Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Similar documents
VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Matrix Methods in Kinematics

v v at 1 2 d vit at v v 2a d

Synchronous Generator Modeling Using SimuLink

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

MEG 741 Energy and Variational Methods in Mechanics I

F í s. i c HARMONIC MOTION. A p l. i c a U C L M

Representing Curves. Representing Curves. 3D Objects Representation. Objects Representation. General Techniques. Curves Representation

Robot Dynamics. Hesheng Wang Dept. of Automation Shanghai Jiao Tong University

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

EDDY CURRENTS TORQUE MODEL FOR SPIN STABILIZED EARTH SPACECRAFT

8. INVERSE Z-TRANSFORM

Small signal analysis

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Haddow s Experiment:

Introduction to Robotics (Fag 3480)

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

4. Eccentric axial loading, cross-section core

Strong Gravity and the BKL Conjecture

ENGI9496 Lecture Notes Multiport Models in Mechanics

Ch. 3: Forward and Inverse Kinematics

E-Companion: Mathematical Proofs

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

Analysis of Variance and Design of Experiments-II

ψ ij has the eigenvalue

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L

Lecture 4: Piecewise Cubic Interpolation

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Introduction to Numerical Integration Part II

On generalized 2-step continuous linear multistep method of hybrid type for the integration of second order ordinary differential equations

Lecture 9-3/8/10-14 Spatial Description and Transformation

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

Iterative General Dynamic Model for Serial-Link Manipulators

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

Jacobians: Velocities and Static Force.

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

Lecture 23: Newton-Euler Formulation. Vaibhav Srivastava

Chemical Reaction Engineering

Torsion, Thermal Effects and Indeterminacy

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Harmonic oscillator approximation

Remember: Project Proposals are due April 11.

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

The meaning of d Alembert s principle for rigid systems and link mechanisms

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Solution Manual. for. Fracture Mechanics. C.T. Sun and Z.-H. Jin

Chapter 7: Conservation of Energy

Lecture 7 Circuits Ch. 27

CS 4758 Robot Kinematics. Ashutosh Saxena

The Number of Rows which Equal Certain Row

Chemical Reaction Engineering

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

Mass Transfer as you have learned it. Diffusion with Drift. Classic - in Gases 1. Three Gases (1) Appendix. Mass transfer in

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

Course Review Introduction to Computer Methods

4. UNBALANCED 3 FAULTS

1.3 SCALARS AND VECTORS

Train Up A Child Paul Marxhausen All Rights Reserved. Dedicated to Stu Tietz for 30 years of Lutheran teaching ministry. Free Praise License

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

I have not received unauthorized aid in the completion of this exam.

Definition of Tracking

The Shortest Path Problem Graph Algorithms - 3

Inverse Kinematics From Position to Angles

The Schur-Cohn Algorithm

Name: SID: Discussion Session:

Physics 181. Particle Systems

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

Identification of Robot Arm s Joints Time-Varying Stiffness Under Loads

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

Analytical and Simulation Method Validation for Flutter Aeroservoelasticity Studies

An Introduction to Robot Kinematics. Renata Melamud

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Multiple view geometry

Chapter Gauss-Seidel Method

Slope Lengths for 2-Bridge Parent Manifolds. Martin D. Bobb

Chapter #5 EEE Control Systems

So far: simple (planar) geometries

ME 501A Seminar in Engineering Analysis Page 1

Chapter 11: Angular Momentum

A Study on Root Properties of Super Hyperbolic GKM algebra

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

N=4 super Yang-Mills Plasma

Optimization. Nuno Vasconcelos ECE Department, UCSD

ORDINARY DIFFERENTIAL EQUATIONS

Randomness and Computation

Three hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Wednesday 16th January 2013 Time: 09:45-12:45

8 Waves in Uniform Magnetized Media

A concept for Vertical Folding Convertible Design

Physics 111: Mechanics Lecture 11

Transcription:

Dynm o Lnke Herrhe Contrne ynm The Fethertone equton

Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F

Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton o Rg Boy Sytem Ph.D. ertton, Berkeley, 996 R.Prent, CSE788 OSU

Pmnre Lnk numbere 0 to n Fxe be: lnk 0; Outermot t lke: lnk n Jont numbere to n Lnk h nbor jont, Jont Eh jont h DoF Vetor o jont poton: qq,q 2, q n T 2 n R.Prent, CSE788 OSU

The Problem Gven: the poton q n velote o the n jont o erl lnkge, the externl ore tng on the lnkge, n the ore n torque beng pple by the jont tutor Fn: The reultng elerton o the jont: q& & q& R.Prent, CSE788 OSU

Frt Determne equton tht gve bolute moton o ll lnk Gven: the jont poton q, velote n elerton Compute: or eh lnk the lner n ngulr veloty n elerton tve to n nertl rme R.Prent, CSE788 OSU

Notton globl vrble v Lner veloty o lnk v α Lner elerton o lnk ngulr veloty o lnk ngulr elerton o lnk R.Prent, CSE788 OSU

Jont vrble q jont poton q& q u r jont veloty Unt vetor n reton o the x o jont vetor rom orgn o F - to orgn o F vetor rom x o jont to orgn o F R.Prent, CSE788 OSU

B term F boy rme o lnk Orgn t enter o m xe lgne wth prnple xe o nert Frme t enter e o m F r F - u [ q, q& ] Nee to etermne: q& & R.Prent, CSE788 OSU x o rtulton Stte vetor

From be outwr Velote n elerton o lnk re ompletely etermne by:. the velote n elerton o lnk - 2. n the moton o jont R.Prent, CSE788 OSU

Frt etermne velote n elerton From veloty n elerton o prevou lnk, etermne totl globl veloty n elerton o urrent lnk v Compute rom be outwr,,,, α Moton o lnk - R.Prent, CSE788 OSU v To be ompute v,,, α, Moton o lnk,,,,, α Moton o lnk rom lol jont

Compute outwr ngulr veloty o lnk ngulr veloty o lnk - plu ngulr veloty nue by rotton t jont Lner veloty lner veloty o lnk - plu lner veloty nue by rotton t lnk - plu lner veloty rom trnlton t jont R.Prent, CSE788 OSU v v r v

Compute outwr ngulr elerton propgton α α & Lner elerton propgton α r r& v& Rewrtten, ung r& v v tve veloty n r & r v v r v v rom prevou le α r r v v& R.Prent, CSE788 OSU

Compute outwr ngulr elerton propgton α α & Lner elerton propgton α r r v v& Nee & v& n term o jont x moton q& q&& R.Prent, CSE788 OSU u

Dene w n v n ther tme ervtve Jont veloty vetor x tme prmetr veloty prmt q& u Jont elerton vetor x tme prmetr elerton ξ q& revolute u unkown v 0 v R.Prent, CSE788 OSU

Veloty propgton ormule revolute lner v v r v v v v r ngulr R.Prent, CSE788 OSU

Tme ervtve o v n w revolute Jont elerton vetor Chnge n jont veloty vetor & ξ v & 2 ξ From jont elerton vetor From hnge n jont veloty vetor From hnge n hnge n vetor rom jont to CoM R.Prent, CSE788 OSU

q& u Dervton o & revolute v& & q&& u qu & & ξ qu & & u & u & ξ t v & t & v & 2 ξ & R.Prent, CSE788 OSU

elerton propgton ormule lner revolute α r r& α 2 ξ v & r & r v α r ξ r 2 v& Prevouly erve ngulr R.Prent, CSE788 OSU & α α ξ α ξ & α

Sptl ormulton o l t t elerton propgton revolute r v v r v v r r ξ α ξ α α 2 r r ξ α But remember u q& & ξ n unknown R.Prent, CSE788 OSU

Frt tep n orwr ynm q, q& Ue known ynm tte: Compute bolute lner n ngulr velote: v, Remember: elerton propgton equton nvolve unknown jont elerton But rt nee to ntroue notton to ltte equton wrtng Sptl lgebr R.Prent, CSE788 OSU

Sptl lgebr Sptl veloty Sptl elerton v v α R.Prent, CSE788 OSU

Sptl Trnorm Mtrx r oet vetor R rotton v v R 0 G G F F G F ~ rr R G G F F ro prout opertor R.Prent, CSE788 OSU

Sptl lgebr Sptl ore Sptl trnpoe τ b [ T T x b ] Sptl jont x u u Sptl nner prout x y ue n lter R.Prent, CSE788 OSU

ComputeSerlLnkVelote revolute, v, α, 0 0 0 0 For to N o 0 en R rotton mtrx rom rme - to r ru vetor rom rme - to rme n rme oornte R v Rv q& q u r v v q& u Spe to revolute jont R.Prent, CSE788 OSU

Sptl ormulton o l t t elerton propgton revolute Prevouly: r r ξ α ξ α α 2 r r ξ α && Wnt to put n orm: q u R 0 R.Prent, CSE788 OSU u R rr F G ~ Where:

Sptl Corol ore Sptl Corol ore revolute ξ α α 2 r r ξ α ξ α α q && 2 u q Thee re the term nvolvng u u q& & ξ 2 r R.Prent, CSE788 OSU

Fethertone lgorthm O Sptl elerton o lnk Sptl ore exerte on lnk through t nbor jont Sptl ore exerte on lnk through t outbor jont ll expree n rme Fore expree tng on enter o m o lnk R.Prent, CSE788 OSU

Serl lnkge rtulte moton Sptl rtulte nert o lnk ; rtulte men entre ubhn beng onere Sptl rtulte zero elerton ore o lnk nepenent o jont elerton; ore exerte by nbor jont on lnk, lnk not to elerte Develop equton by nuton R.Prent, CSE788 OSU

Be Ce Coner lt lnk o lnkge lnk n Fore/torque pple by nbor jont grvty nert*elerton o lnk n Newton-Euler equton o moton m g n n m n τ α n n n n n n R.Prent, CSE788 OSU

Ung ptl notton Lnk n n nbor jont τ n m n g 0 M n τ n 0 n R.Prent, CSE788 OSU n n α n n n n m n n n g n n

nutve e nutve e O O ume prevou true or lnk ; oner lnk - outbor jont O τ O Lnk - nbor jont m g τ 0 0 O O g m M α τ τ R.Prent, CSE788 OSU τ τ

nutve e nutve e 0 O g m M α 0 O τ τ O O The eet o jont on lnk - equl n O The eet o jont on lnk equl n oppote to t eet on lnk Subttutng R.Prent, CSE788 OSU

nutve e nutve e nvokng nuton on the enton o R.Prent, CSE788 OSU

nutve e nutve e Expre n term o - n rerrnge q && ] [ q && Nee to elmnte rom the rght e o the equton q& & R.Prent, CSE788 OSU

nutve e nutve e ] [ q && Mgntue o torque exerte by revolute jont tutor Q u τ ore n torque τ pple to lnk t the nbor jont gve re to ptl nbor ore reolve th b τ n the boy rme o τ u u u u u Q τ τ τ R.Prent, CSE788 OSU Moment o ore Moment o ore

nutve e nutve e u Q τ Q q && prevouly n q && Premultply both e by ubttute Q or, n olve Q q && R.Prent, CSE788 OSU

n ubttute n ubttute Q Q q && ] [ q && ] [ ] ] [ [ ] [ Q R.Prent, CSE788 OSU ] [

n orm & term n orm & term ] [ ] [ ] [ Q ] ] [ [ Q To get nto orm: ] [ Q R.Prent, CSE788 OSU ] ] [ [ Q

Rey to put nto oe Ung Loop rom ne out to ompute velote prevouly evelope repete on next le Loop rom ne out to ntlze,, n vrble Loop rom oute n to propgte, n upte Loop rom ne out to ompute q& & ung,, R.Prent, CSE788 OSU

ComputeSerlLnkVelote revolute // Th oe rom n erler le loop ne out to ompute velote, v, α, 0 0 0 0 0 For to N o en R rotton mtrx rom rme - to r ru vetor rom rme - to rme n rme oornte R v Rv q& u r v v q& R.Prent, CSE788 OSU u Spe to revolute jont

ntserllnk ntserllnk revolute // loop rom ne out to ntlze,, vrble For to N o m g 0 M 0 0 M 2 r R.Prent, CSE788 OSU en

SerlForwrDynm Cll ompserllnkvelote Cll ntserllnk // new oe wth ll to 2 prevou routne For n to 2 o ] [ // loop oute n to orm n or eh lnke ] [ ] ] [ [ Q ] ] [ [ Q 0 0 // loop ne out to ompute lnk n jont elerton For to n o 0 0 Q q && R.Prent, CSE788 OSU q &&

n tht ll there to t! R.Prent, CSE788 OSU

v r v v α α & & & α r r v α r r & ξ v & ξ t v & & t & v & 2 ξ v r& v v r & r v v& q& & u ξ q& & u ξ v & v v r R.Prent, CSE788 OSU

2 r r ξ α 2 ξ α α R.Prent, CSE788 OSU

v α R F G ~ 0 v R rr F G ~ τ [ ] T T b b x u y x u u R.Prent, CSE788 OSU