Energy Density Material

Similar documents
SUPPLEMENTARY INFORMATION

Electronic Supplementary Information

Supporting Information

1. NMR Spectrum of the prepared energetic salts. Figure S1. 1 H NMR spectrum of diammonium BNOA (6)

Full configuration interaction potential energy curves for breaking bonds to hydrogen: An assessment of single-reference correlation methods

Supporting Information

Conformational Studies on Aryl-cyclopentadienylidenes: Electronic Effects of Aryl Groups

Density functional theory predictions of anharmonicity and spectroscopic constants for diatomic molecules

Computational Methods. Chem 561

A simple way to predict electric spark sensitivity of nitramines

SUPPLEMENTARY INFORMATION

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots

DENSITY FUNCTIONAL THEORY STUDIES ON IR SPECTRA OF THE TRIPHENYLENE DERIVATIVES. A SCALED QUANTUM MECHANICAL FORCE FIELD APPROACH

Supplementary Information

Exercise 1: Structure and dipole moment of a small molecule

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

ANALYSIS OF THE CARBONYL GROUP STRETCHING VIBRATIONS IN SOME STRUCTURAL FRAGMENTS OF POLY-3-HYDROXYBUTYRATE

A critical approach toward resonance-assistance in the intramolecular hydrogen bond

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

International Journal of Materials Science ISSN Volume 12, Number 2 (2017) Research India Publications

arxiv:physics/ v1 [physics.atm-clus] 21 Jun 2004

A sting in the tail of flexible molecules: spectroscopic and energetic challenges in the case of p-aminophenethylamine

Regional Self-Interaction Correction of Density Functional Theory

Lab #3: Choice of Theoretical Method

Electron Correlation

Supporting Information

Electron Affinities of Selected Hydrogenated Silicon Clusters (Si x H y, x ) 1-7, y ) 0-15) from Density Functional Theory Calculations

CHAPTER-IV. FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations

A Computational Screening Method in Deriving New Promising Explosive Molecules: ADD Method-1 and MS-HEMs

Fast and accurate Coulomb calculation with Gaussian functions

Ab initio MO and quasi-classical direct ab initio MD studies. on the nitrogen inversion of trimethylamine. Masato Tanaka, Misako Aida *

Aminonitronaphthalenes as Possible High Energy Density Materials

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

Electronic structures of one-dimension carbon nano wires and rings

Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory

Macrocyclic Oligofurans: A Computational Study

E x E x HF, while E c of DFT is approximated with the difference E c

MP2 Basis Set Limit Binding Energy Estimates of Hydrogen-bonded Complexes from Extrapolation-oriented Basis Sets

Density functional studies of molecular polarizabilities. Part 3; ethene, buta-1,3-diene and hexa-1,3,5-triene

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

Approximating the basis set dependence of coupled cluster calculations: Evaluation of perturbation theory approximations for stable molecules

Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives

Influences of alkyl side-chain length on the carrier mobility in organic

Mechanism of Thermal Unimolecular Decomposition of TNT (2,4,6-Trinitrotoluene): A DFT Study

Water effect on the bond dissociation energy of O H and N H bonds in phenol and aniline: The testing of simple molecular dynamics model

Dipole Moments, Polarizabilities, and Infrared Intensities Calculated with Electric Field Dependent Functions

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Quantum chemical studies on the structures of some heterocyclic azo disperse dyes

Photochemistry of AgCl water clusters: Comparison with Cl water clusters

Quantum chemical origin of high ionization potential and low electron affinity of Tungsten Hexafluoride

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Supporting Information

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Metal Interaction with Organic Acids: Semiempirical Molecular Modeling Approach

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

Supporting information for

Results/Discussion. Basis Set Optimization

Understanding electron correlation energy through density functional theory

Accurate van der Waals interactions from ground state electron density

Quantum Mechanical Study on the Adsorption of Drug Gentamicin onto γ-fe 2

Trace Solvent as a Predominant Factor to Tune Dipeptide. Self-Assembly

Supporting Information

Yan Zhao and Donald G. Truhlar Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN

A complete basis set model chemistry for excited states

MECHANISTIC STUDIES OF TRIFLUOROMETHYL SULFUR PENTAFLUORIDE SF 5 CF 3 : A GREENHOUSE GASFIRST INFRARED SPECTROSCOPIC

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

The rôle of surfaces in prebiotic chemistry. Piero Ugliengo University of Torino Dip. Chimica Via P. Giuria, 7 - Torino

Fullerene-like boron clusters stabilized by endohedrally doped iron atom: B n Fe with n = 14, 16, 18 and 20

Computational quantum chemistry study of a self-assembled Zn(II) porphyrin box

Supporting Information

Calculation of Thermodynamic Hydricities and the. Design of Hydride Donors for CO 2 Reduction

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academic of Sciences, Dalian , P. R. China.

Theoretical study of spectroscopic parameters of alkali -Al and alkaline earth-al dimers

Supporting Information

Radical species play an important role in controlling the

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics

Orbital currents in the Colle-Salvetti correlation energy functional and the degeneracy problem. Abstract

Solid-State Density Functional Theory Investigation of the Terahertz Spectra of the Structural Isomers 1,2-Dicyanobenzene and 1,3-Dicyanobenzene

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Vibrational Frequencies and Structural Determination of Triethanolamine and Diethanolamine by Density Functional Theory Calculations

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents

Density Func,onal Theory (Chapter 6, Jensen)

First-Principle Studies on Adsorption of Cu + and Hydrated Cu + Cations on Clean Si(111) Surface

Journal of Computational Methods in Molecular Design, 2013, 3 (1):1-8. Scholars Research Library (

Supplementary Material

HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen , China

Supplementary Note 1 Cleanliness during FM-TERS measurement Initial cleanliness of the whole system (before TERS measurement) can be assured using

Computer Laboratory DFT and Frequencies

DFT STUDY OF Co 2+ AND Fe 2+ - URACIL COMPLEXES IN THE GAS PHASE

Atomistics of the Lithiation of Oxidized Silicon. Dynamics Simulations

A theoretical investigation of the low energy conformers of the isomers glycine and methylcarbamic acid and their role in the interstellar mediumwz

Transcription:

6F P with 3F 4F P level P to F P level Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics UFirst Principles Prediction of an Insensitive High Energy Density Material USupplemental Information,,* Barak HirshbergP P and Chagit DenekampP. The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 9904, Israel. RAFAEL Ltd. P.O. Box 50. Haifa 300, Israel. *Corresponding author. UEmailU: Ubarak.hirshberg@mail.huji.ac.ilUT UTelU: +97 (4) 8795870. UFaxU: +97 (4) 8794887.. Computational details In order to validate our results for the gas phase properties of H3tta, the minimum structure was also located at the MP/cc-pVTZP0F, of theory. The structure obtained is very similar to the one obtained at the B3LYP/6-3G(d)PF 3, 4, 5 of theory (e.g. maximal variation of 0.03 Ǻ in bond lengths). Both structures are given below. Dimer calculations, due to the larger number of heavy atoms, were done using the BLYP functionalp5f 6, 7 the 6-3G(d) basis set. The detonation properties of H3tta were also calculated using the Kamlet-Jacobs methodp7f to the more reliable EXPLO5 results.. Clusters Equilibrium Structure 8 compare The geometry obtained for a dimer of H3tta molecules is shown in Figure.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics Figure Equilibrium Geometry for the H3tta dimer at the B3LYP/6-3G(d) level of theory The existence of the dimer was used in generating the initial geometry for PW-DFT optimization. The initial unit cell parameters for the P phase were chosen in order to generate a structure of dimers on top of the other, shifted by an angle of approximately 750. The geometry used as initial guess is shown in Figure. Figure Initial geometry for PW-DFT optimization shown in top view (l.h.s) and side view (r.h.s). 3. Kamlet Jecobs method The detonation properties of H3tta were also evaluated using the Kamlet-Jacobs method. This method uses an empirical relation, given in equation (), between detonation velocity (D) or pressure (P) and ρ 0, N, M and Q; where ρ 0 is the density of the solid, N is the number of moles

P for P and P and P and P for P for Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics of gas released during detonation, M is the average molecular weight of the gas released and Q is the heat of detonation. This method has been used extensively in the literature for evaluating the performance of possible HEDMs (for recent examples, see ref. 7a and 7b in the main article). () 0 D =.0 ( NM Q P = 5.58 ρ ( NM Q ) ) ( +.3 ρ ) 0 The initial density used in this study is the one obtained from PW-DFT calculations for each of the crystal structures. In order to evaluate N, M and Q the reaction presented in Figure 3 was used. Q is the heat of detonation and is defined as the negative of the difference between the heat of formation of the products and the heat of formation of the explosive. This procedure resulted in values of 0.033 mole gp molep P, 5.7889 g N and M, respectively. The effect of variation in the solid state heat of formation of each phase on the detonation properties was also tested. Q was found to be between 9 cal gp P phase and between 3 cal gp cal gp 8 cal gp the the PRR phase. The values of D and P obtained, using equation (), for the P phase are 834-8473 msp P and 36-38 kbar, respectively. For the PRR phase D and P were found to be 8658-88 msp 353-367 kbar, respectively. These values are in accord with the EXPLO5 results reported in the main article. N N HN N N N 3 N N N H 9N (g) + H (g) + 8C (s) + CH 4(g) + NH 3(g) N N NH N

Figure 3 Detonation reaction used to estimate N,M and Q for the Kamlet Jacobs method. 4. Geometries H3tta B3LYP/6-3G(d) E(RB+HF-LYP): -87.73300 Hartree N 0.000000 0.000000 0.000000 C 0.000000.39686 0.000000 C.09678-0.698408 0.000000 N.086866.8608 0.000000 N.08047.56949 0.000000 N 0.6973 3.44093 0.000000 N -0.665073 3.47505 0.000000 H -.0664.890877 0.000000 N.349769 -.03494 0.000000 N -.40808-0.4759 0.000000 N -3.90905.88 0.000000 N -.676946 -.33496 0.000000 H -0.6067 -.73738 0.000000 C.09678-0.698408 0.000000 N.37737 -.0490 0.000000 N.436635-0.5787 0.000000 N.66893 -.590 0.000000 N 3.3409.6555 0.000000 H.668868 0.84086 0.000000 H3tta MP/cc-pVDZ E(MP): -85.56944607 Hartree N 0.000000 0.000000 0.000000 C -0.00569 0.000000.39543 C.35 0.000000-0.69786 N.086694 0.000000.8705 N.096767 0.000000.60984 N -0.637696 0.000000 3.443807 N 0.679506 0.000000 3.4778 H.06479 0.000000.87364 N.35074 0.000000 -.034657 N.4985 0.000000-0.30664 N 3.3073 0.000000.69643 N.66737 0.000000 -.34609 H 0.589930 0.000000 -.74740 C.05633 0.000000-0.70645 N.33084 0.000000 -.03030 N -.437436 0.000000-0.5448 N -.663577 0.000000 -.7464 N -3.346834 0.000000.47669 H -.654659 0.000000 0.85475 H3tta dimer BLYP/6-3G(d) E(RB-LYP): 655.70675 Hartree

N 0.85-0.003305 0.985 N 0.35505-0.0077.486809 N.35508-0.0089-0.95 C.434688-0.008.87606 H -0.79090-0.0058.053750 N.5535-0.00605 0.78439 N.9604 0.000063 3.9463 C 3.9855 0.00089 3.44455 C.005 0.0006 4.779 N 4.75787 0.0038.503 N 3.85964 0.000 4.657964 N -0.36577-0.000764 4.5675 N.33584 0.0060 5.588074 N 5.490499 0.0085 3.58 H 4.46470 0.000863.48889 N 5.3900 0.0077 4.430864 N -0.808404-0.0003 5.44975 N 0.6895 0.00044 6.3879 H.85635 0.00765 5.9887 N.9453-0.00775-4.470 N -.39634-0.006557 -.844656 N -.89884-0.008333-5.00708 C -3.7543-0.007335 -.964766 N -4.05874-0.00859-4.80045 N -4.63458-0.007038.886599 H -5.008566-0.00939-4.674793 C -4.5759-0.00587-0.563577 C -6.0440-0.007948 -.36485 N -.858407-0.004867-0.78789 N -4.93843-0.00543 0.56596 N -6.58536-0.009079-3.34990 N -6.998696-0.00788.9576 N -.83478-0.00387.96034 H.99388-0.004840-0.745740 N -4.077997-0.00404.60043 N -7.9468-0.00960-3.8 N -8.34-0.008894.843073 H -6.86937-0.007080-0.74843 P unit cell geometry total energy = -850.7680336 Ry N -0.66607070-0.00000380 0.66599378 C -0.00675959-0.0000046 0.335406469 C -0.57653304-0.00000466 0.006709979 N 0.666679-0.000004549 0.3688359 N -0.00480595 0.00000040 0.49345457 N 0.7366776 0.00000666 0.640053 N 0.77948076-0.00000 0.5565435 H 0.49037-0.0000083 0.783948 N -0.97659885-0.00000396-0.66663874 N -0.0058408-0.000007305 0.00484697 N -0.04883657-0.00000935-0.739038 N -0.55096-0.00000694-0.779779 H -0.43640084 0.00000690-0.507865 C -0.33547577-0.00000053 0.575795 N -0.49350044 0.000000467 0.004584 N -0.3688538 0.000000956 0.97544957 N -0.646400 0.00000995 0.04869758

N -0.55395 0.00000 0.5348534 H -0.785770-0.00000374 0.43680906 N 0.66607070 0.49999698-0.66599378 C 0.00675959 0.499997754-0.335406469 C 0.57653304 0.499995374-0.006709979 N -0.666679 0.49999545-0.3688359 N 0.00480595 0.50000040-0.49345457 N -0.7366776 0.50000666-0.640053 N -0.77948076 0.499997888-0.5565435 H -0.49037 0.49999689-0.783948 N 0.97659885 0.499996804 0.66663874 N 0.0058408 0.49999695-0.00484697 N 0.04883657 0.499990648 0.739038 N 0.55096 0.499993059 0.779779 H 0.43640084 0.50000690 0.507865 C 0.33547577 0.499999469-0.575795 N 0.49350044 0.500000467-0.004584 N 0.3688538 0.500000956-0.97544957 N 0.646400 0.50000995-0.04869758 N 0.55395 0.50000-0.5348534 H 0.785770 0.49999686-0.43680906 P unit cell geometry total energy = -850.75786668 Ry N -0.6500334.4430630-0.57886 N.47755459-0.4843080 0.496734 N.303804778 -.5775680-0.4667400 C -.700686348.085558 0.59495990 H.75960906 0.489988 0.339459045 N -.69584 -.300643400-0.86349 N -3.896765-0.38468795 0.47837506 C -5.07753547.37053 0.48340973 C -3.90398854 0.98439974 0.757558 N -5.397675 -.408847 0.3636555 N -6.4938947-0.690688 0.830705 N -.79609936.704476 0.7493496 N -4.9583747.769485.07080036 N -6.538985603 -.7057674 0.799757 H -4.58406445-3.09683790-0.6036 N -7.3750.6367660 0.6888655 N -3.86804644.968306060.07645694 N -4.473483 3.0448455.7690386 H -6.0053574.59499990.86758 N 3.8697999 -.968467403.076449 N.7964757.7060939-0.7489644 N 4.47669444-3.0465853.776055 C 3.9047485-0.9869036-0.7540566 N 4.958345555.7609546.0746006 N 3.89697884 0.3843055-0.4784468 H 6.0056694.59594795.9376476 C.70083988.07706609-0.5930880 C 5.07758537.34355-0.4836980 N.47768447 0.48395750-0.4503993 N.698843.3008933 0.88583 N 6.4939098 0.670796-0.830775 N 5.395040.40860467-0.36877 N 0.656457.44573754 0.5778337 H.7630344-0.489356760-0.338774094 N.30394938.54376 0.4670385 N 7.346357.636647-0.689659059

N 6.5389806.70456-0.8053770 H 4.584780 3.0936735 0.59946438 5. IR Spectrum P Phase # mode [cm] [THz] IR 4 3.7 0.9674 0.0000 5 45.66.3688 0.007 6 73.85.40 0.0086 7 73.97.75 0.695 8 96.33.8879 0.0000 9 03.50 3.09 0.976 0 5.53 3.4636 0.0000 7.57 3.546 0.0000 8.76 3.8603 0.0000 3 35.9 4.0744 0.0000 4 39.9 4.948 0.559 5 44.68 4.3375 0.000 6 49.6 4.4748 0.0743 7 50.46 4.508 0.0003 8 6.9 4.8654.970 9 74.9 5.436 0.0000 0 8.00 5.4563.5664 84.76 5.539 0.4477 89.69 5.6867 0.0000 3 9.3 5.7657 0.730 4.48 6.3400 0.0000 5 300.56 9.005 0.03 6 304.3 9.9 0.0000 7 309.86 9.894 0.0000 8 30.67 9.336 0.035 9 34.69 9.7340 0.984 30 38.0 9.836 0.0000 3 379.85.3876 0.000 3 380.90.49 0.576 33 396.34.888 0.0000 34 40.46.0655 0.948 35 405.74.638 3.5579 36 43.38.695 0.0000 37 44.77 3.738 0.0006 38 443.4 3.93 0.3985 39 673.84 0.0 0.0056 40 674. 0.095 0.445 4 679.70 0.3769 0.5967 4 684.5 0.504 0.0000 43 685.56 0.555.039 44 686.0 0.5664 0.0005 45 73.8.3836 0.0000 46 73.64.3943 0.068 47 76.9.470 0.87 48 76.0.47 0.066 49 79.64.574 0.6000 50 79.68.5755 0.084 5 86.93 4.7907 6.990 5 87.46 4.8067.500 53 836.36 5.0736 0.0066

54 847.68 5.49 3.6575 55 880.06 6.3836 3.4573 56 88.79 6.4353 0.0008 57 888.9 6.67 0.000 58 889.8 6.6570 0.3899 59 983.8 9.4780 9.3646 60 984.85 9.549 0.80 6 986.34 9.5697 8.089 6 987.49 9.604 0.008 63 994.5 9.8039 0.000 64 996.63 9.878 0.000 65 000.40 9.993 0.074 66 007.83 30.40 0.007 67 06.6 30.4774 3.6633 68 07.39 30.8004 5.4788 69 030.3 30.8884 6.069 70 038.30 3.73 0.0003 7 04.86 3.64 4.4369 7 045.3 3.3378 0.03 73 057.04 3.6894 0.0065 74 059.96 3.7769.457 75 067.35 3.9984 0.005 76 069.07 3.0500.836 77 087.5 3.607 0.000 78 09.5 3.759 0.779 79 5.0 33.498 0.940 80 9.85 33.574 0.0000 8 4.5 34.0 0.009 8 43.44 34.796 0.46 83 5.80 34.5300.066 84 56.87 34.68 0.0000 85 0.4 36.0094 5.680 86 08.09 36.75 0.0006 87 09.3 36.489.8807 88 7.4 36.4969 0.0009 89.40 36.668.654 90.49 36.649 0.435 9 304.07 39.0949 0.004 9 304.6 39.0979 0.598 93 35.5 39.4303 0.000 94 39.60 39.8603 0.650 95 345.70 40.343 0.000 96 347.0 40.388 4.879 97 378.3 4.354 0.0000 98 38. 4.4049 0.04 99 43.09 4.909 4.389 00 433.9 4.966 0.059 0 460.43 43.786 0.0000 0 465. 43.93 0.095 03 57.77 45.804 0.33 04 59.5 45.849 3.4655 05 539.7 46.460.37 06 539.88 46.646 37.7598 07 563.63 46.8764 4.0880 08 583.78 47.4804 0.0004 09 790.5 83.6495 0.3 0 89.08 84.539 60.097 375.8 95.084 0.468 396.84 95.8388 55.483 3 338.67 99.7909 39.7874 4 333.63 99.8798 0.8089

P Phase # mode [cm] [THz] IR 4.76 0.386 0.0000 5 4.30 0.488 0.0000 6 9.06 0.873 0.0000 7 3. 0.938 0.0000 8 0.83 3.056 0.0000 9 0.0 3.058 0.0000 0 4. 3.4 0.349 3.4 3.6948 0.0000 3.63 3.706 0.0000 3 5.78 3.7709 0.0000 4 5.5 4.54 3.43 5 6.95 4.885 0.000 6 64.4 4.990 0.000 7 64.50 4.935 0.000 8 84.30 5.55 0.0000 9 84.4 5.589 0.0000 0 87.9 5.649 0.9684 87.49 5.607 0.973 95.50 5.8608 0.0000 3 95.58 5.863 0.0000 4 5.64 6.4648 0.0000 5 94.49 8.886 0.0000 6 94.59 8.836 0.0000 7 308.4 9.458 0.0000 8 34.0 9.496 0.0000 9 39.47 9.5774 0.0000 30 39.5 9.5787 0.0000 3 383.84.5073 0.0000 3 384.9.508 0.0000 33 40.07.038 0.8999 34 40.0.076 0.935 35 40.8.030 0.0000 36 40.33.036 0.0000 37 440.99 3.07 0.537 38 446.89 3.3975 0.0000 39 674.45 0.96 0.0000 40 674.56 0.8 0.0000 4 675.05 0.375 0.000 4 675.4 0.40 0.0000 43 677.8 0.303 3.0065 44 678.68 0.3464 0.0000 45 76.45.4787 0.0000 46 76.50.480 0.0000 47 76.9.494 0.0000 48 76.96.4940 0.0000 49 79.74.577 0.0000 50 7.83.6399 0.556 5 8.6 4.350 8.433 5 83.86 4.3989 0.0000 53 84.6 4.44 0.0000 54 8.7 4.6644 0.0033 55 83.48 4.687 0.046 56 83.58 4.960 0.0000 57 884.59 6.59 0.545 58 884.70 6.57 0.535 59 885.99 6.563 0.0000

60 886.05 6.563 0.0000 6 99.9 9.750 4.8387 6 99.33 9.794 4.643 63 99.0 9.7400 0.0000 64 99.7 9.7444 0.0000 65 999.67 9.9693 0.007 66 003.88 30.0957 0.0000 67 006.59 30.769 0.00 68 04.7 30.404 0.0000 69 05.64 30.7478 0.0000 70 05.7 30.750 0.0000 7 030.88 30.9050 3.6076 7 030.96 30.9075 3.6599 73 044.7 3.398 0.0000 74 046.04 3.3594 0.000 75 078.44 3.3308.074 76 078.48 3.330.078 77 08.0 3.4436 0.0000 78 08.6 3.445 0.0000 79 3.3 33.6735 0.0000 80 4.3 33.7059 0.0000 8 45.87 34.35 0.567 8 45.98 34.3556 0.58 83 48.04 34.475 0.0000 84 48.8 34.46 0.0000 85 88. 35.689 0.0000 86 90.86 35.70 0.0066 87 94.73 35.870.735 88 95.4 35.834.708 89 98.09 35.980 0.0000 90 98.6 35.9335 0.0000 9 9.78 38.7565 0.0000 9 93.68 38.7836 0.000 93 3.4 39.30 0.0000 94 3.73 39.346 0.0000 95 35.6 39.474.0457 96 35.57 39.4397.035 97 378.05 4.38 0.0000 98 379.40 4.3534 0.0000 99 447.53 43.3958.859 00 447.86 43.4059.870 0 45.83 43.547 0.0000 0 45.5 43.5344 0.0000 03 53.38 45.9097 0.078 04 53.08 45.9305 0.0000 05 55.03 46.4988 47.960 06 55.99 46.574 47.8378 07 558.57 46.749 0.0000 08 559.49 46.75 0.0000 09 398.3 98.8808 0.0000 0 3300.34 98.948.45 3307. 99.447 79.6773 3308.35 99.87 80.553 3 3309.74 99.35 0.0000 4 33.03 99.60 0.0000

C. Møller and M.S. Plesset Phys. Rev. 934, 46, 68-6. T.H. Dunning Jr. J. Chem. Phys. 989, 90, 00703. 3 A.D. Becke J. Chem. Phys. 993, 98, 5648-565. 4 P.C. Hariharan and J.A. Pople Theor. Chim. Acta 973, 8, 3-. 5 P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch J. Phys. Chem. 994, 98, 63-67. 6 A.D. Becke Phys. Rev. A 988, 38, 3098-300. 7 C. Lee, W. Yang and R.G. Parr Phys. Rev. B 988, 37, 785-789. 8 M.J. Kamlet and S.J. Jacobs J. Chem. Phys. 968, 48, 3-35.