Quantum Computation by Geometrical Means

Similar documents
arxiv: v1 [quant-ph] 3 Nov 2015

Quantum Holonomies for Quantum Computing

ADIABATIC PHASES IN QUANTUM MECHANICS

Berry s Phase. Erik Lötstedt November 16, 2004

Appendix: SU(2) spin angular momentum and single spin dynamics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

arxiv:quant-ph/ v1 14 Mar 2001

Critical entanglement and geometric phase of a two-qubit model with Dzyaloshinski Moriya anisotropic interaction

Non-Abelian Berry phase and topological spin-currents

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians

Quantum Physics 2: Homework #6

Holonomic quantum computation

Anisotropic Spin Exchange in Pulsed Quantum Gates

Geometric control for atomic systems

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

NANOSCALE SCIENCE & TECHNOLOGY

Chapter 2 The Group U(1) and its Representations

Quantum Computing with Non-Abelian Quasiparticles

Quantum holonomies for displaced Landau Aharonov Casher states

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Topological Quantum Computation

2.3 Band structure and lattice symmetries: example of diamond

Coherent States and Some Topics in Quantum Information Theory : Review

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

arxiv: v1 [quant-ph] 17 Apr 2007

1. Matrix multiplication and Pauli Matrices: Pauli matrices are the 2 2 matrices. 1 0 i 0. 0 i

Jiannis K. Pachos. Introduction. Berlin, September 2013

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

arxiv:quant-ph/ v1 7 Jun 2004

arxiv:quant-ph/ v1 15 Jul 2004

Quantum Symmetries and Cartan Decompositions in Arbitrary Dimensions

Lecture notes on topological insulators

arxiv: v1 [quant-ph] 12 Nov 2014

Lie algebraic quantum control mechanism analysis

arxiv: v3 [quant-ph] 29 Jan 2019

arxiv: v1 [quant-ph] 25 Apr 2008

G : Quantum Mechanics II

arxiv:quant-ph/ v1 8 May 2000

Particles I, Tutorial notes Sessions I-III: Roots & Weights

arxiv: v1 [quant-ph] 7 Dec 2018

General Exam Part II, Fall 1998 Quantum Mechanics Solutions

Braid Group, Gauge Invariance and Topological Order

Geometric phases in quantum information

arxiv:quant-ph/ v1 24 Aug 2006

Density Matrices and Geometric Phases for n-state Systems

Non-Abelian Statistics. in the Fractional Quantum Hall States * X. G. Wen. School of Natural Sciences. Institute of Advanced Study

Symmetries for fun and profit

Exchange statistics. Basic concepts. University of Oxford April, Jon Magne Leinaas Department of Physics University of Oslo

A. Time dependence from separation of timescales

Generators for Continuous Coordinate Transformations

Effective theory of quadratic degeneracies

Felix Kleißler 1,*, Andrii Lazariev 1, and Silvia Arroyo-Camejo 1,** 1 Accelerated driving field frames

Constant Mean Curvature Tori in R 3 and S 3

Symmetries, Groups, and Conservation Laws

Symmetries, Fields and Particles. Examples 1.

Kitaev honeycomb lattice model: from A to B and beyond

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

Ground state entanglement and geometric entropy in the Kitaev model

Structure relations for the symmetry algebras of classical and quantum superintegrable systems

1 Mathematical preliminaries

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

Quantum Theory and Group Representations

Advanced Quantum Mechanics

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ).

Lecture notes on topological insulators

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Degenerate Perturbation Theory. 1 General framework and strategy

The 3 dimensional Schrödinger Equation

Linear Algebra and Dirac Notation, Pt. 3

Quantum Searching. Robert-Jan Slager and Thomas Beuman. 24 november 2009

Physics 221A Fall 1996 Notes 10 Rotations in Quantum Mechanics, and Rotations of Spin- 1 2 Systems

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th,

arxiv:quant-ph/ v2 24 Dec 2003

MAT265 Mathematical Quantum Mechanics Brief Review of the Representations of SU(2)

1 Measurement and expectation values

BRST and Dirac Cohomology

Quantum Field Theory III

Clifford Algebras and Spin Groups

26 Group Theory Basics

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

Mic ael Flohr Representation theory of semi-simple Lie algebras: Example su(3) 6. and 20. June 2003

Journal Club: Brief Introduction to Tensor Network

Topological order of a two-dimensional toric code

Energy Level Sets for the Morse Potential

Reflections in Hilbert Space III: Eigen-decomposition of Szegedy s operator

On The Power Of Coherently Controlled Quantum Adiabatic Evolutions

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cos"t{ e g + g e } " = q e r g

Basic Concepts of Group Theory

PHYSICS 304 QUANTUM PHYSICS II (2005) Assignment 1 Solutions

Polarizations as states and their evolution in geometric algebra terms with variable complex plane

Lie Algebra and Representation of SU(4)

Problem 1: Step Potential (10 points)

Quantum Control of Qubits

On the convergence of a feedback control strategy for multilevel quantum systems

How the Result of a Measurement of a Component of the Spin of a Spin- 1 2 Particle Can Turn Out to be 100

Geometric phases and spin-orbit effects

Quantum non-demolition measurements:

Lecture notes: Quantum gates in matrix and ladder operator forms

Donoghue, Golowich, Holstein Chapter 4, 6

Unitary Dynamics and Quantum Circuits

Transcription:

ontemporary Mathematics Quantum omputation by Geometrical Means Jiannis Pachos Abstract. A geometrical approach to quantum computation is presented, where a non-abelian connection is introduced in order to rewrite the evolution operator of an energy degenerate system as a holonomic unitary. For a simple geometrical model we present an explicit construction of a universal set of gates, represented by holonomies acting on degenerate states. 1. Prologue Abelian [Sha] and non-abelian [Wil] geometrical phases in quantum theory have been considered as a deep and fascinating subject. They provide a natural connection between the evolution of a physical system with degenerate structure and differential geometry. Here we shall present a model where these concepts can be explicitly applied for quantum computation [Zan]. The physical setup consists of an energy degenerate quantum system on which we perform an adiabatic isospectral evolution described by closed paths in the parametric space of external variables. The corresponding evolution operators acting on the code-state in the degenerate eigenspace are given in terms of holonomies and we can use them as quantum logical gates. This is a generalization of the Berry phase or geometrical phase, to the non-abelian case, where a non-abelian adiabatic connection, A, is produced from the geometrical structure of the degenerate spaces. In particular, on each point of the manifold of the external parameters there is a code-state attached and a transformation between these bundles of codes is dictated by the connection A. In order to apply this theoretical construction to a concrete example we employ a model with P 2 geometry, that is a complex projective manifold with two complex coordinates. This is interpreted as a qubit [Pac]. A further generalization with the tensor product of m P 2 models and additional interaction terms parametrized by the Grassmannian manifold, G(4, 2), is interpreted as a model of quantum computer. The initial code-state is written on the degenerate eigenspace of the system. The geometrical evolution operator is a unitary acting on it and it is interpreted as 2000 Mathematics Subject lassification. Primary 81P68. The author was supported in part by TMR Network under the contract no. ERBFMRXT96-0087. 1 c 2002 American Mathematical Society

2 JIANNIS PAHOS a logical gate. Due to adiabaticity the geometrical part of the evolution operator has a dimensionality equal to the degree of degeneracy of the eigenspace. Specific logical gates given by holonomies are constructed for a system with a tensor product structure resulting in universality while at the end a quantum optical application is sketched. 2. oset Space Geometry A transformation U(n) between the states α, α = 1,..., n can be realized by all possible sub-u(2) transformations between any two of those states, i and j. A coset space can be produced as the factor with respect to some particular U(2) symmetries of these transformations. Examples of such constructions are given in the following: the P 2 projective space: P 2 = U(3) U(2) U(1) 1 2 U 1 (z 1 ) U 2 (z 2 ) 2 The lines denote U(2) transformations between the states represented here by holes. The U(3) group could be interpreted by three lines connecting all the holes together. The distinction between filled and unfilled holes is due to the coset structure, which factors out the symmetry transformations, between 1 and 2, and denotes explicitly the non-symmetric ones between 1 or 2 and 2. the ( P 2) m (G(4, 2)int ) (m 1) product space: U(3) U(2) U(1) U(3) U(2) U(1), U(4) U(2) U(2) int 1 2 3 4 2 4 Transformations can be performed between the states { 1, 2 } and { 3, 4 } due to their connections with the states { 2, 4 }, while an interaction in the tensor

QUANTUM OMPUTATION BY GEOMETRIAL MEANS 3 product space between 24 and 2 4 gives transformations between those two sets. The transformations between only two states may be performed by linear operations with respect to U(2) generators, while the combined transformations between the two qubits can be produced by bilinear generators which act simultaneously on the states of both of the P 2 models. The latter is denoted in the previous figure by the dashed lines, where the connection between the black dots indicates the simultanious action. 3. Degeneracy, Adiabaticity and Holonomies Let us introduce the degenerate Hamiltonians H0 1 and H0 m H0 1 = 0 0 0 0 0 0, H0 m = H0 1. 0 0 1 m as follows The orbit, that is the parametric manifold of the unitary transformations which preserves the degenerate spectrum of H0 1 is given by P 2. A sub-manifold of the orbit of H0 m in which we are interested in is given by the ( P 2) m (G(4, 2)int ) (m 1) product manifold. A general transformation parametrized by the P 2 space is given by U(z) := U 1 (z 1 )U 2 (z 2 ), with U α (z α ) = exp G α (z α ) = exp(z α α 2 z α 2 α ). The complex parameter z α may be decomposed as z α = θ α exp iφ α. Due to the 2 2 sub-form of G α (z α ) we can rewrite U α (z α ) as U α (z α ) = 1 α + cos θ α 1 α + sin θ α θ α G α (z α ), where 1 α = 1 1 α and 1 α = α α + 2 2. For the Grassmannian manifold G(4, 2) we have, for example, the U(2) rotation in the tensor product basis of two qubits, between the states 24 and 2 4, given by U(z) = exp(z 24 2 4 z 2 4 24 ), with z = θ exp iφ. The coordinates {λ a } = {θ, φ} provide the parametric space which the experimenters control. In the four dimensional manifold P 2 with coordinates {λ a } a closed path,, is drawn on a two-submanifold. onsider this evolution to be adiabatic as well as isospectral which is provided by the formula H(λ(t)) = U(λ(t))H 0 U (λ(t)). As a result the state of the system, ψ(t), stays on the same eigenvalue of the Hamiltonian, taken in our example to be E 0 = 0, without level-crossing. At the end of the loop, spanned in time T = N t, when divided in N equal time intervals, we obtain ψ(t ) with = Te i T 0 UH0U dt ψ(0) N = T lim U i e ih0 t U i N i=1 = P lim N A i = U i ( 1 + ) N A i λ i i=1 ψ(0) ψ(0) U i λ i and U i = U(λ(t i )).

4 JIANNIS PAHOS Hence, the state ψ(0) acquires a geometrical unitary operator given by the holonomy of a connection A as Γ A () := P exp A, where (A λa ) αβ := α U (λ) λ a U(λ) β. The states α and β belong to the same degenerate eigenspace of H 0 and λ a s are the real control parameters. The produced unitary operator is an effect of the non-commutativity of the control transformations which produce effectively a curvature. In the case of the Berry phase produced for example in front of the spin states of an electron when placed in a magnetic field, the non-commutativity is between the U(2) control unitaries which change the direction of the magnetic field in the three dimensional space. What is presented here is the generalization of the Berry phase to the nonabelian case. The Γ A () s produced by P 2 for various loops, generate the whole U(2), {Γ A (); P 2 } U(2). In the case of m qubits with their proper interactions, the produced group is U(2 m ), {Γ A (); ( P 2) m (G(4, 2)int ) (m 1) } U(2 m ). 4. Quantum omputation In order to perform quantum computation by using the above constructions we consider the following identifications: QUANTUM ODE Degenerate States, ψ(0) LOGIAL GATES Holonomies, Γ A () Let us first investigate the P 2 case. The basic question is how we can generate a general U(2) element by moving along a closed path,. Or in other words, for a specific U U(2) which loop is such that Γ A () = U. In general, g u(2) loop P 2 manifold, such that Γ A () = exp g, which is the statement of irreducibility of the connection A [Zan]. To answer the above question we perform the following analysis. The loop integral A = A λ 1dλ 1 + A λ 2dλ 2 + is the main ingredient of the holonomy. Due to the path ordering symbol it is not possible to just calculate it and evaluate its exponential, as in general the connection components do not commute with each other. Still it is possible to consider the following restrictions in the position of the loop. hoose such that: it belongs to one plane (λ i, λ j ) = (θ i, φ j ) or (θ i, θ j ), hence only two components of A are involved, the position of the plane is such that the connection, A, restricted on it become, A (λ i,λ j ) = (A λi = 0, A λj ), that is these two components commute with each other. Still it is important that their related field strength component, F ij = i A j j A i + [A i, A j ], is non-vanishing in order to obtain a non-trivial holonomy. Such a requirement is possible for the P 2 model and for a wide class of other models.

QUANTUM OMPUTATION BY GEOMETRIAL MEANS 5 On the planes where those conditions are satisfied the evaluation of the holonomy is trivially given by just exponentiating the loop integral of the connection without worrying about the path ordering symbol. Hence, Γ A () = P exp A = exp(σg) = 1 2 2 cos Σ + g sin Σ, where Σ represents the area enclosed by the loop projected on the sphere associated with the compactified P 2 manifold. This area may be varied desirably. Furthermore, we are able to obtain a complete set of generators g by choosing to lie on different planes. In detail we may obtain for g the following forms i α α := iσ 3 α, α = 1, 2 i( i 1 2 + i 2 1 ) := iσ 2, i( 1 2 + 2 1 ) := iσ 1. The σ 3 α generators are similar to a Berry phase and they are produced by paths 1 on the (θ α, φ α ) planes. The corresponding holonomy is the exponential of this generator multiplied by the area, Σ 1, of the surface the path 1 encloses when projected on a sphere S 2 (2θ α, φ α ) with spherical coordinates 2θ α and φ α, iσ 3 α : 1 (θ α, φ α ) Γ A ( 1 ) = exp iσ 1 σ 3 α. The σ 2 generator is produced by a path 2 along the plane (θ 1, θ 2 ) positioned at φ 1 = φ 2 = 0, while σ 1 is produced by a path, 3, along a parallel plane positioned at φ 1 = π 2 and φ 2 = 0. Their corresponding areas are Σ 2 and Σ 3. For example iσ 2 : 2 (θ 1, θ 2 ) φ1=0,φ 2=0 Γ A( 2 ) = exp iσ 2 σ 2. Altogether we have 2 2 independent generators spanning the Lie algebra of U(2). For the case of the two qubit interaction the corresponding connection components are given by A θ = diag(0, 0, 0, 0), A φ = diag(0, 0, 0, i sin 2 θ) which are written in the basis { 13, 14, 23, 24 }. A loop on the (θ, φ) plane will produce the following holonomy Γ A () = diag(1, 1, 1, e iσ ), Σ = dθdφ sin 2θ, D() where Σ can also be interpreted as an area on the sphere S 2 (2θ, φ). 5. One and Two Qubit Logical Gates By performing appropriate loops we can obtain one qubit phase rotations as well as two qubit gates such as a controlled phase rotation U P H. Analytically, by spanning the indicated areas we may obtain U 1 = exp [ iσ1 0 0 0 The combinations ], U 2 = exp [ ] 0 0 0 iσ 1, U 3 = exp U 1 U 2 = exp( iσ 3 Σ 1 ), U 3 = exp( iσ 2 Σ 2 ) [ 0 Σ2 Σ 2 0 can give any U(2) transformation and hence any one qubit rotation. For the two qubit gates we can construct easily the controlled rotation U P H = diag(1, 1, 1, exp iσ) between any pair of qubits. It is generated by a loop on the ].

6 JIANNIS PAHOS (θ, φ) plane. Together with the one qubit rotations they provide a universal set of gates. 6. Epilogue Apart from the intriguing theoretical formulation of holonomic computation there are several aspects of it, which have appealing technical advantages. Without overlooking the difficulties posed to an experimenter for performing continuous control over a system in order to span a loop, there are several unique characteristics of it, which await for exploitation. For example, robustness of the control procedure in terms of the spanned area, according to errors in the actual form of the performed loop, as well as the isolation of the degenerate states as a calculational space may prove to be advantages worth exploring. In quantum optics displacing devices, squeezing devices and interferometers acting on laser beams can provide the control parameters for the holonomic computation. Each laser beam is placed in a non-linear Kerr medium with degenerate Hamiltonian H 0 = n(n 1), where n is the photon numbering operator. The degenerate states 0 and 1 are the basis for encoding one qubit which is manipulated by displacing and squeezing devices. Any two qubit interactions can be implemented by interferometers [ho]. It is challenging for the experimenters to produced the desired closed paths. References [Sha] Geometric Phases in Physics, A. Shapere and F. Wilczek, Eds. World Scientific (1989). [Wil] F. Wilczek and A. Zee., Phys. Rev. Lett. 52, 2111 (1984). [Zan] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999), quant-ph/9904011. [Pac] J. Pachos, P. Zanardi and M. Rasetti, Phys. Rev. A 61 010305(R), quant-ph/9907103. [ho] J. Pachos and S. hountasis, quant-ph/9912093. (Jiannis Pachos) Institute for Scientific Interchange Foundation, Villa Gualino, Viale Settimio Severo 65, I-10133 Torino, Italy E-mail address, Jiannis Pachos: pachos@isiosf.isi.it