Supplementary Figure 1 A phylogenetic tree of the 1,752 angiosperm species included in our global database on breeding systems.

Similar documents
Flowering plants - angiosperms

Consortium for Educational Communication

ANDRÉ MICHAUX'S AMERICAN PLANT COLLECTIONS,

ANGIOSPERM CLASSIFICATION

SINAUER ASSOCIATES, INC. Publishers Sunderland, Massachusetts USA

Annual Report for the Richard Spruce Project 1 st of June to 31 st December 2002

A Floristic Study of Koria District (Chhattisgarh) India

UPCOMING CHANGES IN FLOWERING PLANT FAMILY NAMES: THOSE PESKY TAXONOMISTS ARE AT IT AGAIN!

Darwin Initiative Project Conservation of the Lowland Savannas of Belize. Herbarium Recuration Interim Report

of flow,rs and fruits

DISTRIBUTION OF PLANT DIVERSITY IN THE CORE CAPE FLORISTIC SUBREGION

RainforestPlants : A Web-Based Teaching Tool for Students of Tropical Biology

Veterinary - medicine Botany Course. Summer semester First exam (Test I) Topics

Atlas of Stem Anatomy in Herbs, Shrubs and Trees

STRUCTURAL PATTERNS OF TROPICAL BARKS

PLANT IDENTIFICATION KEYS FOR UNDERGRADUATE STUDENTS

THE GLOBAL FLORA A practical flora to vascular plant species of the world

THE ADVANCEMENT INDEX VINDICATED

Molecular Phylogenetic Relationships Among Angiosperms: An Overview Based on rbel and I8S rdna Sequences

SYSTEMATIC BOTANY SPRING Biol 331 (4 credits) Instructor: Steffi Ickert-Bond TA: Carolyn Parker

Status of the electronic documentation system in the Herbarium of Agricultural University Plovdiv (SOA)

Introduction. Cambridge University Press The Ecology of Trees in the Tropical Rain Forest I. M. Turner Excerpt More information

An updated angiosperm. classification

Comparative Embryology of Angiosperms Vol.1

Present day risk of extinction may exacerbate the lower species richness of dioecious clades

Effects of Genotype and Environment on the Plant Ionome

Aphids and their Host Affinity- VI: Myzus spp.

An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IIIboj_

A SURVEY OF TRICOLPATE (EUDICOT) PHYLOGENETIC

PART 1 Plant Structure. CHAPTER 1 Introduction to Plant Taxonomy 3

A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity

Angiosperm Phylogeny: 17 Genes, 640 Taxa

Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests

Succinct shrub and tree phylogeny

P HYLOGENY OF LAMIIDAE 1

Figure 3. Systems and Publications & Authors. Liliflorae / Liliales. Bentham & Hooker 1883 Engler et al., 1914

Phylogenetic Composition of Angiosperm Diversity in the Cloud Forests of Mexico

Robust Inference of Monocot Deep Phylogeny Using an Expanded Multigene Plastid Data Set

VESSEL GROUPING IN DICOTYLEDON WOOD: SIGNIFICANCE AND RELATIONSHIP TO IMPERFORATE TRACHEARY ELEMENTS. Sherwin Carlquist

An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV

Biogeographical Divergence of the Flora of Yunnan, Southwestern China Initiated by the Uplift of Himalaya and Extrusion of Indochina Block

A NOTE ON THE EVOLUTIONARY STATUS OF ALUMINIUM-ACCUMULATORS AMONG DICOTYLEDONS

A summary of the total vascular plant flora of Singapore

ANGIOSPERM PHYLOGENY BASED ON MATK

Life Sciences For NET & SLET Exams Of UGC-CSIR. Section B and C. Volume-16. Contents A. PRINCIPLES AND METHODS OF TAXONOMY 1

L. H. Bailey Hortorium and Department of Plant Biology, Cornell University, Ithaca, New York 14853; 2

Supplemental Data. Vanneste et al. (2015). Plant Cell /tpc

Resolving an Ancient, Rapid Radiation in Saxifragales

SHARED MOLECULAR SIGNATURES SUPPORT THE INCLUSION OF CATAMIXIS IN SUBFAMILY PERTYOIDEAE (ASTERACEAE).

Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden.

1. Most important plant families

The Phylogenetic Reconstruction of the Grass Family (Poaceae) Using matk Gene Sequences

WHAT SMARTPHONE APPS ARE AVAILABLE FOR WEED ID?

tropical rain forests of northern Australia

Utilizing a phylogenetic plant classification for systematic arrangements in botanic gardens and herbaria

Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution

1830; Cantino et al., 2007) or Magnoliophyta, are the most diverse group of land plants,

High Species Diversity in Fleshy-Fruited Tropical Understory Plants

ppular fr medicinal use and which families are the least ppular by native peple in these regins? T answer these questins, we cnsider regressin mdeling

Molecular Phylogenetic Dating of Asterid Flowering Plants Shows Early Cretaceous Diversification

Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications

Supplementary material

Additional Supporting Information may be found in the online version of this article.

FORTHCOMING THIS FALL

Basal Angiosperms. Plant Breeding Systems

Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras

Supplementary information

Lab sect. (TA/time): Biology 317 Spring Second Hourly Exam 5/13/11

Adaptive evolution of seed oil content in angiosperms: accounting for the global patterns of seed oils

TEPZZ _Z _ B_T EP B1 (19) PFLANZENWACHSTUMSREGULATOR UND SEINE VERWENDUNG RÉGULATEUR DE CROISSANCE VÉGÉTALE ET SON UTILISATION

EDIBLE MEDICINAL AND NON-MEDICINAL PLANTS: VOLUME 7, FLOWERS BY T. K. LIM

Floristics of the angiosperm flora of Sub-Saharan Africa: an analysis of the African Plant Checklist and Database

Phylogeny of Eudicots (or Tricolpates) Eudicots (or Tricolpates)

Torres Strait Pollen Flora

CHUCOA ILICIFOLIA, A SPINY ONOSERIS (ASTERACEAE, MUTISIOIDEAE: ONOSERIDEAE)

THE NORTHWEST TERRITORIES VIRTUAL HERBARIUM PROTOCOLS AND METADATA. Government of the Northwest Territories, Yellowknife, NWT

Correlations of Life Form, Pollination Mode and Sexual System in Aquatic Angiosperms

Supplemental Figure 1. Comparisons of GC3 distribution computed with raw EST data, bi-beta fits and complete genome sequences for 6 species.

BIOLOGY 366 PLANT SYSTEMATICS FINAL EXAM 100 POINTS

Floristics and Plant Biogeography in China

Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa

arxiv: v1 [q-bio.qm] 26 Apr 2017

ANALYSIS OF VASCULAR FLORA IN THE JIULUI S VALLEY BETWEEN BUMBEŞTI JIU AND LIVEZENI

CORRELATED EVOLUTION OF DICHOGAMY AND SELF-INCOMPATIBILITY: A PHYLOGENETIC PERSPECTIVE

Cover Page. The handle holds various files of this Leiden University dissertation.

Biogeographical patterns of plants in the Neotropics dispersal rather than plate tectonics is most explanatory

PHYLOGENETIC IMPLICATIONS OF THE MULTIPLE LOSSES OF THE MITOCHONDRIAL coxii.i3 INTRON IN THE ANGIOSPERMS

MACROEVOLUTIONARY TESTS OF POLLINATION SYNDROMES: A

Lab sect. (TA/time): Biology 317 Spring Third Hourly (Final) Exam 6/8/10

BIO 301 Plant Systematics Study Guide, Exam 2

A proposed conservation weed risk assessment system for the New Zealand border

More than sixty origins of pantoporate pollen in angiosperms 1

OHIO'S HERBARIA AND THE OHIO FLORA PROJECT 1

Tropical Rainforest Biome. Structure of the vegetation: Leaves canopy leaves exposed to recurrent dry periods - evergreen, thick cuticle, leathery

ANTHER TYPES OF THE MONOCOTS WITHIN FLORA OF KARACHI, PAKISTAN

2a. Leaves compound or dissected 3 2b. Leaves simple and entire, lobed, or toothed but not dissected 15

Databases of host species to support research on plant pests: the case of Xylella fastidiosa

Use of DNA metabarcoding to identify plants from environmental samples: comparisons with traditional approaches

Early theories: Joseph Hooker (1853) vs. Charles Darwin (1859)

Transcription:

Supplementary Figures Supplementary Figure 1 A phylogenetic tree of the 1,752 angiosperm species included in our global database on breeding systems. Different colors represent orders according to the Angiosperm Phylogeny Group III system. 1

1 Supplementary Figure 2 A phylogenetic tree of all angiosperm families. Families represented in our global database on breeding systems are depicted in red; families not represented in the database are depicted in blue. Aizoaceae Phytolaccaceae Sarcobataceae Gisekiaceae Nyctaginaceae Barbeuiaceae Lophiocarpaceae Molluginaceae Halophytaceae Talinaceae Portulacaceae Cactaceae Anacampserotaceae Basellaceae Montiaceae Didiereaceae Limeaceae Stegnospermataceae Caryophyllaceae Achatocarpaceae Amaranthaceae Physenaceae Asteropeiaceae Simmondsiaceae Rhabdodendraceae Plumbaginaceae Polygonaceae Frankeniaceae Tamaricaceae Dioncophyllaceae Ancistrocladaceae Drosophyllaceae Nepenthaceae Droseraceae Apocynaceae Gelsemiaceae Loganiaceae Gentianaceae Rubiaceae Lamiaceae Paulowniaceae Orobanchaceae Phrymaceae Schlegeliaceae Pedaliaceae Martyniaceae Lentibulariaceae Linderniaceae Byblidaceae Bignoniaceae Acanthaceae Verbenaceae Thomandersiaceae Stilbaceae Scrophulariaceae Plantaginaceae Gesneriaceae Calceolariaceae Tetrachondraceae Carlemanniaceae Oleaceae Plocospermataceae Solanaceae Convolvulaceae Sphenocleaceae Hydroleaceae Montiniaceae Boraginaceae Eucommiaceae Garryaceae Oncothecaceae Metteniusaceae Icacinaceae Vahliaceae Compositae Calyceraceae Goodeniaceae Menyanthaceae Stylidiaceae Alseuosmiaceae Argophyllaceae Pentaphragmataceae Campanulaceae Rousseaceae Escalloniaceae Columelliaceae Bruniaceae Apiaceae Myodocarpaceae Araliaceae Pittosporaceae Torricelliaceae Paracryphiaceae Caprifoliaceae Adoxaceae Aquifoliaceae Helwingiaceae Phyllonomaceae Cardiopteridaceae Stemonuraceae Ericaceae Cyrillaceae Clethraceae Sarraceniaceae Roridulaceae Actinidiaceae Diapensiaceae Styracaceae Symplocaceae Theaceae Mitrastemonaceae Primulaceae Ebenaceae Sapotaceae Pentaphylacaceae Sladeniaceae Polemoniaceae Fouquieriaceae Lecythidaceae Tetrameristaceae Marcgraviaceae Balsaminaceae Grubbiaceae Curtisiaceae Cornaceae Hydrangeaceae Loasaceae Hydrostachyaceae Santalaceae Opiliaceae Loranthaceae Schoepfiaceae Misodendraceae Olacaceae Balanophoraceae Berberidopsidaceae Aextoxicaceae Betulaceae Ticodendraceae Casuarinaceae Juglandaceae Myricaceae Fagaceae Nothofagaceae Datiscaceae Begoniaceae Tetramelaceae Cucurbitaceae Corynocarpaceae Coriariaceae Anisophylleaceae Apodanthaceae Moraceae Urticaceae Cannabaceae Ulmaceae Rhamnaceae Dirachmaceae Elaeagnaceae Barbeyaceae Rosaceae Leguminosae Polygalaceae Surianaceae Quillajaceae Cunoniaceae Elaeocarpaceae Cephalotaceae Brunelliaceae Oxalidaceae Connaraceae Huaceae Euphroniaceae Chrysobalanaceae Dichapetalaceae Trigoniaceae Balanopaceae Ochnaceae Elatinaceae Malpighiaceae Podostemaceae Hypericaceae Calophyllaceae Clusiaceae Bonnetiaceae Rhizophoraceae Erythroxylaceae Ctenolophonaceae Picrodendraceae Phyllanthaceae Pandaceae Putranjivaceae Linaceae Ixonanthaceae Irvingiaceae Humiriaceae Euphorbiaceae Rafflesiaceae Caryocaraceae Centroplacaceae Salicaceae Lacistemataceae Passifloraceae Violaceae Goupiaceae Achariaceae Peraceae Celastraceae Lepidobotryaceae Krameriaceae Zygophyllaceae Meliaceae Simaroubaceae Rutaceae Sapindaceae Burseraceae Anacardiaceae Kirkiaceae Nitrariaceae Biebersteiniaceae Tapisciaceae Dipentodontaceae Gerrardinaceae Petenaceae Brassicaceae Cleomaceae Capparaceae Tovariaceae Resedaceae Gyrostemonaceae Pentadiplandraceae Emblingiaceae Salvadoraceae Bataceae Koeberliniaceae Limnanthaceae Setchellanthaceae Moringaceae Caricaceae Tropaeolaceae Akaniaceae Malvaceae Muntingiaceae Cytinaceae Dipterocarpaceae Sarcolaenaceae Cistaceae Bixaceae Sphaerosepalaceae Thymelaeaceae Neuradaceae Picramniaceae Strasburgeriaceae Geissolomataceae Aphloiaceae Crossosomataceae Stachyuraceae Staphyleaceae Myrtaceae Vochysiaceae Penaeaceae Melastomataceae Lythraceae Onagraceae Combretaceae Vivianiaceae Melianthaceae Geraniaceae Vitaceae Saxifragaceae Grossulariaceae Iteaceae Haloragaceae Penthoraceae Aphanopetalaceae Crassulaceae Daphniphyllaceae Cercidiphyllaceae Hamamelidaceae Altingiaceae Paeoniaceae Peridiscaceae Cynomoriaceae Dilleniaceae Myrothamnaceae Gunneraceae Trochodendraceae Haptanthaceae Buxaceae Proteaceae Platanaceae Nelumbonaceae Sabiaceae Papaveraceae Ranunculaceae Berberidaceae Menispermaceae Circaeasteraceae Lardizabalaceae Eupteleaceae Ceratophyllaceae Poaceae Ecdeiocoleaceae Joinvilleaceae FlagellariaceaeRestionaceae Centrolepidaceae Anarthriaceae Juncaceae Cyperaceae Thurniaceae Mayacaceae Eriocaulaceae Xyridaceae Rapateaceae Bromeliaceae Typhaceae Philydraceae Pontederiaceae Haemodoraceae Hanguanaceae Commelinaceae Costaceae Zingiberaceae Cannaceae Marantaceae Lowiaceae Strelitziaceae Heliconiaceae Musaceae Dasypogonaceae Arecaceae Asparagaceae Amaryllidaceae Xanthorrhoeaceae Xeronemataceae Iridaceae Doryanthaceae Tecophilaeaceae Ixioliriaceae Hypoxidaceae Asteliaceae Lanariaceae Blandfordiaceae Boryaceae Orchidaceae Liliaceae Smilacaceae Philesiaceae Rhipogonaceae Alstroemeriaceae Colchicaceae Petermanniaceae Melanthiaceae Campynemataceae Corsiaceae Cyclanthaceae Pandanaceae Stemonaceae Triuridaceae Velloziaceae Nartheciaceae Dioscoreaceae Burmanniaceae Petrosaviaceae Potamogetonaceae Zosteraceae Cymodoceaceae Ruppiaceae Posidoniaceae Juncaginaceae Aponogetonaceae Scheuchzeriaceae Alismataceae Butomaceae Hydrocharitaceae Tofieldiaceae Araceae Acoraceae Saururaceae Piperaceae Aristolochiaceae Lactoridaceae Hydnoraceae Winteraceae Canellaceae Lauraceae Hernandiaceae Monimiaceae Atherospermataceae Gomortegaceae Siparunaceae Calycanthaceae Eupomatiaceae Annonaceae Himantandraceae Degeneriaceae Magnoliaceae Myristicaceae Chloranthaceae Schisandraceae Austrobaileyaceae Nymphaeaceae Cabombaceae Hydatellaceae Amborellaceae

Supplementary Figure 3 Number of species from each continent, for which breeding system data was compiled in our global database on breeding systems. Light red indicates the smallest number of species (i.e. Africa) and dark red indicates the largest number of species (i.e. South America). 2

Supplementary Figure 4 Procedure used for selection of studies for the compilation of our global database on breeding systems using Web of Science and other sources. 3

Supplementary Figure 5 Direct and indirect effects of selfing ability on the global naturalization of alien plant species. Path analyses with one average selfing ability index per species. a, Effects of self-compatibility on naturalization incidence (expressed as being naturalized somewhere or not); n = 1115, no. parameters = 7, Comparative Fit Index (CFI) = 0.989, Root Mean Square Error of Approximation (RMSEA) = 0.064, R 2 naturalization incidence=0.22. b, Effects of autofertility on naturalization incidence; n = 828, no. parameters = 7, CFI = 0.983, RMSEA = 0.079, R 2 naturalization incidence=0.27. c, Effects of self-compatibility on the extent of naturalization (number of regions where the species is naturalized); n = 274, no. parameters = 8, CFI = 1.000, RMSEA = 0.000, R 2 naturalization extent=0.13. d, Effects of autofertility on the extent of naturalization; n = 195, no. parameters = 8, CFI = 1.000, RMSEA = 0.000, R 2 naturalization extent=0.18. Indices were calculated using fruit set from our global breeding-system database. Sample sizes refer to the number of species. Curved dashed lines with two-headed arrows indicate bivariate correlations between variables; solid lines with one-headed arrow indicate directed paths connecting the variables. The thickness of each path is proportional to the value of the path coefficient. Only path coefficients that are significant (z-test, p < 0.05; black) and marginally significant (p < 0.1; grey) are shown. 4

Supplementary Tables Supplementary Table 1 Results of four non-phylogenetic logistic and linear regressions testing the global naturalization of alien species in relation to selfing ability (measured as self-compatibility and autofertility indices), native range size, annual/biennial vs. perennial life history, and the interaction between life history and selfing ability. Global naturalization was measured as naturalization incidence outside the native range (expressed as being naturalized somewhere or not) and naturalization extent (natural logtransformed number of regions where the species is naturalized). Native range size was measured as the number of TDWG level-2 regions. Self-compatibility and autofertility indices were calculated using fruit set from our global breeding-system database. Sample sizes refer to the total number of species from individual studies in the breeding-system database. a Logistic regressions. b Linear models. c Variables were rescaled to have a mean of zero and a standard deviation of one. d Total explained variance by the variables in the model, and the relative importance of each variable calculated as the difference in deviance or sum of squares of residuals between the full model and a model without the variable of interest. 5

Response variables Naturalization incidence a Naturalization extent b Explanatory variables Estimates SE z p R 2d Estimates SE t p R 2d Analysis with self-compatibility n = 1181 0.21 n = 295 0.12 Intercept -1.222 0.077-15.72 <0.0001-2.164 0.107 20.15 <0.0001 - Native range size (no. regions) c 0.850 0.085 10.04 <0.0001 85.62 0.070 0.096 0.73 0. 467 1.85 Annual/biennial c 0.702 0.461 1.52 0.128 11.18 1.661 0.474 3.50 <0.001 77.15 Self-compatibility index c -0.087 0.077-1.14 0.256 2.15 0.182 0.107 1.70 0.090 18.53 Annual/biennial c x Self-compatibility c 0.515 0.414 1.24 0.213 1.04-0.377 0.448-0.84 0.400 2.47 Analysis with autofertility n = 866 0.25 n = 203 0.16 Intercept -1.345 0.092-14.55 <0.0001-2.348 0.128 18.35 <0.0001 - Native range size (no. regions) c 0.885 0.101 8.71 <0.0001 77.59-0.017 0.119-0.14 0.885 0.09 Annual/biennial c 0.864 0.369 2.34 0.019 16.13 1.178 0.383 3.07 0.002 50.32 Autofertility c 0.032 0.093 0. 35 0.729 3.35 0.443 0.131 3.37 <0.001 49.25 Annual/biennial c x Autofertility c 0.501 0.262 1.91 0.056 2.93-0.083 0.300-0.28 0.782 0.33 6

Supplementary Table 2 Number of plant taxa of which breeding-system data were documented Pollinator exclusion Selfpollination Crosspollination Open pollination Apomixis Pollen supplementation Percent fruit set 1165 1293 1230 964 403 147 Seeds per flower 654 731 486 443 378 90 (% calculated) (33.38 %) (56.63 %) (53.90 %) (60.95 %) (38.36 %) (37.78 %) 7

Supplementary Table 3 References used to add the remaining 486 species to a tree with 1266 tips in order to construct a phylogenetic tree of the 1752 species in the breeding system database Taxa Acanthaceae Amaryllidaceae Annonaceae Apiaceae Apocynaceae Araceae Asparagaceae Asteraceae Bignoniaceae Blandfordia Boraginaceae References McDade, L.A. & Moody, M.L. Phylogenetic relationships among Acanthaceae: evidence from noncoding trnl-trnf chloroplast DNA sequences. Am. J. Bot. 86, 70-80 (1999). McDade, L.A., Masta, S.E., Moody, M.L. & Waters, E. Phylogenetic relationships among Acanthaceae: evidence from two genomes. Syst. Bot. 25, 106-121 (2000). Ito, M., Kawamoto, A., Kita, Y., Yukawa, T. & Kurita, S. Phylogenetic relationships of Amaryllidaceae based on matk sequence data. J. Plant Res. 112, 207-216 (1999). Chatrou, L.W., Pirie, M.D., Erkens, R.H., Couvreur, T.L., Neubig, K.M., Abbott, J.R., Mols, J.B., Maas, J.W., Saunders, R.M. & Chase, M.W. A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot. J. Linn. Soc. 169, 5-40 (2012). Downie, S.R., Katz-Downie, D.S. & Watson, M.F. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoc1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am. J. Bot. 87, 273-292 (2000). Sennblad, B. & Bremer, B. Classification of Apocynaceae s. 1. according to a new approach combining Linnaean and Phylogenetic taxonomy. Syst. Biol. 51, 389-409 (2002). Angiosperm Phylogeny Website version 13 (http://www.mobot.org/mobot/research/apweb/) Kim, D.-K., Kim, J.S. & Kim, J.-H. The phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions. J. Plant Biol. 55, 325-341 (2012). Panero, J.L. & Funk, V.A. Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). P. Biol. Soc. Wash. 115, 909-922 (2002). Panero, J.L. & Funk, V.A. The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol. Phylogenet. Evol. 47, 757-782 (2008). Goertzen, L.R., Cannone, J.J., Gutell, R.R. & Jansen, R.K., ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Mol. Phylogenet. Evol. 29, 216-234 (2003). Olmstead, R.G., Zjhra, M.L., Lohmann, L.G., Grose, S.O. & Eckert, A.J. A molecular phylogeny and classification of Bignoniaceae. Am. J. Bot. 96, 1731-1743 (2009). Angiosperm Phylogeny Website version 13 (http://www.mobot.org/mobot/research/apweb/) Långström, E. & Chase, M. Tribes of Boraginoideae (Boraginaceae) and placement of Antiphytum, Echiochilon, Ogastemma 8

Taxa References and Sericostoma: a phylogenetic analysis based on atpb plastid DNA sequence data. Plant Syst. Evol. 234, 137-153 (2002). Brassicaceae Bailey, C.D., Koch, M.A., Mayer, M., Mummenhoff, K., O'Kane, S.L., Warwick, S.I., Windham, M.D. & Al-Shehbaz, I.A. Toward a global phylogeny of the Brassicaceae. Mol. Biol. Evol. 23, 2142-2160 (2006). Bromeliaceae Barfuss, M.H., Samuel, R., Till, W. & Stuessy, T.F. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am. J. Bot. 92, 337-351 (2005). Terry, R., Brown, G. & Olmstead, R. Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus ndhf. Am. J. Bot. 84, 664-664 (1997). Cactaceae Butterworth, C.A., Cota-Sanchez, J.H. & Wallace, R.S. Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. Syst. Bot. 27, 257-270 (2002). Nyffeler, R. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnk/matk and trnl-trnf sequences. Am. J. Bot. 89, 312-326 (2002). Campanulaceae Antonelli, A. Higher level phylogeny and evolutionary trends in Campanulaceae subfam. Lobelioideae: Molecular signal overshadows morphology. Mol. Phylogenet. Evol. 46, 1-18 (2008). Eddie, W., Shulkina, T., Gaskin, J., Haberle, R. & Jansen, R. Phylogeny of Campanulaceae s. str. inferred from ITS sequences of nuclear ribosomal DNA. Ann. Mo. Bot. Gard. 90, 554-575 (2003). Caryophyllaceae Fior, S., Karis, P.O., Casazza, G., Minuto, L. & Sala, F. Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matk and nuclear rdna ITS sequences. Am. J. Bot. 93, 399-411 (2006). Combretaceae Angiosperm Phylogeny Website version 13 (http://www.mobot.org/mobot/research/apweb/) Commelinaceae Evans, T.M., Sytsma, K.J., Faden, R.B. & Givnish, T.J. Phylogenetic relationships in the Commelinaceae: II. A cladistic analysis of rbcl sequences and morphology. Syst. Bot. 28, 270-292 (2003). Convolvulaceae Stefanovic, S., Austin, D.F. & Olmstead, R.G. Classification of Convolvulaceae: a phylogenetic approach. Syst. Bot. 28, 791-806 (2003). Cyperaceae Simpson, D.A., Muasya, A.M., Alves, M.V., Bruhl, J.J., Dhooge, S., Chase, M.W., Furness, C.A., Ghamkhar, K., Goetghebeur, P. & Hodkinson, T. Phylogeny of Cyperaceae based on DNA sequence data-a new rbcl analysis. Aliso 23, 72-83 (2007). Dipterocarpaceae Dayanandan, S., Ashton, P.S., Williams, S.M. & Primack, R.B., Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcl gene. Am. J. Bot. 86, 1182-1190 (1999). Tsumura, Y., Kawahara, T., Wickneswari, R. & Yoshimura, K., Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. Theor. Appl. Genet. 93, 22-29 (1996). Elaeocarpaceae Angiosperm Phylogeny Website version 13 (http://www.mobot.org/mobot/research/apweb/) Ericaceae Kron, K.A., Judd, W., Stevens, P., Crayn, D., Anderberg, A., Gadek, P., Quinn, C. & Luteyn, J. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 68, 335-423 (2002). 9

Taxa References Fabaceae Wojciechowski, M.F., Lavin, M. & Sanderson, M.J. A phylogeny of legumes (Leguminosae) based on analysis of the plastid matk gene resolves many well-supported subclades within the family. Am. J. Bot. 91, 1846-1862 (2004). Gentianaceae Mansion, G. & Struwe, L. Generic delimitation and phylogenetic relationships within the subtribe Chironiinae (Chironieae: Gentianaceae), with special reference to Centaurium: evidence from nrdna and cpdna sequences. Mol. Phylogenet. Evol. 32, 951-977 (2004). Yuan, Y.-M. & Küpfer, P. Molecular phylogenetics of the subtribe Gentianinae (Gentianaceae) inferred from the sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. Plant Syst. Evol. 196, 207-226 (1995). Gesneriaceae Moller, M. & Cronk, Q. Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Am. J. Bot. 84, 956-956 (1997). Zimmer, E.A., Roalson, E.H., Skog, L.E., Boggan, J.K. & Idnurm, A. Phylogenetic relationships in the Gesnerioideae (Gesneriaceae) based on nrdna ITS and cpdna trnl-f and trne-t spacer region sequences. Am. J. Bot. 89, 296-311 (2002). Iridaceae Reeves, G., Chase, M.W., Goldblatt, P., Rudall, P., Fay, M.F., Cox, A.V., Lejeune, B. & Souza-Chies, T. Molecular systematics of Iridaceae: evidence from four plastid DNA regions. Am. J. Bot. 88, 2074-2087 (2001). Lamiaceae Wagstaff, S.J., Hickerson, L., Spangler, R., Reeves, P.A. & Olmstead, R.G. Phylogeny in Labiatae sl, inferred from cpdna sequences. Plant Syst. Evol. 209, 265-274 (1998). Lauraceae Rohwer, J.G. Toward a phylogenetic classification of the Lauraceae: evidence from matk sequences. Syst. Bot. 25, 60-71 (2000). Loranthaceae Vidal-Russell, R. & Nickrent, D.L. Evolutionary relationships in the showy mistletoe family (Loranthaceae). Am. J. Bot. 95, 1015-1029 (2008). Lythraceae Graham, S.A., Hall, J., Sytsma, K. & Shi, S.h. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. Int. J. Plant Sci. 166, 995-1017 (2005). Magnolia Azuma, H., Thien, L.B. & Kawano, S. Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpdna sequences and evolutionary divergence of the floral scents. J. Plant Res. 112, 291-306 (1999). Malvaceae Alverson, W.S., Whitlock, B.A., Nyffeler, R., Bayer, C. & Baum, D.A. Phylogeny of the core Malvales: evidence from ndhf sequence data. Am. J. Bot. 86, 1474-1486 (1999). Melastomataceae Clausing, G. & Renner, S.S. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. Am. J. Bot. 88, 486-498 (2001). Michelangeli, F.A., Guimaraes, P.J., Penneys, D.S., Almeda, F. & Kriebel, R. Phylogenetic relationships and distribution of new world Melastomeae (Melastomataceae). Bot. J. Linn. Soc. 171, 38-60 (2013). Renner, S.S. Phylogeny and classification of the Melastomataceae and Memecylaceae. Nord. J. Bot. 13, 519-540 (1993). Myrtaceae Wilson, P.G., O brien, M., Heslewood, M. & Quinn, C. Relationships within Myrtaceae sensu lato based on a matk 10

Taxa References phylogeny. Plant Syst. Evol. 251, 3-19 (2005). Onagraceae Levin, R.A., Wagner, W.L., Hoch, P.C., Nepokroeff, M., Pires, J.C., Zimmer, E.A. & Sytsma, K.J. Family-level relationships of Onagraceae based on chloroplast rbcl and ndhf data. Am. J. Bot. 90, 107-115 (2003). Orchidaceae Cameron, K.M., Chase, M.W., Whitten, W.M., Kores, P.J., Jarrell, D.C., Albert, V.A., Yukawa, T., Hills, H.G. & Goldman, D.H. A phylogenetic analysis of the Orchidaceae: evidence from rbcl nucleotide sequences. Am. J. Bot. 86, 208-224 (1999). Orobanchaceae Bennett, J.R. & Mathews, S. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am. J. Bot. 93, 1039-1051 (2006). Pandanales Angiosperm Phylogeny Website version 13 (http://www.mobot.org/mobot/research/apweb/) Papaveraceae Hoot, S., Kadereit, J., Blattner, F., Jork, K., Schwarzbach, A. & Crane, P. Data congruence and phylogeny of the Papaveraceae sl based on four data sets: atpb and rbcl sequences, trnk restriction sites, and morphological characters. Syst. Bot. 22, 575-590 (1997). Schwarzbach, A.E. & Kadereit, J.W. Phylogeny of prickly poppies, Argemone (Papaveraceae), and the evolution of morphological and alkaloid characters based on ITS nrdna sequence variation. Plant Syst. Evol. 218, 257-279 (1999). Piperales Angiosperm Phylogeny Website version 13 (http://www.mobot.org/mobot/research/apweb/) Poaceae Grass Phylogeny Work Group, Barker, N.P., Clark, L.G., Davis, J.I., Duvall, M.R., Guala, G.F., Hsiao, C., Kellogg, E.A., Linder, H.P. & Mason-Gamer, R.J. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Mo. Bot. Gard. 88, 373-457 (2001). Polemoniaceae Bell, C.D. & Patterson, R.W. Molecular phylogeny and biogeography of Linanthus (Polemoniaceae). Am. J. Bot. 87, 1857-1870 (2000). Polygalaceae Abbott, J.R. Phylogeny of the Polygalaceae and a revision of Badiera. (Doctoral dissertation, University of Florida, 2009). Primulaceae Martins, L., Oberprieler, C. & Hellwig, F. A phylogenetic analysis of Primulaceae sl based on internal transcribed spacer (ITS) DNA sequence data. Plant Syst. Evol. 237, 75-85 (2003). Proteaceae Barker, N.P., Weston, P.H., Rutschmann, F. & Sauquet, H. Molecular dating of the Gondwanan plant family Proteaceae is only partially congruent with the timing of the break up of Gondwana. J. Biogeogr. 34, 2012-2027 (2007). Ranunculaceae Wang, W., Lu, A.-M., Ren, Y., Endress, M.E. & Chen, Z.-D. Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect. Plant Ecol. 11, 81-110 (2009). Rhamnaceae Richardson, J.E., Fay, M.F., Cronk, Q.C., Bowman, D. & Chase, M.W. A phylogenetic analysis of Rhamnaceae using rbcl and trnl-f plastid DNA sequences. Am. J. Bot. 87, 1309-1324 (2000). Rubiaceae Backlund, M. Phylogenetic Studies in the Gentianales Approaches at Different Taxonomic Levels. (Doctoral dissertation, Uppsala University, 2005). Bremer, B. Phylogenetic studies within Rubiaceae and relationships to other families based on molecular data. Opera Bot. 11

Taxa References Belg. 7, 33-50 (1996). Rutaceae Chase, M.W., Morton, C.M. & Kallunki, J.A. Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from RBC and ATP sequence variation. Am. J. Bot. 86, 1191-1199 (1999). Groppo, M., Pirani, J.R., Salatino, M.L., Blanco, S.R. & Kallunki, J.A. Phylogeny of Rutaceae based on twononcoding regions from cpdna. Am. J. Bot. 95, 985-1005 (2008). Scrophulariaceae Olmstead, R.G., Wolfe, A.D., Young, N.D., Elisons, W.J. & Reeves, P.A. Disintegration of the Scrophulariaceae. Am. J. Bot. 88, 348-361 (2001). Solanaceae Olmstead, R.G., Bohs, L., Migid, H.A., Santiago-Valentin, E., Garcia, V.F. & Collier, S.M. A molecular phylogeny of the Solanaceae. Taxon 57, 1159-1181 (2008). Verbenaceae Wagstaff, S.J. & Olmstead, R.G. Phylogeny of Labiatae and Verbenaceae inferred from rbcl sequences. Syst. Bot. 22, 165-179 (1997). Xanthorrhoeaceae Chase, M.W., De Bruijn, A.Y., Cox, A.V., Reeves, G., Rudall, P.J., Johnson, M.A. & Eguiarte, L.E. Phylogenetics of Asphodelaceae (Asparagales): an analysis of plastid rbcl and trnl-f DNA sequences. Ann. Bot. 86, 935-951 (2000). Zygophyllaceae Sheahan, M.C. & Chase, M.W. Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae. Syst. Bot. 25, 371-384 (2000). 12

Supplementary Table 4 Results of four phylogenetic logistic and linear regressions testing the global naturalization of alien species in relation to selfing ability using one average index per species (measured as self-compatibility and autofertility indices), native range size, annual/biennial vs. perennial life history, and the interaction between life history and selfing ability, using one index per species.. Global naturalization was measured as naturalization incidence outside the native range (expressed as being naturalized somewhere or not) and naturalization extent (natural log-transformed number of regions where the species is naturalized). Native range size was measured as the number of TDWG level-2 regions. Self-compatibility and autofertility indices were calculated using fruit set from our global breeding-system database. Sample sizes refer to the total number of species (one average index per species was used). a Phylogenetic logistic regression, alpha=0.032 in the analysis with self-compatibility, and 0.025 in the analysis with autofertility. b Phylogenetic linear model, lambda=0.200 in the analysis with self-compatibility and <0.0001 in the analysis with autofertility. c Variables were centered and scaled. d Total explained variance by the variables in the model, and the relative importance of each variable calculated as the difference in deviance between the full model and a model without the variable of interest. R 2 could not be calculated for the phylogenetic logistic regressions. 13

Response variables Naturalization incidence a Naturalization extent b Explanatory variables Estimates SE z p Estimates SE t p R 2d Analysis with self-compatibility n = 1115 n = 274 0.14 Intercept -1.121 0.133-8.41 <0.0001 2.007 0.215 9.32 <0.0001 - Native range size (no. regions) c 0.826 0.090 9.21 <0.0001 0.119 0.100 1.18 0.237 6.18 Annual/biennial c 0.481 0.420 1.15 0.251 1.501 0.467 3.21 0.001 66.73 Self-compatibility index c -0.002 0.076-0.03 0.975 0.217 0.113 1.92 0.055 24.25 Annual/biennial c x Self-compatibility c 0.256 0.362 0.71 0.478-0.356 0.446-0.80 0.426 2.84 Analysis with autofertility n = 828 n = 195 0.18 Intercept -1.271 0.173-7.35 <0.0001 2.369 0.130 18.21 <0.0001 - Native range size (no. regions) c 0.846 0.107 7.93 <0.0001 0.015 0.121 0.12 0.903 0.07 Annual/biennial c 0.737 0.359 2.05 0.040 1.148 0.381 3.01 0.003 51.54 Autofertility c 0.107 0.086 1.24 0.215 0.431 0.133 3.23 0.001 48.18 Annual/biennial c x Autofertility c 0.336 0.249 1.5 0.177-0.063 0.302-0.21 0.834 0.21 14