Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Similar documents
Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

BIPOLAR JUNCTION TRANSISTOR MODELING

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

Digital Integrated CircuitDesign

****** bjt model parameters tnom= temp= *****

Bipolar Junction Transistor (BJT) - Introduction

University of Pittsburgh

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Charge-Storage Elements: Base-Charging Capacitance C b

Chapter 2. - DC Biasing - BJTs

Lecture Notes for ECE 215: Digital Integrated Circuits

Symbolic SPICE TM Circuit Analyzer and Approximator

BFP196W. NPN Silicon RF Transistor*

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

BFP193. NPN Silicon RF Transistor*

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

Chapter 2 - DC Biasing - BJTs

BFP196W. NPN Silicon RF Transistor*

EE105 - Fall 2006 Microelectronic Devices and Circuits

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

Tutorial #4: Bias Point Analysis in Multisim

Transistor Characteristics and A simple BJT Current Mirror

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

figure shows a pnp transistor biased to operate in the active mode

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

About Modeling the Reverse Early Effect in HICUM Level 0

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Section 1: Common Emitter CE Amplifier Design

Bipolar junction transistor operation and modeling

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Biasing the CE Amplifier

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Device Physics: The Bipolar Transistor

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Chapter 13 Small-Signal Modeling and Linear Amplification

Junction Bipolar Transistor. Characteristics Models Datasheet

Chapter 5. BJT AC Analysis

Type Marking Pin Configuration Package BGA427 BMs 1, IN 2, GND 3, +V 4, Out SOT343. Maximum Ratings Parameter Symbol Value Unit Device current I D

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

CLASS 3&4. BJT currents, parameters and circuit configurations

ELEC3106 Electronics: lecture 7 summary. SPICE simulations. Torsten Lehmann

Berkeley. Two-Port Noise. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad. September 13, 2014

Lecture 27: Introduction to Bipolar Transistors

Introduction to Transistors. Semiconductors Diodes Transistors

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

ECE-305: Spring 2018 Final Exam Review

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

The Devices. Jan M. Rabaey

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

13. Bipolar transistors

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

(e V BC/V T. α F I SE = α R I SC = I S (3)

Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter

The Common-Emitter Amplifier

Circle the one best answer for each question. Five points per question.

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

THERMAL EFFECTS ON ANALOG INTEGRATED CIRCUIT DESIGN MD MAHBUB HOSSAIN. Presented to the Faculty of the Graduate School of

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

CHAPTER.4: Transistor at low frequencies

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Experiment Determining the beta where it is stable.(6) Analysis and design of dc-biased transistor configurations (9)

Metal-oxide-semiconductor field effect transistors (2 lectures)

Homework Assignment 08

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

MEXTRAM (level 504) the Philips model for bipolar transistors

Memories Bipolar Transistors

Forward-Active Terminal Currents

ECE 546 Lecture 16 MNA and SPICE

ESE319 Introduction to Microelectronics. Output Stages

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

FYSE400 ANALOG ELECTRONICS

Spring Semester 2012 Final Exam

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

Working Group Bipolar (Tr..)

SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Silicon Diffused Darlington Power Transistor

T C MEASURED POINT G1 E1 E2 G2 W - (4 PLACES) G2 E2 E1 G1

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

12. Memories / Bipolar transistors

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

BJT Biasing Cont. & Small Signal Model

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Homework Assignment 09

Transcription:

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L15 05Mar02 1

Charge components in the BJT From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc. L15 05Mar02 2

Gummel-Poon Static npn Circuit Model C R C B R BB I LC B I LE I BF I BR I CC - I EC = IS(exp(v BE /NFV t - exp(v BC /NRV t )/Q B R E E L15 05Mar02 3

Gummel-Poon Static npn Circuit Model C R C B R BB I LC B I LE I BF I BR I CC - I EC = IS(exp(v BE /NFV t - exp(v BC /NRV t )/Q B R E E L15 05Mar02 4

Gummel-Poon Static Par. NAME PARAMETER UNIT DEFAULT IS transport saturation current A 1.0e-16 BF ideal maximum forward beta - 100 NF forward current emission coef. - 1.0 VAF forward Early voltage V infinite ISE B-E leakage saturation current A 0 NE B-E leakage emission coefficient- 1.5 BR ideal maximum reverse beta - 1 NR reverse current emission coefficient - 1 VAR reverse Early voltage V infinite ISC B-C leakage saturation current A 0 NC B-C leakage emission coefficient- 2 EG energy gap (IS dep on T) ev 1.11 XTI temperature exponent for IS - 3 L15 05Mar02 5

Gummel-Poon Static Model Parameters NAME PARAMETER UNIT DEFAULT IKF corner for forward beta A infinite high current roll-off IKR corner for reverse beta A infinite high current roll-off RB zero bias base resistance W 0 IRB current where base resistance A infinite falls halfway to its min value RBM minimum base resistance W RB at high currents RE emitter resistance W 0 RC collector resistance W 0 TNOM parameter - meas. temperature C 27 L15 05Mar02 6

Gummel Poon npn Model Equations I BF = IS expf(v BE /NFV t )/BF I LE = ISE expf(v BE /NEV t ) I BR = IS expf(v BC /NRV t )/BR I LC = ISC expf(v BC /NCV t ) Q B = (1 + v BC /VAF + v BE /VAR ) { + + (BF IBF/IKF + BR IBR/IKR) } L15 05Mar02 7

Gummel Poon Base Resistance If IRB = 0, R BB = R BM +(R B -R BM )/Q B If IRB > 0 R B = R BM + 3(R B -R BM ) (tan(z)-z)/(ztan 2 (z)) z = [ + i B /( IRB)] 1/2 - ( / )(i B /IRB) 1/2 Regarding (i) R BB and (x) R Th on slide 22, R B = R BM + R/(1+i B /I RB ) RB, R = R B - R BM L15 05Mar02 8

BJT Characterization Forward Gummel v BCx = 0 = v BC + i B R B - i C R C i C R C v BEx = v BE +i B R B +(i B +i C )R E i B = I BF + I LE = IS expf(v BE /NFV t )/BF + ISE expf(v BE /NEV t ) v BEx + i B R B v BC + + v BE - - i C = F I BF /Q B = IS expf(v BE /NFV t )/Q B - R E L15 05Mar02 9

1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E-13 1.E-14 1.E-15 1.E-16 Ideal F-G Data i C and i B (A) vs. v BE (V) N = 1 1/slope = 59.5 mv/dec N = 2 1/slope = 119 mv/dec L15 05Mar02 0.0 0.2 0.4 0.6 0.8 10 Ic Ib

BJT Characterization Reverse Gummel v BEx = 0 = v BE + i B R B - i E R E v BCx = v BC +i B R B +(i B +i E )R C i B = I BR + I LC = IS expf(v BC /NRV t )/BR + ISC expf(v BC /NCV t ) i E = R I BR /Q B = - + v BCx i B R B i E v BC + + v BE R C - - R E IS expf(v BC /NRV t )/Q B L15 05Mar02 11

1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E-13 1.E-14 1.E-15 1.E-16 Ideal R-G Data i E and i B (A) vs. v BE (V) N = 1 1/slope = 59.5 mv/dec N = 2 1/slope = 119 mv/dec L15 05Mar02 0.0 0.2 0.4 0.6 0.8 12 Ic Ie Ib

Distributed resistance in a planar BJT coll. base & emitter contact regions reg 1 reg 2 reg 3 reg 4 emitter base collector The base current must flow lateral to the wafer surface Assume E & C currents perpendicular Each region of the base adds a term of lateral res. v BE diminishes as current flows L15 05Mar02 13

Simulation of 2- dim. current flow Q VCC V ib1 = ib R R Q1 Q2 R Qn Distributed device is repr. by Q 1, Q 2, Q n Area of Q is same as the total area of the distributed device. Both devices have the same v CE = VCC Both sources have same current i B1 = i B. The effective value of the 2-dim. base resistance is R bb (i B ) = V/i B = R BBTh L15 05Mar02 14

Analytical solution for distributed Rbb dib x dx vbe vbe JS L exp JSE L exp NFVt NEVt dvbe x rbi ib x dx L Analytical solution and SPICE simulation both fit R BB = R bmin + R bmax /(1 + i B /I RB ) RB L15 05Mar02 15

Distributed base resistance function Normalized base resistance vs. current. (i) R BB /R Bmax, (ii) R BBSPICE /R Bmax, after fitting R BB and R BBTh = R BM + R/(1+i B /I RB ) RB ( R = R B - R BM ) R BBSPICE to R BBTh (x) R BBTh /R Bmax. FromAn Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.- St.Electr. 41, pp. 655-658, 1997. L15 05Mar02 16

Gummel Poon Base Resistance If IRB = 0, R BB = R BM +(R B -R BM )/Q B If IRB > 0 R B = R BM + 3(R B -R BM ) (tan(z)-z)/(ztan 2 (z)) z = [ + i B /( IRB)] 1/2 - ( / )(i B /IRB) 1/2 Regarding (i) R BB and (x) R Th on previous slide, R BB = R bmin + R bmax /(1 + i B /I RB ) RB L15 05Mar02 17

Gummel-Poon Static npn Circuit Model C R C B R BB I LC B I LE I BF I BR I CC - I EC = IS(exp(v BE /NFV t - exp(v BC /NRV t )/Q B R E E L15 05Mar02 18

Gummel Poon npn Model Equations I BF = IS expf(v BE /NFV t )/BF I LE = ISE expf(v BE /NEV t ) I BR = IS expf(v BC /NRV t )/BR I LC = ISC expf(v BC /NCV t ) I CC - I EC = IS(exp(v BE /NFV t - exp(v BC /NRV t )/Q B Q B = { + + (BF IBF/IKF + BR IBR/IKR) 1/2 } (1 - v BC /VAF - v BE /VAR ) -1 L15 05Mar02 19

VAR Parameter Extraction (rearly) i E = - I EC = (IS/Q B )exp(v BC /NRV t ), where I CC = 0, and Q -1 B = (1-v BC /VAF-v BE /VAR ) {IKR terms } -1, so since v BE = v BC - v EC, VAR = i E /[ i E / v BE ] vbc Reverse Active Operation L15 05Mar02 20 i B + - v BC i E v EC 0.2 < v EC < 5.0 0.7 < v BC < 0.9 + -

Reverse Early Data for VAR At a particular data point, an effective VAR value can be calculated 0.0006 0.0004 0.0002 v BC = 0.85 V v BC = 0.75 V VAR eff = i E /[ i E / v BE ] vbc The most accurate is at v BE = 0 (why?) 0.0000 0 1 2 3 4 5 i E (A) vs. v EC (V) L15 05Mar02 21

VAF Parameter Extraction (fearly) i C = I CC = (IS/Q B )exp(v BE /NFV t ), where I CE = 0, and Q -1 B = (1-v BC /VAF-v BE /VAR ) {IKF terms } -1, so since v BC = v BE - v CE, VAF = i C /[ i C / v BC ] vbe Forward Active Operation L15 05Mar02 22 + - i B v BE i C v CE 0.2 < v CE < 5.0 0.7 < v BE < 0.9 + -

Forward Early Data for VAF At a particular data point, an effective VAF value can be calculated VAF eff = i C /[ i C / v BC ] vbe 0.003 0.002 0.001 v BE = 0.85 V v BE = 0.75 V The most accurate is at v BC = 0 (why?) 0.000 0 1 2 3 4 5 i C (A) vs. v CE (V) L15 05Mar02 23

BJT Characterization Forward Gummel v BCx = 0 = v BC + i B R B - i C R C v BEx = v BE +i B R B +(i B +i C )R E i B = I BF + I LE = IS exp(v BE /NFV t )/BF + ISE expf(v BE /NEV t ) i C = F I BF /Q B = IS exp(v BE /NFV t ) (1-v BC /VAF-v BE /VAR ) {IKF terms } -1 v BEx L15 05Mar02 24 + - i B i C R B v BC + + v BE R C - - R E

Forward Gummel Data Sensitivities 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 1.E-12 v BCx = 0 e b i C i B d 0.1 0.3 0.5 0.7 0.9 i C (A),i B (A) vs. v BE (V) a c Region a - IKF IS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE L15 05Mar02 25

Region (a) fg Data Sensitivities Region a - IKF IS, RB, RE, NF, VAR i C = F I BF /Q B = IS exp(v BE /NFV t ) (1-v BC /VAF-v BE /VAR ) {IKF terms } -1 L15 05Mar02 26

Region (b) fg Data Sensitivities Region b - IS, NF, VAR, RB, RE i C = F I BF /Q B = IS exp(v BE /NFV t ) (1-v BC /VAF-v BE /VAR ) {IKF terms } -1 L15 05Mar02 27

Region (c) fg Data Sensitivities Region c - IS/BF, NF, RB, RE i B = I BF + I LE = (IS/BF) expf(v BE /NFV t ) + ISE expf(v BE /NEV t ) L15 05Mar02 28

Region (d) fg Data Sensitivities Region d - IS/BF, NF i B = I BF + I LE = (IS/BF) expf(v BE /NFV t ) + ISE expf(v BE /NEV t ) L15 05Mar02 29

Region (e) fg Data Sensitivities Region e - ISE, NE i B = I BF + I LE = (IS/BF) expf(v BE /NFV t ) + ISE expf(v BE /NEV t ) L15 05Mar02 30