Demonstration of polarization pulling using a fiber-optic parametric amplifier

Similar documents
Fiber-Optic Parametric Amplifiers for Lightwave Systems

Optical solitons and its applications

Nonlinear polarization effects in optical fibers: polarization attraction and modulation instability [Invited]

Light-by-Light polarization control of 10-Gbit/s RZ and NRZ telecommunication signals

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Nonlinear repolarization dynamics in optical fibers: transient polarization attraction

Vector theory of four-wave mixing: polarization effects in fiber-optic parametric amplifiers

Vector dark domain wall solitons in a fiber ring laser

Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers

Optical Peregrine soliton generation in standard telecommunications fiber

Lossless polarization attraction simulation with a novel and simple counterpropagation algorithm for optical signals

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor

Spectral dynamics of modulation instability described using Akhmediev breather theory

Vector dark domain wall solitons in a fiber ring laser

Polarization Effects in a Recirculating Loop System and Emulation of a Straight-line System Using a Recirculating Loop. by Yu Sun

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Polarization division multiplexing system quality in the presence of polarization effects

arxiv:quant-ph/ v1 5 Aug 2004

Dark Soliton Fiber Laser

Dmitriy Churin. Designing high power single frequency fiber lasers

POLARIZATION mode dispersion (PMD) influences the

Virtually Isotropic Transmission Media with Fiber Raman Amplifier

Fast and Chaotic Fiber-Based Nonlinear Polarization Scrambler

Sources supercontinuum visibles à base de fibres optiques microstructurées

PMD Compensator and PMD Emulator

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Raman Amplification for Telecom Optical Networks. Dominique Bayart Alcatel Lucent Bell Labs France, Research Center of Villarceaux

Slow light with a swept-frequency source

Noise Correlations in Dual Frequency VECSEL

Polarization characteristics of a reflective erbium doped fiber amplifier with temperature changes at the Faraday rotator mirror

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

B 2 P 2, which implies that g B should be

Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation

Effect of Nonlinearity on PMD Compensation in a Single-Channel 10-Gb/s NRZ System

Temperature sensing in multiple zones based on Brillouin fiber ring laser

Photonic crystal fiber mapping using Brillouin echoes distributed sensing

Raman-assisted distributed Brillouin sensor in optical fiber for strain and temperature monitoring in civil engineering applications

Analytical Solution of Brillouin Amplifier Equations for lossless medium

Nonlinear Photonics with Optical Waveguides

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

CROSS-PHASE modulation (XPM) is a nonlinear phenomenon

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points

DEGREE OF POLARIZATION VS. POINCARÉ SPHERE COVERAGE - WHICH IS NECESSARY TO MEASURE PDL ACCURATELY?

A short tutorial on optical rogue waves

Stochastic phenomena in a fiber Raman amplifier

Distributed Temperature Sensing Using Stimulated-Brillouin-Scattering-Based Slow Light

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

Optical Component Characterization: A Linear Systems Approach

Analytical design of densely dispersion-managed optical fiber transmission systems with Gaussian and raised cosine return-to-zero Ansätze

Distortion management in slow-light pulse delay

Fourier pulse-shaper-based high-order differential group delay emulator

Extending the Sensing Range of Brillouin Optical Time-Domain Analysis Combining Frequency-Division Multiplexing and In-Line EDFAs

Full polarization control for fiber optical quantum communication systems using polarization encoding

Brillouin optical time-domain analysis assisted by second-order Raman amplification

Thermal Effects Study on Stimulated Brillouin Light Scattering in Photonic Crystal Fiber

Brillouin optical spectrum analyzer monitoring of subcarrier-multiplexed fiber-optic signals

THE demand on distributed fiber optic sensors based on

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities

Simplified configuration of Brillouin optical correlation-domain reflectometry

CROSS-PHASE modulation (XPM) is a nonlinear phenomenon

High-resolution Brillouin optical correlation domain analysis with no spectral scanning

Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis

Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers

Stimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

EVALUATION OF BIREFRINGENCE AND MODE COUPLING LENGTH EFFECTS ON POLARIZATION MODE DISPERSION IN OPTICAL FIBERS

Experimental studies of the coherence of microstructure-fiber supercontinuum

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Signal regeneration - optical amplifiers

Optimal dispersion precompensation by pulse chirping

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Optical Fiber Signal Degradation

Highly Nonlinear Fibers and Their Applications

IN a long-haul soliton communication system, lumped amplifiers

OPTICAL AMPLIFICATION AND RESHAPING BASED ON ROGUE WAVE IN THE FEMTOSECOND REGIME

On-chip stimulated Brillouin scattering

Quantum Imaging Technologies: Quantum Laser Radar

Chapter-4 Stimulated emission devices LASERS

Ultra-narrow-band tunable laserline notch filter

2062 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 28, NO. 14, JULY 15, /$ IEEE

Polarization Model and Control in Fiber-Based Bidirectional Systems with Reflections

Second-Order PMD in Optical Components

Generation of supercontinuum light in photonic crystal bers

Optical Parametric Generation

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems

OPTICAL COMMUNICATIONS S

Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Doctor of Philosophy, Professor Curtis R. Menyuk. Computer Science and Electrical Engineering

Recent Progress in Distributed Fiber Optic Sensors

Optical time-domain differentiation based on intensive differential group delay

Homework 1. Property LASER Incandescent Bulb

Solutions to the dynamical equation of polarization-mode dispersion and polarization-dependent losses

Nonlinear Transmission of a NOLM with a Variable Wave Retarder inside the Loop

Coherent Raman imaging with fibers: From sources to endoscopes

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Transcription:

Demonstration of polarization pulling using a fiber-optic parametric amplifier B. tiller, P. Morin, 2 D. M. Nguyen, J. Fatome, 2. Pitois, 2 E. Lantz, H. Maillotte, C. R. Menyuk, 3 and T. ylvestre, Institut FEMTO-T, Département d Optique, UMR 674 CNR-Université de Franche-Comté, 25 Besançon, France 2 Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 633 CNR, Université de Bourgogne, 278 Dijon, France 3 Department of Computer cience and Electrical Engineering, University of Maryland, Baltimore, MD 225, UA thibaut.sylvestre@univ-fcomte.fr Abstract: We report the observation of all-optical polarization pulling of an initially polarization-scrambled signal using parametric amplification in a highly nonlinear optical fiber. Broadband polarization pulling has been achieved both for the signal and idler waves with up to 25 db gain using the strong polarization sensitivity of parametric amplifiers. We further derive the probability distribution function for the final polarization state, assuming a randomly polarized initial state, and we show that it agrees well with the experiments. 22 Optical ociety of America OCI codes: (9.437) Nonlinear optics, fibers; (9.497) Parametric oscillators and amplifiers; (23.544) Polarization-selective devices. References and links.. Pitois, J. Fatome, and G. Millot, Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths, Opt. Express 6(9), 6646 665 (28). 2. J. Fatome, P. Morin,. Pitois, and G. Millot, Light-by-Light Polarization Control of -Gb/s RZ and NRZ Telecommunication ignals, IEEE J. el. Top. Quant. Electron. 8(2), 62 628 (22). 3. V. V. Kozlov, J. Nuno, and. Wabnitz, Theory of lossless polarization attraction in telecommunication fibers, J. Opt. oc. Am. B 28(), 8 (2). 4. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, Evidence of Raman-induced polarization pulling, Opt. Express 7(2), 947 955 (29). 5. L. Ursini, M. antagiustina, and L. Palmieri, Raman Nonlinear Polarization Pulling in the Pump Depleted Regime in Randomly Birefringent Fibers, IEEE Photon. Technol. Lett. 23(4), 4 35 (2). 6. Z. hmilovitch, N. Primerov, A. Zadok, A. anghoon Chin, L. Thevenaz, and M. Tur, Dual-pump push-pull polarization control using stimulated Brillouin scattering, Opt. Express 9, 25873 2588 (2). 7. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University Press, Cambridge 27). 8. J. F. L. Freitas, C. J.. de Matos, M. B. Costa e ilva, and A.. L. Gomes, Impact of phase modulation and parametric gain on signal polarization in an anomalously dispersive optical fiber, J. Opt. oc. Am. B 24(7), 469 474 (27). 9. M. Guasoni and. Wabnitz, Nonlinear polarizers based on four-wave mixing in high-birefringence optical fibers, J. Opt. oc. Am. B 29, 5 52 (22).. Q. Lin and G. P. Agrawal, Vector theory of four-wave mixing: polarization effects in fiber-optic parameteric amplifiers, J. Opt. oc. Am. B 2, 26 224 (24).. A. Durécu-Legrand, C. immoneau, D. Bayart, A. Mussot, T. ylvestre, E. Lantz, and H. Maillotte, Impact of pump ONR on noise figure for fiber-optical parametric amplifiers, IEEE Photon. Technol. Lett. 7(6), 78 8 (25). #727 - $5. UD Received 22 Jun 22; revised 3 Aug 22; accepted 4 Aug 22; published 9 Nov 22 (C) 22 OA 9 November 22 / Vol. 2, No. 24 / OPTIC EXPRE7248

2. N. A. ilva, N. J. Muga, and A. N. Pinto, Influence of the timulated Raman cattering on the Four-Wave Mixing Process in Birefringent Fibers, J. Lightwave Technol. 27(22), 4979 4988 (29). 3. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers, Opt. Express 6(26), 2692 277 (28). 4. C. R. Menyuk, D. Wang, and A. N. Pilipetskii, Repolarization of polarization-scrambled optical signals due to polarization dependent loss, IEEE Photon. Technol. Lett. 9(9), 247 249 (997).. Introduction In the last few years, several authors have reported all-optical polarization attraction of light using nonlinear optical effects in fibers [ 6]. Nonlinear polarization pulling appears to be a promising solution for photonic applications requiring high-precision polarization control and thus opens up a new means to fully control the state of polarization (OP) without adding polarization-dependent losses (PDL), as in conventional polarization controller devices. o far, nonlinear polarization pulling has been demonstrated using counterpropagating pump waves [ 3], stimulated Raman scattering [4, 5] and stimulated Brillouin scattering [6]. As the parametric amplification is a highly polarization dependent phenomenon, one can also expect to observe a polarization pulling process in such a device [7 ]. However, except in refs. [8] and [9], where FOPA-based polarization pulling was previously predicted and theoretically analyzed, fiber-based parametric amplifiers (FOPAs) have mostly been used to date in polarization insensitive applications for optical communications and not for their strong polarization sensitivity [7]. In this work, we report the experimental demonstration of polarization pulling of an initially polarization-scrambled signal using a FOPA [7]. Nonlinear polarization pulling has been achieved for both the signal and idler waves over a broad bandwidth using the strong polarization-dependent gain (PDG) of parametric amplifiers [7]. We further provide a theoretical approach based on PDG that agrees well with our experimental results. 2. Experimental setup The experimental setup of the fiber-optic parametric polarizer is depicted in Fig.. Two linearly-polarized continuous-wave (CW) external cavity tunable lasers are used as the signal and pump sources. The pump laser was spectrally broadened with a LiNbO 3 -based phase modulator driven by a 2 23 pseudorandom bit sequence at a fundamental frequency of 3 GHz in order to suppress stimulated Brillouin scattering while keeping a constant CW power. Using a high-resolution optical spectrum analyzer, we measured the broadened pump linewidth to be Δν p 3 GHz. The output was launched into a high-power erbium-doped fiber amplifier (33 dbm). A nm-band-pass filter then followed to reduce the amplified spontaneous emission and to keep the pump optical signal-to-noise ratio (ONR) as high as possible []. The pump was coupled with the signal into the fiber parametric amplifier using a 99/ tap fiber coupler. For the parametric amplifier, we used a highly nonlinear fiber with a length of 49 m, a nonlinear coefficient γ =.2W km, a zero-dispersion wavelength of 553. nm, and a polarization mode dispersion of.7 ps.km /2. The pump wavelength was set to λ p = 556 nm to provide broadband parametric gain in the small anomalous group-velocity dispersion regime of the highly nonlinear fiber and the signal wavelength was set to λ s = 546 nm on the peak of the anti-tokes gain band. ince the PMD is equal to.7 ps.km /2, over a length of 49 m, the differential group delay is 49 fs. For a signal at 546 nm, the period of the signal is 5 fs. Hence, the frequency correlation bandwidth over which signals remain correlated in the presence of PMD is given by [(5 fs)/(49 fs)] (546 nm) = 58 nm. ince the pump, signal, and idler are all within 2 nm, we can ignore decorrelation due to PMD and its impact on the efficiency of the nonlinear polarization pulling. It also follows that the interaction between PMD and the Kerr nonlinearity can be neglected. #727 - $5. UD Received 22 Jun 22; revised 3 Aug 22; accepted 4 Aug 22; published 9 Nov 22 (C) 22 OA 9 November 22 / Vol. 2, No. 24 / OPTIC EXPRE7249

To demonstrate polarization pulling, the input signal OP was polarization-scrambled using a commercially available polarization scrambler and the output OP was analyzed on the Poincaré sphere by means of a polarimeter. A tunable filter is placed before the analyzer to reject most of the pump power. Output gain spectra were simultaneously recorded using another optical spectrum analyzer with nm resolution. We also performed a measurement of the PDG by switching off the scrambler and by measuring the differential gain G between the maximum and minimum gains for a signal OP parallel and orthogonal to the pump. These measurements will serve in the following for our theoretical modeling of polarization pulling. 3. Experimental results Figure 2(a,b) shows the experimental output signal and idler OPs (sets of 252 data points) on the Poincaré sphere for four pump powers that vary from 25.2 dbm to 29.7 dbm. The experimental values of the degrees of polarization (DOP) calculated from the tokes parameters are indicated above each sphere. The DOP is given by [2] DOP = 2 + 2 + 2, () where i are the normalized tokes parameters on the Poincaré sphere, transformed linearly so that the OP of the pump wave is aligned with the axis. The gain spectra are also plotted in Fig. 2(c) with the parametric gain, the differential gain G and the signal ONR in insets. Figure 2(a,b) shows that the DOP of the signal significantly increases as the parametric gain increases, that means that the signal is simultaneously polarization-pulled and amplified, as in Raman or Brillouin amplifiers [4, 6]. We have indeed verified that the OP of the pump wave on the Poincaré sphere is located where the polarization of the signal wave is attracted when the pump power is increased. We note that the axes of the sphere have been transformed so that the -axis corresponds to the barycenter of the signal OP measurements. The largest signal DOP is reached for the maximum parametric gain of 25 db and a PDG of 9 db in the undepleted pump regime while the ONR is 22 db. Figure 2(b) also shows that the idler OP is pulled towards the pump with a better efficiency than the signal. This effect occurs because the idler wave is generated with a OP that matches with the pump only due to the strict scalar phase-matching conditions [2]. Additionally, we have verified that the parametric amplified spontaneous emission is also polarized parallel to the pump with a large DOP when turning off the signal power. This behaviour is a general characteristic of nonlinear polarization pulling, in this case for the depolarized noise. This property has already been observed for FOPAs in PUMP Tunable laser source PC IGNAL Tunable laser source PRB Generator 3 GHz, 2 23 - RF driver Phase modulator EDFA Polarization crambler Filter (nm) PC Fiber coupler 99/ Power meter Highly nonlinear fiber OA Tunable Filter (nm) Polarization analyser Fig.. cheme of the fiber-optical parametric polarizer; PRB Generator: pseudorandom bit sequence generator, PC: polarization controller, OA: optical spectrum analyzer, EDFA: erbium-doped fiber amplifier. #727 - $5. UD Received 22 Jun 22; revised 3 Aug 22; accepted 4 Aug 22; published 9 Nov 22 (C) 22 OA 9 November 22 / Vol. 2, No. 24 / OPTIC EXPRE725

(a) ignal OP DOP =.223 DOP =.6627 DOP =.9294 DOP =.9842 3 3 2 (b) Idler OP DOP =.99 DOP =.9948 DOP =.9968 DOP =.9995 3 Power (dbm) 2 4 ignal Idler 6 5 54 58 62 2 4 (c) Gain spectra 2 4 P = 25.2 dbm, ONR = 6 db P = 27.3 dbm, ONR = 8 db P = 28.4 dbm, ONR = 22 db P = 29.7 dbm, ONR = 22 db 2 2 2 2 G G = 7 db G = 6 db G = 25 db max = db max max max PDG = db PDG = 4 db PDG = db PDG = 9 db 6 6 6 5 54 58 62 5 54 58 62 5 54 58 62 Fig. 2. Output state and degree of polarization of the (a) signal and (b) idler waves measured by a polarimeter and visualized on the Poincaré sphere while pump power increases from 25.2 dbm to 29.7 dbm from left to right. The corresponding gain spectra are shown in (c), with the input pump power P, the parametric gain G max, the polarization dependent gain PDG and the signal ONR. 2 4 noise figure measurements [] and with respect to stimulated Brillouin scattering [3]. 4. Theoretical model We now present a theoretical model of polarization pulling based on PDG. In the Jones representation, we may write the input polarization vector as u in = c + u + + c u, where u + and u are unit Jones vectors that are aligned with the directions of maximum and minimum gain and are orthogonal [4]. Note that the OP of the maximum and minimum gain states are not the same at the input and output of the fiber. In both cases, we effectively transform the axes of the Poincaré sphere so that the -axis is aligned with the direction of maximum gain. We may usefully write c + = Acos(θ/2)exp(iφ/2) and c = Asin(θ/2)exp( iφ/2), where A is the complex amplitude of the signal, while θ and φ are the angles of the Poincaré sphere polar coordinates. We may write = 2Re(c +c ) c + 2 + c 2 = sinθ cosφ, = 2Im(c +c ) c + 2 = sinθ sinφ, + c 2 = c + 2 c 2 c + 2 + c 2 = cosθ. #727 - $5. UD Received 22 Jun 22; revised 3 Aug 22; accepted 4 Aug 22; published 9 Nov 22 (C) 22 OA 9 November 22 / Vol. 2, No. 24 / OPTIC EXPRE725

Thus, we find that θ is the azimuthal angle for the tokes vector of the input signal with respect to the direction of maximum gain. It will be useful to define μ = cosθ, so that a change in the spherical angle is given by dω = sinθ dθ dφ = dμ dφ. It then follows that c + = A[( + μ)/2]) /2 exp(iφ/2) and c = A[( μ)/2]) /2 exp( iφ/2). We note that if the original signal is distributed uniformly over the Poincaré sphere, then the values of μ will be uniformly distributed between and. The output Jones vector is given by u out = c + u + exp(g + L)+c u exp(g L), (2) where g + and g are the maximum (parallel) and minimum (perpendicular) gains, respectively. The output value for μ is given by μ out = c + 2 exp(2g + L) c 2 exp(2g L) ( + μ) ( μ)g c + 2 exp(2g + L)+ c 2 = exp(2g L) ( + μ)+( μ)g (3) where G = exp[2(g + g )L] is the differential gain of the PDG. We note that when G, we find that μ out, regardless of the value of μ, so that the tokes vector is pulled to the positive -axis, as we would expect. We will calculate the probability distribution function (PDF) for μ out. To do that, we first invert Eq. (3) to obtain μ = ( + G )μ out ( G ) ( + G ) ( G )μ out. (4) The quantity μ is uniformly distributed between and, and we must have p(μ out )dμ out = p(μ)dμ =(/2)dμ. We find the PDF as p(μ out )= dμ 2G = 2 dμ out [( + G ) ( G )μ out ] 2. (5) The corresponding cumulative distribution function is given by μout F(μ out )= p(μ )dμ = 2 + ( + G )μ out ( G ) 2[( + G ) ( G )μ out ] (6) As expected, we find that p(μ out)dμ out =, and the distribution becomes sharply peaked around μ out = when G becomes large. To verify the theory, we make a histogram of the -component of the experimental data. We divide the interval from to into 2 bins with variable interval length Δμ i = μ i+ μ i, i =,2. The lengths of interval are chosen so that n = 2 = 252/2 samples lie in each interval. In Fig. 3(a), we compare the predicted PDF from Eq. (5) to the histogram height n/(nδμ i ), where N = 252 is the total number of samples, which we plot at the mid-point of each interval, μ =(μ i + μ i+ )/2. In order to estimate the value of G, we use MATLAB s NLINFIT function to carry out a nonlinear regression analysis, based on our estimate of the cumulative distribution function F(μ i,g) =N i /N, where N i = ni is the sum of the samples in all the histogram bins up to μ = μ i. The expected error (standard deviation) ranges from.26 db to.44 db. We note that when no parametric gain is present, we observe a negative value of G, indicating the presence of residual PDL that we attribute to the fiber couplers. As expected, an increase in the gain leads to a sharply peaked PDF in the neighborhood of μ out = in agreement with the experiments. The agreement between the fitted values of Fig. 3(a) and the experimental maximal gain is very good, but less in comparison to the PDG. A possible reason is that the value for the PDG is biased and actually higher, since the measurement requires an accurate #727 - $5. UD Received 22 Jun 22; revised 3 Aug 22; accepted 4 Aug 22; published 9 Nov 22 (C) 22 OA 9 November 22 / Vol. 2, No. 24 / OPTIC EXPRE7252

(a) p (µ out ) p (µ out )...2.3.4.5 Fit: G = 2.73 ±.49 db Exp.: PDG = db, G max = db.5.5 Fit: G = 8.62 ±.33 db Exp.: PDG = 4 db, G = 7 db max 2.5.5 Fit: G = 6.6 ±.26 db Fit: G = 25.3 ±.44 db Exp.: PDG = db, G max= 6 db Exp.: PDG = 9 db, G = 25 db 2 3 max 2-3.5.5.5.5 µ out µ out 2 - -2 (b) G = db, DOP =.5 G = 7 db, DOP =.4 G = 6 db, DOP =.74 G = 25 db, DOP =.89 Fig. 3. (a) Probability distribution of signal -component. Crosses: experimental data from Fig. 2; Dotted curves: fits by Eq. (5) with G values and standard deviation σ compared to the experimental values of PDG and the maximal gain in insets, (b) ignal output state of polarization on the Poincaré sphere calculated from Eq. (3) for the same values of G as the maximal gain in Fig 2. The DOP is indicated in the insets. alignment of the polarization and the spectra were not sufficiently stable to accurately measure the PDG. In order to confirm this assumption we plotted in Fig. 3(b) the signal OP on the Poincaré sphere for the same values of G as the maximal gain in Fig. 2 using Eq. (3) for and the corresponding ones for and. As can be seen, the signal polarization is pulled towards the -axis with increasing G. The theoretical results agree well with the experimental results in Fig. 2. However, this also confirms that the PDG in our experiment is actually higher and close to the maximal gain since the orthogonal parametric gain should be theoretically zero. 5. Conclusion In conclusion we have proposed and demonstrated a new technique that achieves all-optical polarization control of light in optical fibers without using polarization-dependent loss, as in conventional polarizer devices. We demonstrated this technique for an initially unpolarized beam by using the strong polarization-dependent gain of a fiber-optical parametric amplifier. Both the signal and idler waves were efficiently repolarized while being parametrically amplified. We have also presented a theoretical prediction for the output PDF of the DOP, assuming an unpolarized input, that agrees well with experimental results. Acknowledgments This work was funded by the European Interreg IV A program and the ANR LABEX action project. The authors thank tefano Wabnitz for helpful discussions. Julien Fatome is supported by the European Research Council (Grant Agreement no. 36633, ERC tarting Grant PETAL project). #727 - $5. UD Received 22 Jun 22; revised 3 Aug 22; accepted 4 Aug 22; published 9 Nov 22 (C) 22 OA 9 November 22 / Vol. 2, No. 24 / OPTIC EXPRE7253