An Implementation of Dynamic Causal Modelling

Similar documents
Dynamic Causal Modelling for EEG and MEG. Stefan Kiebel

Dynamic Causal Modelling for EEG/MEG: principles J. Daunizeau

Will Penny. 21st April The Macroscopic Brain. Will Penny. Cortical Unit. Spectral Responses. Macroscopic Models. Steady-State Responses

Dynamic Causal Modelling for fmri

Principles of DCM. Will Penny. 26th May Principles of DCM. Will Penny. Introduction. Differential Equations. Bayesian Estimation.

Effective Connectivity & Dynamic Causal Modelling

Dynamic Causal Modelling for EEG and MEG

Dynamic Modeling of Brain Activity

Causal modeling of fmri: temporal precedence and spatial exploration

MIXED EFFECTS MODELS FOR TIME SERIES

Dynamic Causal Models

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Dynamic causal modeling for fmri

Dynamic Causal Modelling for evoked responses J. Daunizeau

Hierarchy. Will Penny. 24th March Hierarchy. Will Penny. Linear Models. Convergence. Nonlinear Models. References

The General Linear Model (GLM)

Stochastic Dynamic Causal Modelling for resting-state fmri

Probabilistic Reasoning in Deep Learning

Latent state estimation using control theory

Neural mass model parameter identification for MEG/EEG

Convolutional networks. Sebastian Seung

Gaussian processes and bayesian optimization Stanisław Jastrzębski. kudkudak.github.io kudkudak

Multi-layer Neural Networks

Nonparameteric Regression:

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Fast Dimension-Reduced Climate Model Calibration and the Effect of Data Aggregation

Statistical Machine Learning (BE4M33SSU) Lecture 5: Artificial Neural Networks

Models of effective connectivity & Dynamic Causal Modelling (DCM)

A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y.

Bayesian inference J. Daunizeau

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis

1 Bayesian Linear Regression (BLR)

Will Penny. SPM short course for M/EEG, London 2015

20: Gaussian Processes

The General Linear Model (GLM)

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Data assimilation with and without a model

Will Penny. SPM for MEG/EEG, 15th May 2012

Models of effective connectivity & Dynamic Causal Modelling (DCM)

Pattern Recognition and Machine Learning. Bishop Chapter 6: Kernel Methods

M/EEG source analysis

New Machine Learning Methods for Neuroimaging

Continuous Time Particle Filtering for fmri

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Graphical Models for Collaborative Filtering

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

BANA 7046 Data Mining I Lecture 6. Other Data Mining Algorithms 1

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

November 2002 STA Random Effects Selection in Linear Mixed Models

Parameter Estimation in the Spatio-Temporal Mixed Effects Model Analysis of Massive Spatio-Temporal Data Sets

Spatial Source Filtering. Outline EEG/ERP. ERPs) Event-related Potentials (ERPs( EEG

Will Penny. SPM short course for M/EEG, London 2013

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

MEG and fmri for nonlinear estimation of neural activity

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

Lecture 13: Simple Linear Regression in Matrix Format. 1 Expectations and Variances with Vectors and Matrices

The General Linear Model. Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London

Radial-Basis Function Networks

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Bayesian Estimation of Dynamical Systems: An Application to fmri

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Relevance Vector Machines

Comparing Dynamic Causal Models

Linear Models for Regression

STAT 518 Intro Student Presentation

Radial-Basis Function Networks

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

Will Penny. DCM short course, Paris 2012

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

A new Hierarchical Bayes approach to ensemble-variational data assimilation

John Ashburner. Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.

Computer Vision Group Prof. Daniel Cremers. 9. Gaussian Processes - Regression

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

Probabilistic & Unsupervised Learning

Default Priors and Effcient Posterior Computation in Bayesian

GWAS IV: Bayesian linear (variance component) models

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Chris Bishop s PRML Ch. 8: Graphical Models

The Laplace Approximation

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Anatomical Background of Dynamic Causal Modeling and Effective Connectivity Analyses

Statistical Analysis of fmrl Data

A Review of Pseudo-Marginal Markov Chain Monte Carlo

High-dimensional geometry of cortical population activity. Marius Pachitariu University College London

Anytime Planning for Decentralized Multi-Robot Active Information Gathering

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Part 1: Expectation Propagation

Introduction to Machine Learning

Event-related fmri. Christian Ruff. Laboratory for Social and Neural Systems Research Department of Economics University of Zurich

An introduction to Bayesian inference and model comparison J. Daunizeau

Hierarchical Modeling for Univariate Spatial Data

Observed Brain Dynamics

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Bayesian inference J. Daunizeau

Machine learning strategies for fmri analysis

Signal Processing for Functional Brain Imaging: General Linear Model (2)

Linear Dynamical Systems (Kalman filter)

Principles of Bayesian Inference

Lecture 5: GPs and Streaming regression

Transcription:

An Implementation of Dynamic Causal Modelling Christian Himpe 24.01.2011

Overview Contents: 1 Intro 2 Model 3 Parameter Estimation 4 Examples

Motivation Motivation: How are brain regions coupled?

Motivation Motivation: How are brain regions coupled? How does the connectivity change in an experimental context?

Cycle DCM Cycle:

Cycle DCM Cycle: 1 Form Hypothesis

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG)

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model)

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model) 5 Tune model-parameters to t Data

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model) 5 Tune model-parameters to t Data An Example: 1 Hypothesis: Connectivity Strengthens for selected Brain Regions under Fear

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model) 5 Tune model-parameters to t Data An Example: 1 Hypothesis: Connectivity Strengthens for selected Brain Regions under Fear 2 Data Acquisition: Condition Mice, Trigger Stimulus, Record Data

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model) 5 Tune model-parameters to t Data An Example: 1 Hypothesis: Connectivity Strengthens for selected Brain Regions under Fear 2 Data Acquisition: Condition Mice, Trigger Stimulus, Record Data 3 Preprocessing: Low-Pass Filtering

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model) 5 Tune model-parameters to t Data An Example: 1 Hypothesis: Connectivity Strengthens for selected Brain Regions under Fear 2 Data Acquisition: Condition Mice, Trigger Stimulus, Record Data 3 Preprocessing: Low-Pass Filtering 4 Model Selection: EEG(invasive) Model

Cycle DCM Cycle: 1 Form Hypothesis 2 Data Acquisition (via fmri, EEG, MEG) 3 Data Preprocessing 4 (Select appropriate Model) 5 Tune model-parameters to t Data An Example: 1 Hypothesis: Connectivity Strengthens for selected Brain Regions under Fear 2 Data Acquisition: Condition Mice, Trigger Stimulus, Record Data 3 Preprocessing: Low-Pass Filtering 4 Model Selection: EEG(invasive) Model 5 Evaluate with DCM Software.

Model Model Principles: Dynamic Deterministic Multiple Inputs + Outputs Two Component Model

Model Model Principles: Dynamic Deterministic Multiple Inputs + Outputs Two Component Model Dynamic Submodel (Coupling) Forward Submodel (Signal)

Model Model Principles: Dynamic Deterministic Multiple Inputs + Outputs Two Component Model Dynamic Submodel (Coupling) Forward Submodel (Signal) Dier by Data Acquisition Method (fmri,eeg/meg).

Dynamic Submodel (fmri) I General Description: ż = F (z, u, θ)

Dynamic Submodel (fmri) I General Description: Bilinear Approximation: ż = F (z, u, θ) ż δf δz z + δf δu u + k u k δ 2 F z δzδu k

Dynamic Submodel (fmri) I General Description: Bilinear Approximation: ż = F (z, u, θ) ż δf δz z + δf δu u + k u k δ 2 F z δzδu k Reparametrization: ż Az + Cu + k u k B k z.

Dynamic Submodel (fmri) II

Dynamic Submodel (EEG) I Construction: Tripartioning Coupling Ruleset (Forward,Backward,Lateral) { H e Impulse Response Kernel: p(t) = τ t e exp ( t τ e ) (t 0) 0 (t < 0) Sigmoid Function: S(x) = Convolution: p(t) u(t) = x 2e0 1+exp ( rx) e 0

Dynamic Submodel (EEG) I Construction: Tripartioning Coupling Ruleset (Forward,Backward,Lateral) { H e Impulse Response Kernel: p(t) = τ t e exp ( t τ e ) (t 0) 0 (t < 0) Sigmoid Function: S(x) = 2e0 1+exp ( rx) e 0 Convolution: p(t) u(t) = x ẍ = He τ e u(t) 2 τ e ẋ(t) 1 τ 2 x(t)

Dynamic Submodel (EEG) II Neuronal State Equation: x 1 = x 4 x 4 = H e x 7 = x 8 x 8 = H e τ e ((C F + C L + γ 1 I )S(x 0 ) + C U u) 2 τ e x 4 1 τ e ((C B + C L + γ 3 I )S(x 0 )) 2 τ e x 8 1 x 0 = x 5 x 6 x 2 = x 5 x 3 = x 6 x 5 = H e ((C B + C L )S(x 0 ) + γ 2 S(x 1 )) 2 x 5 1 x 2 τ e τ e τe 2 x 6 = H i γ 4 S(x 7 ) 2 x 6 1 x 3 τ i τ i τ 2 i τ 2 e x 7 τ 2 e x 1

Forward Submodel (fmri) Hemodynamic Equation: s i = z i κs i γ(f i 1) f i = s i v i = 1 τ (f i v 1 α ) i q i = 1 f i τ ρ (1 (1 ρ) 1 ρ ) v 1 α 1 q i i y i = V 0 (γ 1 ρ(1 q i ) + γ 2 (1 q i v i ) + (γ 3 ρ 0.02)(1 τ))

Forward Submodel (EEG) EEG Forward Model: non-invasive: y = LKx 0 invasive: y = Kx 0

Development fmri: Balloon Model (Buxton, 1998) Hemodynamic Model (Friston, 2000) Bayesian Estimation of Dynamical Systems (Friston, 2001) Dynamic Causal Modelling for fmri (Friston,2003)

Development fmri: EEG: Balloon Model (Buxton, 1998) Hemodynamic Model (Friston, 2000) Bayesian Estimation of Dynamical Systems (Friston, 2001) Dynamic Causal Modelling for fmri (Friston,2003) Jansen Model (Jansen + Rit, 1995) Neural Mass Model (David + Friston, 2003) Modelling Event-Related Responses (David + Friston, 2005) Dynamic Causal Modelling for EEG/MEG (David + Friston, 2006)

Parameter Overview fmri Parameters: Coupling Scale Hemodynamic

Parameter Overview fmri Parameters: Coupling Scale Hemodynamic For EEG: Coupling Gain Synaptic Input Contribution

Parameter Overview fmri Parameters: Coupling Scale Hemodynamic For EEG: Coupling Gain Synaptic Input Contribution Both: Drift

Estimation Preconditions: Data Model: y = h(z, u, θ) + X β + ɛ

Estimation Preconditions: Data Model: y = h(z, u, θ) + X β + ɛ Gaussian Assumption for Parameter distribution

Estimation Preconditions: Data Model: y = h(z, u, θ) + X β + ɛ Gaussian Assumption for Parameter distribution Prior Knowledge

Estimation Preconditions: Data Model: y = h(z, u, θ) + X β + ɛ Gaussian Assumption for Parameter distribution Prior Knowledge Bayes Rule: P(θ y) P(y θ) P(θ)

Estimation Preconditions: Data Model: y = h(z, u, θ) + X β + ɛ Gaussian Assumption for Parameter distribution Prior Knowledge Bayes Rule: P(θ y) P(y θ) P(θ) Unknown Covariance Parametrization of Covariance.

EM-Algorithm Posterior Estimation: Mean Estimation least-squares estimator

EM-Algorithm Posterior Estimation: Mean Estimation least-squares estimator Covariance Estimation Scoring algorithm

EM-Algorithm Posterior Estimation: Mean Estimation least-squares estimator Covariance Estimation Scoring algorithm Two Step Procedure (EM-Algorithm).

E-Step E-Step: ( y h(η i θ y 1 Residuals: ȳ = ) ) η θ η i θ y

E-Step E-Step: ( y h(η i θ y 1 Residuals: ȳ = ) ) η θ η i θ y 2 Parameter Jacobian (Design Matrix): J = ( J X 1 0 )

E-Step E-Step: ( y h(η i θ y 1 Residuals: ȳ = ) ) η θ η i θ y ( ) J X 2 Parameter Jacobian (Design Matrix): J = 1 0 ( ) λi V ˆQi 0 3 Covariance Weights: Cɛ = 0 Cθ

E-Step E-Step: ( y h(η i θ y 1 Residuals: ȳ = ) ) η θ η i θ y ( ) J X 2 Parameter Jacobian (Design Matrix): J = 1 0 ( ) λi V ˆQi 0 3 Covariance Weights: Cɛ = 0 Cθ 4 T 1 Posterior Covariance: C θ y = ( J C ɛ J) 1

E-Step E-Step: ( y h(η i θ y 1 Residuals: ȳ = ) ) η θ η i θ y ( ) J X 2 Parameter Jacobian (Design Matrix): J = 1 0 ( ) λi V ˆQi 0 3 Covariance Weights: Cɛ = 0 Cθ 4 T 1 Posterior Covariance: C θ y = ( J C ɛ J) 1 5 Posterior Mean: η n+1 θ y = η n θ y + C θ y( J T Cɛ 1 ȳ)

M-Step M-Step: 1 Residual Forming Matrix: P = C 1 ɛ Cɛ 1 JC θ y J T Cɛ 1

M-Step M-Step: 1 Residual Forming Matrix: P = C 1 ɛ Cɛ 1 JC θ y J T Cɛ 1 2 1st NFE/LL Derivative: g i = 1 2 tr(pq i) + 1 2 ȳ T P T Q i Pȳ

M-Step M-Step: 1 Residual Forming Matrix: P = C 1 ɛ Cɛ 1 JC θ y J T Cɛ 1 2 1st NFE/LL Derivative: g i = 1 2 tr(pq i) + 1 2 ȳ T P T Q i Pȳ 3 2nd NFE/LL Derivatives Expectation: H ij = 1 2 tr(pq i PQ j )

M-Step M-Step: 1 Residual Forming Matrix: P = C 1 ɛ Cɛ 1 JC θ y J T Cɛ 1 2 1st NFE/LL Derivative: g i = 1 2 tr(pq i) + 1 2 ȳ T P T Q i Pȳ 3 2nd NFE/LL Derivatives Expectation: H ij = 1 2 tr(pq i PQ j ) 4 Hyperparameter Update: λ n+1 = λ n H 1 g

Problems and Improvements Problems and Improvements: Large Matrices

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition Traces of (Complicated) Matrix Products

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition Traces of (Complicated) Matrix Products Recycling E-Step

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition Traces of (Complicated) Matrix Products Recycling E-Step NFE/LL Derivatives

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition Traces of (Complicated) Matrix Products Recycling E-Step NFE/LL Derivatives Parallelization.

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition Traces of (Complicated) Matrix Products Recycling E-Step NFE/LL Derivatives Parallelization. Some Linear Algebra:

Problems and Improvements Problems and Improvements: Large Matrices Sparse Matrices Matrix Multiplications Parallelization Parameter Jacobian Parallelization Inversion/Solving Cholesky Decomposition Traces of (Complicated) Matrix Products Recycling E-Step NFE/LL Derivatives Parallelization. Some Linear Algebra: (AB) T = B T A T tr(abc) = tr(bca) = tr(cab) tr(ab) = ij A ij B ji

Improved E-Step Improved E-Step: ȳ = J = Cɛ = ( y h(η i ) ) θ y η θ η i θ y ) ( J X 1 0 ( ) λi V ˆQi 0 J A = Cɛ 1 J J B = J A T 0 Cθ T 1 C θ y = ( J C ɛ J) 1 C θ y = ( J B J) 1 D = C θ y J B η θ y = Dȳ η n+1 = η n + θ y θ y C T θ y( J Cɛ 1 ȳ) η n+1 = η n + η θ y θ y θ y

Improved M-Step Improved M-Step: Q A = Q i i Cɛ 1 Q B A = Q i i J Q C B = DQ i i p y = C 1 P = Cɛ 1 Cɛ 1 JC θ y J T Cɛ 1 ɛ ȳ ( J A η θ y ) g i = 1 tr(pq 2 i) + 1 ȳ T P T Q 2 i Pȳ g i = p T y Q i p y tr(q A ) + tr(q C ) i i H ij = 1 tr(pq 2 i PQ j ) H ij = tr(q A Q A ) i j tr(q A Q B D) j i D) tr(q A i +tr(q C i Q B j Q C j ) λ n+1 = λ n H 1 g λ n+1 = λ n + H 1 g

Implementation Implementation Notes: C++ Sparse Matrices OpenMP Runge-Kutta-Fehlberg Modular Submodel Classes 6500 Lines of Code

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG

Articial EEG.

Real EEG

Real EEG

Real EEG

Real EEG

Real EEG

Real EEG

Real EEG.

Challenges Input Distribution Stimulus Adaption Drift Order Initrinsic Connections

exit(0); Thank You