LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY

Similar documents
OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

Applications of the periodic unfolding method to multi-scale problems

A diffusion equation for composite materials

TWO-SCALE CONVERGENCE ON PERIODIC SURFACES AND APPLICATIONS

Stokes-Darcy coupling for periodically curved interfaces

TRANSPORT IN POROUS MEDIA

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1.

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

Optimal control and homogenization in a mixture of fluids separated by a rapidly oscillating interface

ON THE ASYMPTOTIC BEHAVIOR OF ELLIPTIC PROBLEMS IN PERIODICALLY PERFORATED DOMAINS WITH MIXED-TYPE BOUNDARY CONDITIONS

Method of Homogenization for the Study of the Propagation of Electromagnetic Waves in a Composite Part 2: Homogenization

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain

Asymptotic Analysis of the Approximate Control for Parabolic Equations with Periodic Interface

A BRIEF INTRODUCTION TO HOMOGENIZATION AND MISCELLANEOUS APPLICATIONS

The Navier-Stokes problem in velocity-pressure formulation :convergence and Optimal Control

HOMEOMORPHISMS OF BOUNDED VARIATION

Glowinski Pironneau method for the 3D ω-ψ equations

Mixed exterior Laplace s problem

hal , version 6-26 Dec 2012

Laplace s Equation. Chapter Mean Value Formulas

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

Lecture 2: A Strange Term Coming From Nowhere

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

Modeling moisture transport by periodic homogenization in unsaturated porous media

Sobolev Spaces. Chapter 10

IN this paper, we study the corrector of the homogenization

THE STOKES SYSTEM R.E. SHOWALTER

Uniform estimates for Stokes equations in domains with small holes and applications in homogenization problems

Yongdeok Kim and Seki Kim

A Product Property of Sobolev Spaces with Application to Elliptic Estimates

On the uniform Poincaré inequality

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

Uniform estimates for Stokes equations in domains with small holes and applications in homogenization problems

Mathematical analysis of the stationary Navier-Stokes equations

Some lecture notes for Math 6050E: PDEs, Fall 2016

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

Spectrum and Exact Controllability of a Hybrid System of Elasticity.

The Navier-Stokes Equations with Time Delay. Werner Varnhorn. Faculty of Mathematics University of Kassel, Germany

Homogenization and Multiscale Modeling

Frequency functions, monotonicity formulas, and the thin obstacle problem

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Fall 2011 Professor: Jared Speck

Γ-convergence of functionals on divergence-free fields

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

Existence of minimizers for the pure displacement problem in nonlinear elasticity

Boundary layers for the Navier-Stokes equations : asymptotic analysis.

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN

Applications of the unfolding method to some open problems in homogenization

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

Finite Volume Discretization of a Class of Parabolic Equations with Discontinuous and Oscillating Coefficients

Effective slip law for general viscous flows over oscillating surface

NOTE ON THE NODAL LINE OF THE P-LAPLACIAN. 1. Introduction In this paper we consider the nonlinear elliptic boundary-value problem

ESTIMATES OF LOWER ORDER DERIVATIVES OF VISCOUS FLUID FLOW PAST A ROTATING OBSTACLE

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space

Journal of Inequalities in Pure and Applied Mathematics

SYMMETRY IN REARRANGEMENT OPTIMIZATION PROBLEMS

Problem of Second grade fluids in convex polyhedrons

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

Anomalous transport of particles in Plasma physics

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

Free energy estimates for the two-dimensional Keller-Segel model

ON SOME ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS

Homogenization of stationary Navier-Stokes equations in domains with tiny holes

On the Navier-Stokes Equations with Variable Viscousity in a Noncylindrical Domains

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

MULTI-VALUED BOUNDARY VALUE PROBLEMS INVOLVING LERAY-LIONS OPERATORS AND DISCONTINUOUS NONLINEARITIES

Homogenization and error estimates of free boundary velocities in periodic media

New estimates for the div-curl-grad operators and elliptic problems with L1-data in the half-space

ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS. Chun Liu and Jie Shen

PERTURBATION THEORY FOR NONLINEAR DIRICHLET PROBLEMS

On a Suitable Weak Solution of the Navier Stokes Equation with the Generalized Impermeability Boundary Conditions

Bilinear spatial control of the velocity term in a Kirchhoff plate equation

Homogenization limit for electrical conduction in biological tissues in the radio-frequency range

Applications of Mathematics

u xx + u yy = 0. (5.1)

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

ON SINGULAR PERTURBATION OF THE STOKES PROBLEM

Equilibrium analysis for a mass-conserving model in presence of cavitation

MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW

Second-gradient theory : application to Cahn-Hilliard fluids

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

Propagation d interfaces avec termes non locaux

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

Optimal Control Approaches for Some Geometric Optimization Problems

Non-trivial pinning threshold for an evolution equation involving long range interactions

Durham Research Online

arxiv: v1 [math.ap] 28 Mar 2014

NAVIER-STOKES EQUATIONS IN THIN 3D DOMAINS WITH NAVIER BOUNDARY CONDITIONS

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

Integral Representation Formula, Boundary Integral Operators and Calderón projection

SIGMA-CONVERGENCE OF STATIONARY NAVIER-STOKES TYPE EQUATIONS

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM

Self-inductance coefficient for toroidal thin conductors

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT

Existence of Weak Solutions to a Class of Non-Newtonian Flows

New Discretizations of Turbulent Flow Problems

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen

Transcription:

PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 2 1999 LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY R. Bunoiu and J. Saint Jean Paulin Abstract: We study the classical steady Stokes equations with homogeneous Dirichlet boundary conditions. We work in a 3-D domain which contains solid obstacles, two-periodically distributed with period ε (respectively ε 2 ), where ε is a small parameter. Our aim is to study the asymptotic behaviour, as ε 0. We use the 3-scale convergence for getting the 3-scale limit problem. The problem obtained is a three-pressures system. Résumé: On étudie le problème de Stokes stationnaire classique, avec des conditions de Dirichlet homogènes au bord. Le problème est posé dans un domaine qui contient des inclusions solides réparties périodiquement, avec périodicité de l ordre d un petit paramètre ε et de l ordre de ε 2. Pour le passsage à la limite en ε, on utilise la méthode de convergence 3-échelle. Le problème limite 3-échelle obtenu est un problème à trois pressions. Introduction We study here the homogenization of the Stokes steady flow in double periodic media. We will apply the multi-scale convergence method, introduced by G. Allaire, M. Briane [1]. This method generalizes the two-scale convergence method introduced by G. Nguetseng [10] for the simply periodic domains. The problem presented here was first treated by J.-L. Lions [8]. The method used for getting the limit problem was the formal expansion of the velocity and of the pressure. The results we present here justify the expansions. In 1 we give the mathematical model of the problem. We define the domain which has two parts: the fluid part and the solid part. The solid part is made Received: July 15, 1997; Revised: November 14, 1997.

222 R. BUNOIU and J. SAINT JEAN PAULIN by solid obstacles two-periodically distributed, with period ε (respectively ε 2 ), where ε is a small parameter. In 2 we give a priori estimates and convergence results for the velocity. Next we recall and prove some results related on the three-scale convergence. In 3 we construct the extension of the pressure to the whole of and we give a convergence result. The difficulty is here the construction of an extension operator for the pressure to the solid part of the domain. We already know some methods for constructing such an extension (cf. L. Tartar [12], R. Lipton, M. Avellaneda [9], C. Conca [2], I.-A. Ene, J. Saint Jean Paulin [5]). The last two methods are applied for a problem with Neumann type boundary conditions at the fluid-solid interface. The extension presented here is a generalization of the method presented in L. Tartar [12]. In 4 we pass to the limit as ε 0 in the initial problem. We obtain the 3-scale limit system, which represents a three-pressures problem. The Stokes problem in double periodic media was already studied by T. Lévy [7] and P. Donato, J. Saint Jean Paulin [3], but the domain presented here is a different one. The solid obstacles periodically distributed with period ε in the domain presented here are replaced in [7] and [3] by the fluid, which corresponds to a porous fissured rock. An analogous result for the Poisson equation in porous fissured rocks was studied by P. Donato, J. Saint Jean Paulin [4]. 1 Positionning of the problem Let be a bounded open domain of boundary in R N, N 2. Let us consider two sets Y = N i=1 ]0, 1[ and Z = N i=1 ]0, 1[ and two closed subsets Y s Y, Z s Z, with non-empty interior, contained in Y (respectively Z). We define: Y = Y \ Y s, Z = Z \ Z s. Let ε be a small positive parameter. Let us suppose that there exists an ε such that the domain Y is exactly covered by a finite number of cells εz. Moreover, let us suppose that Y s is exactly covered by a finite number of cells εz. This last hypothesis implies some restrictions for the geometry of Y s (see an example in Figure 1.1). We deduce that there is no intersection between the solid obstacles Y s and εz s in the cell Y, as we can see in Figure 1.3. If we consider all the small parameters ε, the above assumptions are still true. 2n

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 223 Fig. 1.1 Domain Y. Fig. 1.2 Domain Z. We multiply the new cell (Figure 1.3) by ε and we repeat it in the domain. We assume (for simplicity), that is exactly covered by a finite number of cells εy. We define ε by taking out of the domains εy s and ε 2 Z s. Let us notice that there is no intersection between the solid obstacles εy s and ε 2 Z s in ε, because there is no intersection between the solid ostacles Y s and εz s in the cell Y. The domain ε (which corresponds to the fluid) is connected, but the union of solid obstacles is not connected. Fig. 1.1 Domain Y with obstacle Y s and obstacles εz s. Let χ Y and χ Z be the characteristic functions of the domains Y and Z, defined by: { 1 in Y, { 1 in Z, χ Y (y) = 0 in Y \ Y, χ Z (z) = 0 in Z \ Z. We extend the characteristic functions χ Y (respectively χ Z ) by periodicity, with period 1 in y i and in z i, for i = 1,..., N. The domain ε, defined as above is described by: { ( ) ( ) } x x (1.1) ε = x x, χ Y χ Z ε ε 2 = 1.

224 R. BUNOIU and J. SAINT JEAN PAULIN The domain ε presents a double periodicity, with small solid obstacles of order ε and with very small obstacles of order ε 2. This domain modelizes a rigid porous medium with double periodicity. We define the boundary of ε, denoted by ε and composed by three parts: the boundary of obstacles εy s, the boundary of obstacles ε 2 Z s, the boundary of. Fig. 1.4 A porous medium with double periodicity. In ε defined as above, we consider the following Stokes problem: ε 2 u ε + p ε = f in ε, (1.2) div u ε = 0 in ε, u ε = 0 on ε. The first relation in (1.2) represents the classical steady Stokes equation. The term ε 2 represents the order of fluid s viscosity. This assumption is not essential for a linear problem, because we can always rescale. The second relation is the incompressibility condition of the fluid. On the boundary of ε we consider Dirichlet homogeneous conditions. We recall that for a domain D we define the spaces L 2 (D) and H 1 0 (D) by: L 2 (D) = (L 2 (D)) N, H 1 0(D) = { ψ L 2 (D), } ψ L 2 (D), ψ =0 on D. x i

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 225 The exterior body forces are denoted by f. The function f = (f i ) i=1,...,n belongs to L 2 () and the right hand side of relation (1.2) represents the restriction of f to ε. The existence and the uniqueness of a solution (u ε, p ε ) H 1 0( ε ) L 2 ()/R for (1.2) is classical (see R. Temam [13]). 2 A priori estimates and convergence results for the velocity Our aim is to study the asymptotic behaviour, as ε 0, of the solution of problem (1.2). For passing to the limit we need extensions of velocity and pressure to the whole of. We first give a Poincaré s type lemma, adapted at the domain presented in 1: Lemma 2.1. For any function φ H 1 0 ( ε), we have: (2.1) φ L 2 ( ε) c ε 2 φ [L 2 ( ε)] N. In the following, c denotes a constant independent of ε. Let ũ ε be the extension of u ε by zero to the whole of. For the function ũ ε we can easily prove the following a priori estimates: (2.2) (2.3) Proposition 2.2. If u ε is solution of (1.2), then we have: ũ ε [L 2 ( ε)] N c, ũ ε L 2 ( ε) c ε 2. Before establishing convergence of the velocity, we first recall and prove some general results adapted below to our case. Let us denote by C p (Y Z) the space of C functions, Y -periodic and Z-periodic. We have the following lemma: Lemma 2.3 (G. Allaire, M. Briane [1]). Let v ε be a sequence of bounded functions in L 2 (). Then there exists a subsequence still denoted v ε and a function v L 2 ( Y Z) such that: (2.4) lim ε 0 v ε (x) ϕ (x, x ε, x ) ε 2 dx = v(x, y, z) ϕ(x, y, z) dx dy dz, Y Z

226 R. BUNOIU and J. SAINT JEAN PAULIN for every function ϕ(x, y, z) L 2 (, Cp (Y Z)). We say that v ε 3-scale converges to v. Moreover, v ε v 0 = v dy dz weakly in L 2 (). Y Z As in G. Allaire, M. Briane [1], we prove the result: Proposition 2.4. Let v ε be a bounded sequence in L 2 () which 3-scale converges to v and such that (2.5) div v ε = 0 in. Then the limit v satisfies the following relations: (2.6) div x v dz dy = 0, (2.7) (2.8) div y Y Z Z div z v = 0. v dz = 0, Proof: Let ϕ be a function in D(). We multiply relation (2.5) by ϕ and integrating by parts, we get: 0 = lim (div v ε (x)) ϕ(x) dx = lim v ε ϕ dx. But ε 0 ε 0 Y Z ε 0 lim v ε ϕ dx = v(x, y, z) ϕ(x) dx dy dz since v ε 3-scale converges to v. We deduce ( ) div x v dz dy ϕ(x) dx = 0, ϕ D(), Y Z which implies (2.6). Multiplying (2.5) by particular functions ϕ D(, C p (Y )) and ϕ D(, C p (Y Z)), we obtain the relations (2.7) (2.8). Remark 2.5. For a set D, let H 1 p(d) be the space of functions H 1 loc (RN ) which are D-periodic.

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 227 Choosing particular test functions ϕ H 1 p(y ) (respectively ϕ H 1 p(z)) in relation (2.7) (respectively (2.8)), we obtain the following periodicity condition: [ ] v(x, y, z, ) dz ν Y takes opposite values on opposite faces of Y, Z v ν Z takes opposite values on opposite faces of Z, where ν Y (resp. ν Z ) represents the unit outward normal to Y (resp. Z). For the velocity s extension ũ ε we prove the following results: Proposition 2.6. Let ũ ε be defined as before. Then there exists u L 2 ( Y Z) such that, up to a subsequence, we have: (2.9) (2.10) (2.11) (2.12) ε 2 ũ ε u 3-scale, u(x, y, z) = 0 in Y s Z s, ε 2 ũ ε u 0 = u dz dy weakly in L 2 (), Y Z ũ ε z u 3-scale. Proof: Relation (2.9) is a direct consequence of Lemma 2.3 applied for v = ε 2 ũ ε. This is possible according to estimate (2.3). For proving (2.10) we note that, for v ε = ε 2 ũ ε, relation (2.4) becomes: lim ε 2 ũ ε (x) ϕ (x, x ε, x ) ε 2 dx = u(x, y, z) ϕ(x, y, z) dz dy dx. ε 0 Y Z We choose a test function ϕ such that ϕ = 0 in Y Z. Using ũ ε = 0 in \ ε, we deduce: 0 = u(x, y, z) ϕ(x, y, z) dz dy dx, Z s Y s wich implies (2.10). Relation (2.11) is a direct consequence of Lemma 2.3 and of relation (2.10). For proving relation (2.12) we note that relation (2.2) and Lemma 2.3 imply the existence of a function ξ [L 2 ( Y Z)] N such that: lim ũ ε ϕ (x, x ε, x ) ε 2 dx = ξ(x, y, z, ) ϕ(x, y, z) dz dy dx. ε 0 Y Z

228 R. BUNOIU and J. SAINT JEAN PAULIN Integrating the left hand term by parts, we get: ũ ε ϕ (x, x ε, x ) ε 2 dx = ũ ε div ϕ (x, x ε, x ) ε 2 dx Y Z = = ũ (div ε x ϕ + 1 ε div y ϕ + 1 ) ε 2 div z ϕ dx ε 2( ) ε 2 ũ ε div x ϕ + ε ũ ε div y ϕ + ũ ε div z ϕ dx. Passing to the limit in ε, we derive: u(x, y, z) div z ϕ(x, y, z) dz dy dx = ξ(x, y, z) ϕ(x, y, z) dz dy dx. Y Z Integrating the left hand side of the previous relation by parts we deduce: [ ] ξ(x, y, z) z u(x, y, z) ϕ(x, y, z) dz dy dx = 0, ϕ D(, Cp (Y Z)), Y Z consequently ξ(x, y, z) = z u(x, y, z), which ends the proof. Proposition 2.7. we have: (2.13) div x Let u be the function defined by Proposition 2.6. Then u dz dy = 0, Y Z (2.14) div y u dz = 0, Z (2.15) div z u = 0, [ ] (2.16) u dy dz ν = 0 on, Y Z (2.17) u ν Z takes opposite values on opposite faces of Z, [ ] (2.18) u dz ν Y takes opposite values on opposite faces of Y, Z (2.19) u ν Z = 0 on Z s, [ ] (2.20) u dz ν Y = 0 on Y s. Z

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 229 Proof: The relations (2.13) (2.15) are a consequence of Proposition 2.4 applied to the sequence ε 2 ũ ε (which 3-scale converges to u) and of relation (2.10). In order to obtain relation (2.16), we use the linearity and the continuity of the normal trace application from { } H(div, ) = ψ L 2 () div ψ L 2 () into H 1 2 ( ), then we use the relations (2.10) (2.11). The relations (2.17) (2.18) are a consequence of Remark 2.5 and of relation (2.10). Multiplying (2.15) by a test function ψ H 1 p(z) and using (2.17) we obtain relation (2.19). We get relation (2.20) by multiplying (2.14) by ψ H 1 p(y ) and using (2.18). 3 Extension of the pressure and convergence result We now construct a restriction operator S ε 2 from H 1 0 () into H1 0 ( ε). Using this operator we will define an extension for the pressure to the whole of. Let Yf ε be the domain defined by: We define the space H 1 s(y ε f ) by: ( ( ) ) Yf ε = Y \ Y s εzs. { H 1 s(yf ε ) = φ H 1 (Yf ε ) φ = 0 on Y s and on ( (εzs )) }. We define the space H 1 s(y ) by: } H 1 s(y ) = {φ H 1 (Y ) φ = 0 on Y s. To prove the claimed result, we first construct a restriction operator R from the space H 1 (Y ) into the space H 1 s(y ) and next we construct the operator W ε from the space H 1 s(y ) into the space H 1 s(ys ε ). Using operators R and W ε, we construct the operator S ε : H 1 (Y ) H 1 (Yf ε ) and next we define S ε 2 by applying S ε to each period εy of.

230 R. BUNOIU and J. SAINT JEAN PAULIN in three steps, corresponding to the three following lem- So we construct S ε 2 mas. Lemma 3.1. There exists a restriction operator R: H 1 (Y ) H 1 s(y ) such that for v H 1 (Y ) we have: (3.1) Rv = v if v = 0 in Y s, (3.2) div Rv = 0 in Y if div v = 0 in Y, (3.3) Rv H 1 (Y ) c v H 1 (Y ). Proof: Let us consider a smooth surface γ strictly contained in Y, enclosing Y S. We denote by Ỹs the domain between γ and Y s. Fig. 3.1 Domain Y. As in Lemma 3 of L. Tartar [12], we have the following result: If v H 1 (Y ), there exist w H 1 (Ỹs), q L 2 (Ỹs)/R such that: w = v + q in Ỹs, div w = div v + 1 div v dy in Ỹs Ỹs, Y s w γ = v γ, w Ys = 0, where Ỹs represents the measure of Y s. independent of v such that: Moreover, there exists a constant c w H 1 (Ỹ s) c v H 1 (Y ).

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 231 Let us notice that: Y = Y Y s = (Y \ Ỹs) Ỹs Y s. We define the operator R by: v(y) if y Y \ Ỹs, Rv(y) = w(y) if y Ỹs, 0 if y Y s. This definition and properties satisfied by the function v imply the relations (3.1) (3.3). Lemma 3.2. There exists a restriction operator such that for Rv H 1 s(y ) we have: W ε : H 1 s(y ) H 1 s(y ε f ) (3.4) W ε (Rv) = Rv if Rv = 0 in (εz s ), (3.5) div W ε (Rv) = 0 in Y ε f if div Rv = 0 in Y, (3.6) ε 2 W ε (Rv) 2 [L 2 (Y ε f )]N + W ε (Rv) 2 L 2 (Y ε f ) c v 2 H 1 (Y ). Proof: Let H 1 s(z ) be the space defined by: } H 1 s(z ) = {φ H 1 (Z ) φ = 0 in Z s. In the fixed cell Z, let us consider a smooth surface γ strictly contained in Z. We denote by Z s the domain between γ and Z s. The domain Z s is independent of the parameter ε. Fig. 3.2 Domain Z.

232 R. BUNOIU and J. SAINT JEAN PAULIN As in lemma 3 of L. Tartar [12], we have the following result. If ū H 1 (Z), there exist w H 1 ( Z s ), q L 2 ( Z s )/R such that: w = ū + q in Z s, div w = div ū + 1 div ū dy in Z s, Z s Y s w γ = ũ γ, w Zs = 0. Moreover, there exists a constant c independent of ū such that: w H 1 ( Zs) c ū H 1 (Z). Let us notice that Z = Z Z s = (Z \ Z s ) Z s Z s. For every function ū H 1 (Z) we construct an application W : H 1 (Z) H 1 s(z ) defined by: ū(z) if z Z \ Z s, (3.7) W (ū)(z) = w(z) if z Z s, 0 if z Z s, and satisfying: W (ū) = ū if ū = 0 in Z s, div W (ū) = 0 if div ū = 0, (3.8) W (ū) H 1 (Z) c ū H 1 (Z). Fig. 3.3 Cell Y with solid obstacle Y s and obstacles εz s.

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 233 Next we apply W to every period εz of Y \ Y s and we obtain a function W ε, W ε : H 1 s(y ) H 1 s(y ε f ), satisfying the relations (3.4) and (3.5). We apply W ε to Rv H 1 s(y ) and using relation (3.8) we get: ε 2 W ε (Rv) 2 [L 2 (Y ε f )]N + W ε (Rv) 2 L 2 (Y ε f ) ε2 Rv 2 [L 2 (Y )] N + Rv 2 L 2 (Y ). Since Rv H 1 (Y ) c v H 1 (Y ), we deduce: which is exactly (3.6). ε 2 W (Rv) 2 [L 2 (Y ε f )]N + W (Rv) 2 L 2 (Y ε f ) c v 2 H 1 (Y ), Lemma 3.3. There exists a restriction operator S ε 2 : H 1 0() H 1 0( ε ) such that: (3.9) S ε 2(v) = v in ε, v H 1 0( ε ), (3.10) div S ε 2v = 0 in ε if div v = 0 in, (3.11) S ε 2v [L 2 ( ε)] N c ( 1 ε 2 v L 2 () + 1 ε v [L 2 ()] N ), ) (3.12) S ε 2v L 2 ( ε) c ( v L 2 () + ε v [L 2 ()] N. Proof: Let S ε : H 1 (Y ) H 1 (Yf ε ) be the application defined by: S ε v(y) = { Wε (Rv)(y) if y Y, 0 if y Y s. Using the construction of W ε we also have: { Wε (Rv)(y) if y Yf ε S ε v(y) =, 0 otherwise, and S ε satisfies (3.9) (3.10). Due to (3.6), the application S ε satisfies: (3.13) ε 2 S ε v 2 [L 2 (Y ε f )]N + S ε v 2 L 2 (Y ε f ) c v 2 H 1 (Y ).

234 R. BUNOIU and J. SAINT JEAN PAULIN We define S ε 2 by applying S ε to each period εy. The relation (3.13) then implies: ( ) ε 4 S ε 2v 2 [L 2 ( ε)] + S N ε 2v 2 L 2 ( c ε) v 2 L 2 () + ε2 v 2 [L 2 ()], N and we deduce relations (3.11) (3.12). Let v be a functin of H 1 0 (). As pε H 1 ( ε ), we define the application F ε by: (3.14) F ε, v = p ε, S ε 2v ε, where S ε 2 is the operator defined by Lemma 3.3. The following proposition gives us the extension of the pressure p ε to the whole. Moreover, we establish a strong convergence result for this extension. Following the ideas of L. Tartar [12], we can prove: Proposition 3.4. Let p ε be as in (1.2). Then, for each ε there exists an extension P ε of p ε defined on such that: P ε = p ε in ε. Moreover, up to a subsequence, we have: (3.15) P ε p 0 strongly in L 2 ()/R. The function F ε and the pressure p ε are linked by: (3.16) F ε = P ε. 4 Passage to the limit and 3-scale limit problem We recall that as in I.-A. Ene [6] we have the following de Rham -type result: Lemma 4.1. Let w L 2 ( Y Z) be a function satisfying: (4.1) w(x, y, z) φ(x, y, z) dx dy dz = 0, Y Z for all function φ belonging to D(, Cp (Y Z)) such that: (4.2) div y φ(x, y, z) = 0, div z φ(x, y, z) = 0.

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 235 Then there exist two functions q 1 L 2 (, H 1 p(y )/R) and q 2 L 2 ( Y, H 1 p(z)/r) such that: (4.3) w(x, y, z) = y q 1 (x, y) + z q 2 (x, y, z). Let us recall that we denoted by u the 3-scale limit of ε 2 ũ ε (see relation (2.9)) and that p 0 (defined in relation (3.15)) represents the strong limit of the pressure s extension in L 2 (). Using Lemma 4.1 and 3-scale convergence results of 2 3, we prove the main result of this paper: Theorem 4.2. Let u and p 0 be as before. Then there exist p 1 L 2 (, H 1 p(y )/R) and p 2 L 2 ( Y, H 1 p(z )/R) such that: (4.4) z u + x p 0 + y p 1 + z p 2 = f in Y Z. Proof: We recall the first equation of (1.2): ε 2 u ε + p ε = f in ε. We multiply it by a function ϕ D(, C p (Y Z)) such that div y ϕ(x, y, z) = 0 and div z ϕ(x, y, z) = 0. Integrating the first term of the left hand side by parts we get: ε 2 ε u ε (x) ϕ (x, x ε, x ) ε 2 dx + ε p ε (x) ϕ (x, x ε, x ) ε 2 dx = = ε f(x) ϕ (x, x ε, x ) ε 2 dx. Using the definition of the extension ũ ε, relations (3.14) and (3.16) and making the additional assumption ϕ(x, y, z)=0 in Y s Z s (i.e. ϕ(x, x ε, x ) H ε 1 2 0 ( ε)) we obtain: (4.5) Y Z ε 2 ũ ε (x) ϕ (x, x ε, x ) ε 2 dx Passage to the 3-scale limit in (4.5) implies: z u(x, y, z) z ϕ(x, y, z) dx dy dz = Y P ε (x) div x ϕ (x, x ε, x ) ε 2 dx = Y = Z f(x) ϕ(x, y, z) dx dy dz. f(x) ϕ (x, x ε, x ) ε 2 dx. Z p 0 (x) div x ϕ(x, y, z) dx dy dz =

236 R. BUNOIU and J. SAINT JEAN PAULIN Hence, Y Z [ ] z u(x, y, z) + x p 0 (x) f(x) ϕ(x, y, z) dx dy dz = 0. Using the particular form of ϕ, Lemma 4.1 then implies relation (4.4). Conclusions Theorem 4.2 and the results of 2 imply the following three-scale system (4.6). z u + x p 0 + y p 1 + z p 2 = f in Y Z, div x u dz dy = 0 in, Y Z div y u dz = 0 in Y, Z div z u = 0 in Y Z, [ ] (4.6) u dy dz ν = 0 on, Y Z u ν Z takes opposite values on opposite faces of Z, [ ] u dz ν Y takes opposite values on opposite faces of Y, Z u ν Z = 0 on Z s, [ ] u dz ν Y = 0 on Y s. Z Remark 4.3. System (4.6) is obtained in J.-L. Lions [8, Chapter 2, Section 3], with the method of asymptotic expansion on the velocity and of the pressure. The first equation is a three-pressure equation. The three pressures p 0, p 1, p 2 are the three first terms in the asymptotic expansion of the pressure p ε. We recall here that, as in J.-L. Lions [8], we may write the function u in two different ways: (i) The function u satisfies the homogenized equation (a Darcy-law type): ( ) u(x, y, z) = φ(y, z) f(x) x p 0 (x), where the function φ is solution of a local problem in Y Z.

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY 237 1 With the notation M(φ) = Y Z Y Z φ(y, z) dy dz, the function p 0 is solution of the following Neumann problem: ( ) M(φ) (f x p 0 ), q = 0, q H 1 (). (ii) We can also express u by a relation depending of both pressures p 0 and p 1. We have: ( ) u(x, y, z) = φ 1 (z) f x p 0 (x) y p 1 (x, y), where φ 1 is solution of a local problem in Z and the pressure p 1 (x, y) is solution of the following Neumann problem: ( ( ) M(φ 1 ) f x p 0 (x) y p 1 (x, y) ), y q 1 = 0, Y q 1 H 1 (Y ), q 1 Y -periodic. Remark 4.4. The results presented here may be generalized. Let r ε be a parameter depending on ε such that: r ε ε 0 if ε 0. In the domain we replace the very small obstacles of order ε 2 by obstacles of order r ε, periodically distributed with periodicity r ε. We consider the problem: r ε u ε + p ε = f in ε, (4.7) div u ε = 0 in ε, u ε = 0 on ε. The case already treated corresponds to r ε = ε 2. For the extension of the velocity, solution of (4.7), we can prove the convergences: rε 1 ũ ε u 3-scale, rε 1 ũ ε u 0 = u dz dy weakly in L 2 (), Z Y u ε z u 3-scale. For the strong convergence of pressure s extension we have Proposition 3.4, which still holds. We can prove that velocity and pressure limits satisfy the system (4.6).

238 R. BUNOIU and J. SAINT JEAN PAULIN REFERENCES [1] Allaire, G. and Briane, M. Multi-scale convergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh, 126A (1996), 297 342. [2] Conca, C. On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures et Appliquées, 64 (1985), 31 75. [3] Donato, P. and Saint Jean Paulin, J. Stokes flow in a porous medium with double periodicity, Progress in Partial Differential Equations: the Metz surveys (M. Chipot, J. Saint Jean Paulin and I. Shafrir, Eds.), Pitman, p. 116 129, 1994. [4] Donato, P. and Saint Jean Paulin, J. Homogenization of the Poisson equation in a porous medium with double periodicity, Japan J. of Ind. and Appl. Mathematics, 10(2) (1993), 333 349. [5] Ene, I.-A. and Saint Jean Paulin, J. Homogenization and two-scale convergence for a Stokes or Navier Stokes flow in an elastic thin porous medium, M3AS, 6(7) (1996), 941 955. [6] Ene, I.-A. Etude de Quelques Problèmes D écoulement dans les Milieux Poreux, Thèse de l Université de Metz, Juin 1995. [7] Levy, T. Filtration in a porous fissured rock: influence of the fissures connexity, Eur. J. Mech. B/Fluids, 9(4) (1990), 309 327. [8] Lions, J.-L. Some Methods in the Mathematical Analysis of Systems and Their Control, Gordon and Breach, Science Press, Beijing, 1981. [9] Lipton, R. and Avellaneda, M. Darcy s law for slow viscous flow past a stationary array of bubbles, Proc. Roy. Soc. Edinburgh, 114A (1990), 71 79. [10] Nguetseng, G. A general convergence result for a functional related to the theory of homogenization, Siam. J. Math. Anal., 20(3) (1989), 608 623. [11] Sanchez-Palencia, E. Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, 1980. [12] Tartar, L. Convergence of the Homogenization Process, Appendix of [11]. [13] Temam, R. Navier Stokes Equations, North-Holland, Amsterdam, 1978. Renata Bunoiu and Jeannine Saint Jean Paulin, Département de Mathématiques, Ile du Saulcy, BP 80794, 57012 Metz, cedex 1 FRANCE