Thus D ëc y + c y ë 6= c D ëy ë+c D ëy ë. Note that expressions èè and èè are not equal because sinèc y + c y è 6= c sin y + c sin y. sin is a nonline

Similar documents
dx n a 1(x) dy

Applications of Second-Order Differential Equations

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

APPENDIX E., where the boundary values on the sector are given by = 0. n=1. a 00 n + 1 r a0 n, n2

Definition of differential equations and their classification. Methods of solution of first-order differential equations

4.2 Homogeneous Linear Equations

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

3. Riley 12.9: The equation sin x dy +2ycos x 1 dx can be reduced to a quadrature by the standard integrating factor,» Z x f(x) exp 2 dt cos t exp (2

Solution to Homework 2

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

y x 3. Solve each of the given initial value problems. (a) y 0? xy = x, y(0) = We multiply the equation by e?x, and obtain Integrating both sides with

The Harmonic Oscillator

MATH 23 Exam 2 Review Solutions

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3

To find the step response of an RC circuit

Math 266 Midterm Exam 2

Math Assignment 5

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Response of Second-Order Systems

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Mathematics for Chemistry: Exam Set 1

0.1 Problems to solve

=================~ NONHOMOGENEOUS LINEAR EQUATIONS. rn y" - y' - 6y = 0. lid y" + 2y' + 2y = 0, y(o) = 2, y'(0) = I

P441 Analytical Mechanics - I. RLC Circuits. c Alex R. Dzierba. In this note we discuss electrical oscillating circuits: undamped, damped and driven.

The particular integral :

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 266, Midterm Exam 1

ENGI 4430 PDEs - d Alembert Solutions Page 11.01

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Math 222 Spring 2013 Exam 3 Review Problem Answers

NORMAL MODES, WAVE MOTION AND THE WAVE EQUATION. Professor G.G.Ross. Oxford University Hilary Term 2009

2. Higher-order Linear ODE s

Second-Order Linear ODEs

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

4. Higher Order Linear DEs

for any C, including C = 0, because y = 0 is also a solution: dy

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Higher-order ordinary differential equations

Diff. Eq. App.( ) Midterm 1 Solutions

x

Linear Second Order ODEs

MATH 2250 Final Exam Solutions

Mathematics for Chemistry: Exam Set 1

Damped Harmonic Oscillator

3.3. SYSTEMS OF ODES 1. y 0 " 2y" y 0 + 2y = x1. x2 x3. x = y(t) = c 1 e t + c 2 e t + c 3 e 2t. _x = A x + f; x(0) = x 0.

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

LECTURE 12. Special Solutions of Laplace's Equation. 1. Separation of Variables with Respect to Cartesian Coordinates. Suppose.

Equations (3) and (6) form a complete solution as long as the set of functions fy n (x)g exist that satisfy the Properties One and Two given by equati

1 The pendulum equation

Introductory Differential Equations

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t.

MAT187H1F Lec0101 Burbulla

where A and B are constants of integration, v t = p g=k is the terminal velocity, g is the acceleration of gravity, and m is the mass of the projectil

ECE Circuit Theory. Final Examination. December 5, 2008

Final Exam Review. Review of Systems of ODE. Differential Equations Lia Vas. 1. Find all the equilibrium points of the following systems.

A: Brief Review of Ordinary Differential Equations

1 st ORDER O.D.E. EXAM QUESTIONS

Computer Problems for Methods of Solving Ordinary Differential Equations

Differential Equations

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

4.9 Free Mechanical Vibrations

XXIX Applications of Differential Equations

dt 2 roots r = 1 and r =,1, thus the solution is a linear combination of e t and e,t. conditions. We havey(0) = c 1 + c 2 =5=4 and dy (0) = c 1 + c

Simple Harmonic Motion

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

SPS Mathematical Methods. Date for Quiz No. 3: 2nd April 2015.

Ex. 1. Find the general solution for each of the following differential equations:

( ) f (k) = FT (R(x)) = R(k)

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 2

Chapter 2 Second Order Differential Equations

Electric Circuit Theory

ODE. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAP / 92

Lecture Notes on Partial Dierential Equations (PDE)/ MaSc 221+MaSc 225

5 Linear Dierential Equations

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

8. Introduction and Chapter Objectives

Review Problems for Exam 2

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

ECE2262 Electric Circuit

c 1 = y 0, c 2 = 1 2 y 1. Therefore the solution to the general initial-value problem is y(t) = y 0 cos(2t)+y sin(2t).

Solutions to Math 53 Math 53 Practice Final

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Basic Theory of Differential Equations

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

MODULE I. Transient Response:

MAS212 Assignment #2: The damped driven pendulum

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Wave Phenomena Physics 15c

3. Identify and find the general solution of each of the following first order differential equations.

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Source-Free RC Circuit

MAT 22B - Lecture Notes

Lecture two. January 17, 2019

Chapter 5 Oscillatory Motion

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Transcription:

The following integral may be useful: Z dx a + bx =. Linear Independence and Linearity. Physics 4 Methods in Theoretical Physics Prof. Mike Ritzwoller May 4, 5 Final Exam p ab tan, xp ab a èaè è4 pts.è Consider two real functions y èxè and y èxè. State the mathematical condition that must be met for them to be linearly independent. For the functions to be considered to be linearly independent on some interval è; è, there must be some point x on the interval that the Wronskian is non-zero. That is W èy ;y è= y èxè yèxè y èxè yèxè 6=: èbè è4 pts.è Using this condition, determine if the two functions y èxè = e x and y èxè =xe x are linearly independent for all nite real values of x. W èe x ;xe x è= xe x e x e x + xe x = e x + xe x, xe x = e x 6=: è4è ex ècè è4 pts.è Consider a real-valued dierential operator Dëyë. State mathematically the condition that must be met for the operator to be determined to be linear. Dëc y + c y ë=c Dëy ë+c Dëy ë. èdè Using this condition, determine if the following dierential operators are linear: èiè è4 pts.è D ëyë =y + pèxèy + qèxèy, The one's linear. D ëc y + c y ë = èiiè è4 pts.è D ëyë =y +siny. This one's not linear. " è d dx + pèxè d dx + qèxè ëc y + c y ë = ëc y + c y ë + pèxèëc y + c y ë + qèxèëc y + c y ë è6è, = c y, + pèxèy + qèxèy + c y + pèxèy +èxèy è7è = c D ëy ë+c D ëy ë: è8è D ëc y + c y ë = " d dx +sin è ëc y + c y ë èè èè è3è è5è è9è = ëc y + c y ë +sinëc y + c y ë èè = c y + c y +sinèc y + c y è èè 6= c èy +siny è+c èy + sin y è èè = c D ëy ë+c D ëy ë: è3è

Thus D ëc y + c y ë 6= c D ëy ë+c D ëy ë. Note that expressions èè and èè are not equal because sinèc y + c y è 6= c sin y + c sin y. sin is a nonlinear function.. Potential Energy and Work. èaè è5 pts.è Consider the following potential function in D: Uèxè =x e,x, where x and é. Find the equilibrium points and show whether they are stable or unstable by examining the second-derivative conditions. èconsider only non-innite values of x.è du dx = xe,x è, xè =! x =;x= ;x= : è4è Ignoring innity, there are two equilibrium points; i.e., two points at which the force is zero. d U = e,x x, 4x + dx è5è x =! d U =é! stable dx è6è x =! d U dx =,e, é! unstable è7è èbè è5 pts.è Consider the following force eld: F =,kr where r = ix + jy + kz and k is a constant. Determine if F is conservative. If it is, nd the potential Uèrè such that F =,ruèrè. @z rf =,krèix + jy + kzè =,k i @y, @y @x + j @z @z, @z @y + k @x @x, @x =;è8è @y so F is conservative. Note that up to a constant, the potential at point r = èx; y; zè is equal to the integral of,f dr from the origin to that point: Uèrè =, = k = k Z r=èx;y;zè Z r=èx;y;zè Z x F dr = k Z r=èx;y;zè èix + jy + kzè èidx + jdy + kdzè è9è èxdx + ydy + zdzè èè Z z zdz = k x + y + z ; èè Z y xdx + k ydy + k where the integrals in equation èè are performed along the straight lines linking the limits on the integral. So, for the rst integral è = dy = dz = y = zè, for the second integral è = dx = dz = zè, aand for the third integral è = dx = dyè. 3. Force in D, no Resistance. è pts.è The force acting on a particle of mass m is given by F = kvx where v is velocity andk is a positive constant. The particle passes through the origin with speed v at time t =. Find xètè. Z x ma = m dv Z dv v = mv dt dx = kvx! dv = k xdx v m dx = v = v + k Z t Z x dt m x! dt èè dx = v + k m x èè è3è

tèxè = xètè = s s è! m k v k tan, x mv r mv tan @ sv k t A k m è4è è5è 4. First order ODE, application to an RL-circuit. Consider an RL-circuit, a circuit containing a resistor of resistance R and an inductor of inductance L. Kircho's law for the current Iètè in this electrical circuit is: where Eètè is the driving voltage. L di + RI = Eètè dt è6è èaè è5 pts.è Solve equation è6è for Iètè ifeètè =E = constant. Write the ODE in standard form for a st order linear ODE, and then follow standard procedure to solve: di R dt + I = E è7è L L P ètè = R=L è8è Qètè = E =L è9è = e R e Rt=L Iètè = E L P ètèdt = e Rt=L Iètè = E R + ce,rt=l Z e Rt=L dt + c = E R ert=l + c I = Ièè! c = I, E R Iètè = E R + I, E e,rt=l : R èbè è5 pts.è Find the limiting value of Iètè ast!. As t!, Iètè! E =R. 5. Homogeneous nd order ODE with Constant Coecients, Application to the Damped Pendulum Equation. Consider the small amplitude unforced pendulum equation with friction: d dt + d dt +! =; where is the angle the bob makes with the vertical,! = p g=` is the frequency of the undamped oscillator, ` is the length of the pendulum, and is a frictional coecient. èaè è pts.è Write down the auxiliary equation for equation è35è and determine the condition for underdamping of this oscillator. The auxiliary equation is s + s +! =, whose roots are: s ; =,, q q, 4! = i!, =4=, i! : è36è Underdamping means that the square-root is imaginary. That is, 4! é,or! é=. èbè è pts.è Find the frequency of the underdamped oscillator,!. 3 è3è è3è è3è è33è è34è è35è

q! =!, =4. ècè è pts.è Derive the general solution to equation è35è for the underdamped oscillator in the following form: ètè =e,t= èc cos! t + c sin! tè: è37è where! is the frequency of the underdamped oscillator. Given the roots of the auxiliary equation, s ;,wehave as a general solution: ètè = Ae s t + A e s t è38è = e,t= hae i! t + A e,i! t i è39è = e hèa i,t= + ibèe i! t +èa, ibèe,i! t è4è " è = e,t= a ei! t + e,i! t +ib ei! t, e,i! t è4è i = e,t= èc cos! t + c sin! tè; è4è where c is twice the real part of A and c is i times the imaginary part of A. èdè è pts.è Assume that the pendulum is initially displaced from rest and is released such thatèè = and _ èè =. Apply these initial conditions to the solution given by è37è. From equation è37è: = èè = c! ètè =e,t= è cos! t + c sin! tè: è43è To apply the second initial condition, _ èè =, we take the time derivative of the previous equation: _ètè =! e,t= è, sin! t + c cos! tè, e,t= è cos! t + c sin! tè è44è = _ èè =! c,! c =! ètè = e,t=! cos! t +!! sin! t! è45è : è46è 6. Inhomogeneous nd order ODE with Constant Coecients, Application to the Forced Damped Pendulum Equation. è pts.è Now consider driving the pendulum in è5 sinusoidally: d dt + d dt +! = sin t: è47è Show that if the oscillator is underdamped the general solution can be written as: ètè =e,t= èc cos! t + c sin! tè, cost +è,! èsint è,! è + : è48è Consider the analogue problem: d dt + d dt +! = eit : è49è 4

The imaginary part of the particular solution to this problem will be the solution to the problem with sin t forcing. Substituting the trial solution, x p ètè =Ae it :, + i +! Ae t = e it ; è5è A = è!, è+i è5è which is the particular solution we seek. = è!, è, i è!, è + è5è h Im Ae iti = Im ëa ècos!t + i sin!tèë è53è = è!, è sin t, cos t è!, è + è54è =, cos t +è,! èsint è,! è + 7. Application of Initial Conditions for the -D String. Consider a string of length L clamped at both ends èx = ;x = Lè satisfying the following PDE for displacement yèx; tè: è55è @ y @t = c @ y @x The solution to this equation that satises the boundary conditions is: yèx; tè = X n= sin k n x èa n cos! n t + B n sin! n tè è56è è57è èaè è5 pts.è What are the allowed values of the discrete wavenumbers k n and frequencies! n? k n = n=l;! n = ck n = nc=l. èbè è5 pts.è Consider starting the string to oscillate by displacing it from rest with the following pattern yèx; è = y sinèx=lè. Apply these initial conditions and write down the solution for the oscillations of this string. The string is excited with a pattern of displacement the same as its second mode èn = è. Thus, only the second mode will be excited with A = y and all other A n = when n 6=. Because the string starts from rest, B n =. Thus, the solution is yèx; tè =y sin k n x cos! n t = y sin x L cos ct 8. Separation of Variables for a PDE, in -D: Application to Laplace's Equation. è pts.è Consider Laplace's equation in -D Cartesian coordinates: L è58è r uèx; yè = @ u @x + @ u =; è59è @y where x a and y b. Apply separation of variables, uèx; yè = XèxèY èyè, introduce a separation constant, and derive the following two ODEs: X èxè+ Xèxè = ; è6è Y èyè, Y èyè = : è6è 5

where the primes indicate a derivative with respect to the independent variable. Substituting uèx; yè = XèxèY èyè into equation è59è, we get: YX + XY = è6è X X + Y Y = è63è X =,Y X Y =, è64è where X = dx=dx and Y = dy=dy, after the rst equation we divided both sides by XY, and we introduced the separation constant in the nal equation as usual. From the nal equation, the two ODEs we seek emerge. 6