SCAT calibration TU-Wien

Similar documents
ASCAT-A and ASCAT-B Cross Validation. C Anderson, J Figa-Saldaña, JJW Wilson & F Ticconi

Long term performance monitoring of ASCAT-A

ASCAT mission overview and current developments

ASCAT RADIOMETRIC PERFORMANCE

ASCAT - Metop A developments, Metop B preparations & EPS-SG

Soil moisture Product and science update

ASCAT-B Level 2 Soil Moisture Validation Report

Status overview of the European scatterometer activities

IOVWST Meeting, Sapporo/Japan, May 2016

ASCAT Soil Moisture: An Assessment of the Data Quality and Consistency with the ERS Scatterometer Heritage

Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets

Julia Figa-Saldaña. OVWST Meeting, May 2010, Barcelona Slide: 1

Radiometric Cross-Calibration of Spaceborne Scatterometers - First Results

Climate data records from OSI SAF scatterometer winds. Anton Verhoef Jos de Kloe Jeroen Verspeek Jur Vogelzang Ad Stoffelen

Julia Figa-Saldaña & Klaus Scipal

Assimilation of ASCAT soil wetness

Calibration and Validation of the RapidScat Scatterometer. Using Natural Land Targets. Nathan M. Madsen

SOIL MOISTURE PRODUCTS FROM C-BAND SCATTEROMETERS: FROM ERS-1/2 TO METOP

Algorithm Theoretical Baseline Document

Calibration and Validation of the RapidScat Scatterometer Using Natural Land Targets

Ultra-High Resolution ASCAT Products & Progress in Simultaneous Wind/Rain Retrieval

Report from CNSA 16th GSICS Executive Panel, Boulder, May 2015

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT

Scatterometer Wind Assimilation at the Met Office

STATUS ON THE USE OF SCATTEROMETER DATA AT METEO FRANCE

EUMETSAT SAF Wind Services

Algorithm Theoretical Baseline Document (ATBD) D2.1 Version Active Soil Moisture Retrievals

Introduction to SMAP. ARSET Applied Remote Sensing Training. Jul. 20,

China France. Oceanography S A T. The CFOSAT project. e l l i t e. C. Tison (1), D. Hauser (2), A. Mouche (3) CNES, France (2)

Updates to Land DA at the Met Office

ASCAT NRT Data Processing and Distribution at NOAA/NESDIS

Julia Figa-Saldaña & Klaus Scipal

Soil Moisture Retrieval from Active Microwave Sensors: Algorithm Theoretical Baseline Document, Version 2.0

ASCAT B OCEAN CALIBRATION AND WIND PRODUCT RESULTS

Algorithm Theoretical Baseline Document (ATBD) Surface Soil Moisture ASCAT NRT Orbit

Impact of METOP ASCAT Ocean Surface Winds in the NCEP GDAS/GFS and NRL NAVDAS

Microwave remote sensing of soil moisture and surface state

Copyright 2015 California Institute of Technology. U.S. Government sponsorship acknowledged.

Aquarius Data Release V2.0 Validation Analysis Gary Lagerloef, Aquarius Principal Investigator H. Kao, ESR And Aquarius Cal/Val Team

WARP NRT 1.0 Reference Manual

Assimilation of satellite derived soil moisture for weather forecasting

ASCAT Product Guide. Doc.No. : EUM/OPS-EPS/MAN/04/0028 EUMETSAT Eumetsat-Allee 1, D Darmstadt, Germany Date : 16 July 2015 Tel:

972 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 13, NO. 7, JULY High-Resolution Soil Moisture Retrieval With ASCAT

Nathan M. Madsen, Member, IEEE, and David G. Long, Fellow, IEEE

Lessons learnt from EPS Cal/Val. F. Montagner & H. Bonekamp EUMETSAT

Investigations of the Dry Snow Zone of the Greenland Ice Sheet Using QuikSCAT. Kevin R. Moon

ECMWF. ECMWF Land Surface Analysis: Current status and developments. P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J.

Impact of the Envisat Mission Extension on SAR data

Assimilation of land surface satellite data for Numerical Weather Prediction at ECMWF

A - E R - E ON CLIMATE DATA RECORDS, TRENDS AND EXTREMES

CONTRIBUTION OF METOP ASCAT DATA FOR LAND SURFACE PARAMETERS MONITORING OVER THE SAHEL

Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT)

Aquarius/SAC-D Soil Moisture Product using V3.0 Observations

Report. Northern Africa. RAIDEG-8, 1-2 Nov 2017

Extension of the QuikSCAT Sea Ice Extent Data Set with OSCAT and ASCAT Data

ESA CONTRACT REPORT. The technical support for global validation of ERS Wind and Wave Products at ECMWF. Author: Saleh Abdalla and Hans Hersbach

Impact of the Envisat Mission Extension on SAR data

EUMETSAT Satellite Data Records for Reanalysis

Zorana Jelenak Paul S. Chang Khalil Ahmed (OPC) Seubson Soisuvarn Qi Zhu NOAA/NESDIS/STAR-UCAR

Satellite Application Facility in Support to Operational Hydrology and Water Management - Soil Moisture -

GAP ANALYSIS FOR SATELLITE MISSIONS SUPPORTING THE GOS

RECOMMENDATION ITU-R S.1559

GOME-2 processor version 7 for reprocessing campaign R3 - Lessons learnt from CalVal

Assimilation of ASCAT soil moisture products into the SIM hydrological platform

HIGH RESOLUTION SOIL MOISTURE CONTENT FROM SENTINEL-1 DATA

Land data assimilation in the NASA GEOS-5 system: Status and challenges

Integrating Multiple Scatterometer Observations into a Climate Data Record of Ocean Vector Winds

Operational Use of Scatterometer Winds at JMA

Experiences of using ECV datasets in ECMWF reanalyses including CCI applications. David Tan and colleagues ECMWF, Reading, UK

Product User Manual (PUM) Surface Soil Moisture ASCAT NRT Orbit

The satellite wind activities at Météo-France!

SSS retrieval from space Comparison study using Aquarius and SMOS data

Use of satellite soil moisture information for NowcastingShort Range NWP forecasts

Angelika Dehn Rob Koopman 10 Years GOME on ERS-2 Workshop

The Removal of Lava Flow Subsidence Signals from deformation interferograms at Nyamuragira Volcano, D.R. Congo

Mapping Surface Oil Extent from the Deepwater Horizon Oil Spill Using ASCAT Backscatter

ASCAT Level 2 Soil Moisture: Product Format Specification

Status and Plans of using the scatterometer winds in JMA's Data Assimilation and Forecast System

Multi-temporal archaeological and environmental prospection in Nasca (Peru) with ERS-1/2, ENVISAT and Sentinel-1A C-band SAR data

GMES: calibration of remote sensing datasets

Sea ice extent from satellite microwave sensors

Current Status of the ALOS-2 Operation and PALSAR-2 Calibration Activities

SOIL MOISTURE FROM SATELLITE: A COMPARISON OF METOP, SMOS AND ASAR PRODUCTS

Scatterometer Data-Interpretation: Measurement Space and Inversion *

Improving the use of satellite winds at the Deutscher Wetterdienst (DWD)

Extended Kalman Filter soil-moisture analysis in the IFS

QuikSCAT High Precision Wind Speed Cross Sections

Evaluation of a Global Soil Moisture Product from Finer Spatial Resolution SAR Data and Ground Measurements at Irish Sites

Sandra Lohberger, Werner Wiedemann, Florian Siegert

A New Satellite Wind Climatology from QuikSCAT, WindSat, AMSR-E and SSM/I

ECMWF. ECMWF Land Surface modelling and land surface analysis. P. de Rosnay G. Balsamo S. Boussetta, J. Munoz Sabater D.

Using MERIS and MODIS for Land Cover Mapping in the Netherlands

Advances in weather modelling

Drought Monitoring with Hydrological Modelling

The satellite winds in the operational NWP system at Météo-France

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

SAR Coordination for Snow Products

High Resolution Vector Wind Retrieval from SeaWinds Scatterometer Data

Read-me-first note for the release of the SMOS level 2 Soil Moisture data products

ANALYSIS OF ASAR POLARISATION SIGNATURES FROM URBAN AREAS (AO-434)

Transcription:

SCAT calibration approach @ TU-Wien Presentation to SCIRoCCO project team ESA Presented by Christoph Reimer Vienna University of Technology

Outline Calibration methodology intra-calibration / inter-calibration Sensor intra-calibration Theoretical framework Results / Verification ERS-2 SCAT and MetOp-A ASCAT Sensor inter-calibration Theoretical framework Results / Verification ERS-2 SCAT MetOp-A ASCAT (MetOp-B ASCAT calibration)

Calibration methodology Stepwise relative calibration strategy Sensor intra-calibration Detect and correct for temporal inconsistencies of an individual mission Sensor inter-calibration Detect and correct for biases between SCAT missions Utilising a set of natural calibration targets over land Level 1 scatterometer data Instrument Spatial Resolution Temporal Coverage Spatial Coverage ERS- 2 SCAT 25 km May 1997 Feb. 2003 Global MetOp-A ASCAT 25 km Jan. 2007 Nov. 2012 Global

Selection of calibration targets Level 1 AMI-WS / ASCAT data normalise backscatter σ 0 (L, 40, φ j ) azimuthal anisotropy parameter δ temporal variability parameter ν mean backscatter parameter σ 0 azim. isotropy / temp. stability mask spatial variability analysis Calibration Targets thresholds Parameter Azimuthal Anisotropy Temporal Variability Spatial Variability Threshold AMI ASCAT 0.3 db 0.2 db 0.4 db 0.25 db

Selected calibration targets Selection based on global backscatter analysis Azimuthal modulations Temporal variability Calibration Tar. Verification Tar. ERS-2 SCAT MetOp-A ASCAT

Sensor intra-calibration Measurement Model: σ 0 L T, t i, θ, φ j = σ 0 (L T, θ) + C intra (L T, t i, θ, φ j ) + ε meas. RCS true RCS calibration coeff. Estimate of σ 0 L T, θ Calibration Reference σ 0 (L T, θ): n obs n ac σ 0 1 (L T, θ) = σ 0 (L n obs n T, t i, θ, φ j ) C intra L T, t i, θ, φ j = 0 ac i=1 j=1 Cal. Ref. meas. RCS Perfectly calibrated Solve for calibration coefficient: Estimate calibration coefficient: C intra (t i, θ, φ j ) = 1 C intra (L T, t i, θ, φ j ) + ε = σ 0 (L T, t i, θ, φ j ) σ 0 (L T, θ) Intra-Cal. Coeff. n tar n tar (C intra (L T, t i, θ, φ j ) + ε) T=1 Sensor intra-calibration : 0 σ intra (L, t i, θ, φ j ) = σ 0 (L, t i, θ, φ j ) C intra (t i, θ, φ j ) calibrated RCS meas. RCS Intra-Cal. Coeff.

Calibration reference n obs σ 0 (L T, θ) = 1 σ 0 (L n T, t i, θ, φ j ) obs i=0 ESCAT data of year 1998 ASCAT data of year 2007 New Guinea Rainforest ERS-2 SCAT [ascending overpass] n poly =2 = B 0 (L T, 40 ) + B p (L T, 40 ) (θ 40 ) p p=1 Δ overpasses 0.1 0.2 db [asc - desc] Calibration reference per overpass Amazon Rainforest MetOp-A ASCAT[ascending overpass]

Estimation of intra-calibration coeff. C intra (L T, t i, θ, φ j ) = σ 0 (L T, t i, θ, φ j ) σ 0 (L T, θ) C intra (L T, t i, θ, φ j ) modelled as 1-order polynomial centred at 40 per month Amazon Rainforest July 1999 ESCAT [Fore-beam / Right Swath] Amazon Rainforest July 2010 ASCAT [Fore-beam / Right Swath] Oscillating alterations?

Intra-Calibration anomalies ERS-2 SCAT Right Swath: Fore-/Mid-/Aft-beam Piloted in ZGM Mean over Calibration Targets C intra (t i, 40, φ j ) MetOp-A ASCAT Right Swath: Fore-/Mid-/Aft-beam Left Swath: Fore-/Mid-/Aft-beam Proc. Update New Cal. Table

Intra-Calibration verification ERS-2 SCAT Right Swath: Fore-/Mid-/Aft-beam Piloted in ZGM Mean over Verification Targets C intra (t i, 40, φ j ) MetOp-A ASCAT Right Swath: Fore-/Mid-/Aft-beam Left Swath: Fore-/Mid-/Aft-beam Proc. Update New Cal. Table

Sensor inter-calibration Measurement Model: 0 σ Ma L T, t i, θ, φ j = σ 0 Sl (L T, t i, θ, φ j ) + C inter (L T, θ, φ j ) master RCS slave RCS Inter-Cal. Coeff. Solve for calibration coefficient: C inter (L T, θ, φ j ) + ε = σ 0 Ma (L T, θ) σ 0 0 0 Sl (L T, t i, θ, φ j ) σ Ma L T, θ = σ Ma L T, t i, θ, φ j Estimate calibration coefficient: Sensor intra-calibration : C inter θ, φ j = 1 Inter-Cal. Coeff. n tar n tar T=1 Calibration Reference C inter (L T, θ, φ j ) + ε 0 σ inter (L, t i, θ, φ j ) = σ 0 Ma (L, t i, θ, φ j ) = σ 0 Sl L, t i, θ, φ j C inter (θ, φ j ) calibrated RCS slave RCS Inter-Cal. Coeff.

Inter-calibration anomalies ESCAT is calibrated with respect ASCAT C inter (θ, φ j ) 1-order polynomial centred at 40 Antenna Beam C 0 [db] C 1 [db/deg] min(θ) [db] max(θ) [db] Right Fore 0.158-0.012 0.384-0.068 Fore-beam Right Mid 0.194-0.006 0.332 0.156 Right Aft 0.155-0.012 0.390-0.08 Mid-beam Aft-beam

Inter-calibration verification ESCAT is calibrated with respect ASCAT C inter (θ, φ j ) 1-order polynomial centred at 40 Antenna Beam C 0 [db] C 1 [db/deg] min(θ) [db] max(θ) [db] Right Fore -0.011-0.002-0.040 0.019 Fore-beam Right Mid -0.024-0.003-0.042 0.040 Right Aft -0.019-0.002-0.048 0.011 Mid-beam Aft-beam

Conclusion Simple and obvious SCAT calibration methodology Correct for biases with respect to calibration reference Utilising a set of calibration targets A robust estimation of calibration anomalies Calibration anomalies correspond to Main mission events On-ground processor updates Sensor inter-calibration Estimate and correct for biases between SCAT mission Merging of ERS SCAT and MetOp ASCAT

Calibration of MetOp-B ASCAT

MetOp-B calibration Objective: derive soil moisture from MetOp-B ASCAT Dedicated MetOp-B ASCAT model parameters not available Too short mission lifetime Current available model parameters are based on MetOp-A ASCAT Calibration methodology intra-calibration of MetOp-B ASCAT inter-calibration of MetOp-B ASCAT utilising MetOp-A ASCAT as calibration reference Investigated MetOp-B ASCAT data 06-Nov-2014 to 30-Jun-2014

Intra-Calibration MetOp-B ASCAT MetOp-B ASCAT Right Swath: Fore-/Mid-/Aft-beam Left Swath: Fore-/Mid-/Aft-beam Calibration Targets: Amazon Rainforest, Congo Rainforest and Indonesia Rainforest I Year 2013 as Calibration Reference Transponder cal. campaign Rainforest cal. to MetOp-A ASCAT

Intra-Calibration MetOp-B ASCAT MetOp-B ASCAT Right Swath: Fore-/Mid-/Aft-beam Left Swath: Fore-/Mid-/Aft-beam Verification Targets: Upper Guinean Forest, Indonesia Rainforest II Malaysian Rainforest and Laos Rainforest Transponder cal. campaign Rainforest cal. to MetOp-A ASCAT

Inter-Calibration ASCAT Left Swath Fore-beam Right Swath Fore-beam Differences less than 0.1 db Mid-beam Mid-beam Aft-beam Aft-beam

Inter-Calibration ASCAT verification Left Swath Fore-beam Right Swath Fore-beam Mid-beam Mid-beam Aft-beam Aft-beam

Thank you for your attention Questions / Comments are welcome