniize the Higgs potential in order to deterine 4 Calculate asses and couplings at low energies by integrating about 30 coupled RGE s and decoupling sparticles at thresholds calculate O =?QR SUTV@, WYX[Z\X] ^ Deterine the best paraeters by iniizing: `_ a b cd cfehg%ijkd b cfe X`X e ilin p q rtsvuxw ykz {x}~ ƒ p ˆ y z { ŠŒ~ Ž. ˆ ykz {H )~ Ž G & ˆ y cše gkj œ +žÿ?kin ^ _ p y cfx c ij Kž œ+ª «Y ~in ll y c²± ³ `³ ¹ j3ºk +»Y«Y ~ ¼½¼ i¾ bæå ÁÀ bæå y cãâ e j e3ä  i ÉÈÇ Ê Ë e Â Ì e3ä  y cæíïî Ë Ð± Î)Ñ;Ò Ó Ô?Õ½Ö Ö ËÁ ÙØ ±KÚÛ±ÃÕܱ Î ÕƒžÜÖ e X`X e i and strongly correlated. Repeat fits for all pairs of $ rtsvu Wi de Boer Space Part, Elba, May 7, 3

w w å ú ü ü þ ô ÿ å ß ô /α i 60 ä 50 ã 40 â 30 á0 Unification of the Coupling Constants in the SM and the inial MSSM à0 à ä 0 5 5 log Q /α i 60 ä 50 ã 40 â 30 á0 à0 Ý /α Ý /αþ à0 5 Ý 3 MSSM /α ä 5 log Q d d _ U. Aaldi, W. de Boer, H. Fürstenau, PL B60(99) 447 d coupling constants of electroagnetic, weak, and stong interactions ')( dçæfèêéìë+íïî _ due to radiative corrections (LO) Fro RGE equations: ass 700 ó ò 500 ñ 300 0 ð 0 q ~û t ~û ~ý t l ~û ~ý L L R L l R Bino ù Gluino ø Wino ô ü tan β =.65 = Y Y b ö 0 ( 0 + ) ó 4 6 8 4 6 log Q 0 Wi de Boer Space Part, Elba, May 7, 4

4 4 4 * * * * * * C C I L ' ' Yukawa Unification E = @ I = @ L = @ C E ' _ y _ ' y _ ' y _ Relation between 4 E and M top Y t/b (0) 0 80 60 - - -3-4 -5-6 Y t Y b (0) > 0 (0) < 0 =Y χ 0 0 Preferred: J "! # > %$ Low tan β or $ > & & A> scenario excluded by Higgs liit! Wi de Boer Space Part, Elba, May 7, 5

c J i - Higgs ass vs ')(+* 30 h 0 0 90 80 70 > 0 < 0 > 0 < 0-0 / / / 60. $, tanβ 5 5 0 5 30 35 40 excluded by Higgs liit of 4 GeV! Yellow band in Figure: " E )/0! 43 > & " 5 & 76 > 43 : For " E 8/9! #! 43 >! & " 5 & 76! : or:<; a ' '>=?A@ EDCFE c%b :HG? * EM5 CFNIO?P= EDCFE BIBKJLBi ([Z :HG BIB ( o TSVUTW a Ö ÚnÔ? YXK± Î ) GeV JRQ3ž Wi de Boer Space Part, Elba, May 7, 6

Ö w f \ \ e Ö w f ^ e Ö ( ( ( e Ö w j ^ kj l Fro RGE (large ) d Neutralino: c Ö Gaugino Fraction e c O = \ ] @ ^ `_ = \ ] @ ^ baç 6 = \ ] @ ^ g h wh c c i f Neutralino Mass Mixing Matrix: i c º e ¼ jte gnüë[o oqp srut e g oqp oqp vrt e e gw½ëxo Üë[o rut jtehg otp ½ëxo rt jtehgnüë[o oqp vrt e g Üë[o Üë[o rut e g otp otp sr t jte g oqp Üë[o r t j ƒ }q ˆ ƒ } Š Gaugino Fraction: ~} yrz { gaugino fraction 0.5 0 0Œ Large Ž } gaugino fraction SMALL coupling to Higgs and gauge bosons! Wi de Boer Space Part, Elba, May 7, 7

Diagras for Neutralino Annihilation Gauge Bosons Sferions Only heavy final states relevant (helicity conservation!) All x-sections strong function of Interferences (Z-,t-channel) NEGATIVE Interferences (Higgs-,t-channel) POSITIVE Wi de Boer Space Part, Elba, May 7, 8

¾½ º ãâ Þ ä ê t-channel Helicity suppression»¼ š at low neutralino oenta œk 4œ"ž Ÿ Ÿ Y ³x ³ %³ ¹³ ÀÁ à³x ³x ª «D ²± ßáà ÖuË Ö ËÚÛÝÖ Ë²ÛÜËFÖ ÖMË Ê ÖMËØ ÚÙ Sae for quarks Ä ÅÆÄ Å7Ç È¹É È ÊÌË ÍÌË ÎÌËÏÑÐÓÒÕÔ ìîí0ïðì ¼ñKò ï»uóó ôö ï» ø ï ºLùuó ú7û ï ü [» ú0ý ï ü åæxçéè çéë Dþ ó Wi de Boer Space Part, Elba, May 7, 9

GF B ji f x-section vs ÿ CED :045A :04@? :045> ó ó ( ) "!$#&%&')(+*-,+,.0/ # # H H :04-= :04<; 354 674 8 *-,9 geh `0\5e `0\@d `0\5c ó ó I ( ôkjmô ) LMNLMO P PSRUT VWT X-YUZ Q k Qk l lq `0\-b `0\<a [5\ ]7\ T X-^_ Wi de Boer Space Part, Elba, May 7,

Higgs exchange vs Š ˆ <y ó ó decays npo<q)nposr t r uwvu <y7ƒ xzy { y 0}~ W W 7 ó ó decays ŒŽ W ŒŽ W Ÿ W @ž šz sœ Wi de Boer Space Part, Elba, May 7,

± ± Neutralino Annihilation X-sections ² ÿ «ª <σv> [c 3 s - GeV - ] -8-9 -30 ² siga v³ TOT 0 <σv> [c 3 s - GeV - ] ± -7-8 ± -9-30 ± -3 ² siga v³ TOT 0 ÿ ¹º <σv> [c 3 s - GeV - ] -5 ± -6 ± -7-8 ² siga v³ TOT 0 <σv> [c 3 s - GeV - ] -5 ± -6-7 ± -8 ² siga v³ TOT 0 Wi de Boer Space Part, Elba, May 7,

± ½ ½ ± ½ ½ Boost factor for HEAT Data ² ÿ «ª boost factor ¼ 3 ±» boost-factor (best fit) 0 boost factor ¼ 3 ±» boost-factor (best fit) 0 ÿ ¹º boost factor ± ¼ 3 ± boost-factor (best fit) 0 boost factor ± ¼ 3 ± boost-factor (best fit) 0 Wi de Boer Space Part, Elba, May 7, 3

Ä Å È É Ä Å È É È É Dark Matter ¾ «¹ À ÿ «ª excl. LSP excl. LSP excl. Ω h > 0.5 excl. Ω h Á > 0.5  à ÆÇ Ωh 0 -region Á  à ÆÇ Ωh 0 -region ² ÿ ² ÿ ¹º excl. LSP excl. LSP excl. Ω h > 0.5 excl. Ωh Á < 0.  excl. Ω h < 0. Á excl. Ω h > 0.5 à Ωh -region Æ 0 Ç Â Ã Ωh -region Æ 0 Ç Green regions preferred by Booerang and SN Ia Wi de Boer Space Part, Elba, May 7, 4

Ï Ï Ï Higgs Contours (high ÊÌËÎÍ scenario) Ô Ô Ô A = 3 A = 0 A = - h 0 5 0 5 0 5 5 0Ð Ï500 500 5 0Ð Ï500 500 5 0Ð Ï500 500 Ó Ò Ñ 9 GeV 6 GeV 4 GeV GeV 8 GeV Ï500 GeV Ó Ò Ñ 0 GeV 9 GeV 8 GeV 6 GeV 4 GeV GeV Ï500 Ó Ò Ñ 8 GeV 6 GeV 4 0 GeV 9 GeV 0 Ï500 Õ For Ö Ø Ù ÚÜÛ Ý Þ hardly liit fro ß à á ââžã GeV However, ä Þ å æç prefers è éêø ë ß ì Then lower liits on SUSY fro Higgs constraint Wi de Boer Space Part, Elba, May 7, 5

± ± îí contr. for HEAT Data ïzðòñôó «ª ïðñ"ó χ - ter 40 χ - ter 40 0 0 ö ±0 0 ö ±0 0 χ - ter χ - ter ïðñ"ó ïðñôó ¹º χ - ter 40 χ - ter 40 0 ö0 0 0 ö0 0 χ - ter χ - ter Wi de Boer Space Part, Elba, May 7, 6

ÿ ÿ ÿ ÿ Typical Fits to HEAT Data ïðñôó «ªùø ûú ýü ïðñôó «ªùø ûú þ + + e - ) fraction e + /(e bg + 7700 signal χ =30.3 bg (ep-scaling=0.9) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 + + e - ) fraction e + /(e bg+50 signal χ =4. bg (ep-scaling=0.9) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 - - t t W + W - - - b b + - -3 ïðñ"ó positron energy ¹ ôø ûú ª -3 ïðñôó positron energy ¹º ôø ûú ¹ + + e - ) fraction e + /(e bg + 3 signal χ =37.9 bg (ep-scaling=0.94) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 + + e - ) fraction e + /(e bg + 540 signal χ =4. bg (ep-scaling=0.9) bg only fit χ =48.0 HEAT 94/95/0 AMS 0 - - b b b b - - -3 + - positron energy -3 t t + - positron energy Wi de Boer Space Part, Elba, May 7, 7

Suary Low values of (ÊÌËÎÍ ) excluded by LEP Higgs Liit of 4 GeV At larger values of ÊËÜÍ DOMI- NANT FINAL STATE FINAL STATE has orders of agnitude larger x-section than final states FINAL STATE fits the HEAT data as well as the final states Supersyetry can beautifully explain Dark Matter in the universe Wi de Boer Space Part, Elba, May 7, 8