GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

Similar documents
Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

BINOMIAL COEFFICIENT HARMONIC SUM IDENTITIES ASSOCIATED TO SUPERCONGRUENCES

SUPERCONGRUENCES INVOLVING PRODUCTS OF TWO BINOMIAL COEFFICIENTS

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

arxiv: v57 [math.nt] 24 Aug 2011

Binomial transform of products

A talk given at Institut Camille Jordan, Université Claude Bernard Lyon-I. (Jan. 13, 2005), and University of Wisconsin at Madison (April 4, 2006).

Bertrand s postulate Chapter 2

Primes of the form n 2 + 1

arxiv: v1 [math.nt] 28 Apr 2014

GENERALIZED KERNEL AND MIXED INTEGRAL EQUATION OF FREDHOLM - VOLTERRA TYPE R. T. Matoog

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR

Congruences involving Bernoulli and Euler numbers Zhi-Hong Sun

On Divisibility concerning Binomial Coefficients

FACTORS OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS. Dedicated to the memory of Paul Erdős. 1. Introduction. n k. f n,a =

Factors of sums and alternating sums involving binomial coefficients and powers of integers

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1

Some remarks on the paper Some elementary inequalities of G. Bennett

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

On Order of a Function of Several Complex Variables Analytic in the Unit Polydisc

Generalized Fibonacci-Like Sequence and. Fibonacci Sequence

Problem. Consider the sequence a j for j N defined by the recurrence a j+1 = 2a j + j for j > 0

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Bernoulli Polynomials Talks given at LSBU, October and November 2015 Tony Forbes

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

DIRICHLET CHARACTERS AND PRIMES IN ARITHMETIC PROGRESSIONS

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

The log-behavior of n p(n) and n p(n)/n

Approximation properties of (p, q)-bernstein type operators

A New Type of q-szász-mirakjan Operators

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

Ayşe Alaca, Şaban Alaca and Kenneth S. Williams School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada. Abstract.

APPROXIMATION OF CONTIONUOUS FUNCTIONS BY VALLEE-POUSSIN S SUMS

#A18 INTEGERS 11 (2011) THE (EXPONENTIAL) BIPARTITIONAL POLYNOMIALS AND POLYNOMIAL SEQUENCES OF TRINOMIAL TYPE: PART I

A generalization of Morley s congruence

Some p-adic congruences for p q -Catalan numbers

On Cesáro means for Fox-Wright functions

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

Ratio of Two Random Variables: A Note on the Existence of its Moments

LOWER BOUNDS FOR MOMENTS OF ζ (ρ) 1. Introduction

On twin primes associated with the Hawkins random sieve

OPTIMAL ESTIMATES IN LORENTZ SPACES OF SEQUENCES WITH AN INCREASING WEIGHT

SOME FINITE SIMPLE GROUPS OF LIE TYPE C n ( q) ARE UNIQUELY DETERMINED BY THEIR ELEMENT ORDERS AND THEIR ORDER

On the transcendence of infinite sums of values of rational functions

The 4-Nicol Numbers Having Five Different Prime Divisors

On Some Identities and Generating Functions for Mersenne Numbers and Polynomials

On the Fibonacci-like Sequences of Higher Order

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS

Automated Proofs for Some Stirling Number Identities

VIETA-LIKE PRODUCTS OF NESTED RADICALS

A PROBABILITY PROBLEM

MAT1026 Calculus II Basic Convergence Tests for Series

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

x !1! + 1!2!

Self-normalized deviation inequalities with application to t-statistic

A new sequence convergent to Euler Mascheroni constant

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

A GENERALIZED BERNSTEIN APPROXIMATION THEOREM

A Pair of Operator Summation Formulas and Their Applications

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

Bernoulli Numbers and a New Binomial Transform Identity

Harmonic Number Identities Via Euler s Transform

distinct distinct n k n k n! n n k k n 1 if k n, identical identical p j (k) p 0 if k > n n (k)

A note on the p-adic gamma function and q-changhee polynomials

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

On the Inverse of a Certain Matrix Involving Binomial Coefficients

Research Article Sums of Products of Cauchy Numbers, Including Poly-Cauchy Numbers

An operator equality involving a continuous field of operators and its norm inequalities

Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun

A Note on Sums of Independent Random Variables

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

q-fibonacci polynomials and q-catalan numbers Johann Cigler [ ] (4) I don t know who has observed this well-known fact for the first time.

Weil Conjecture I. Yichao Tian. Morningside Center of Mathematics, AMSS, CAS

SOME NEW IDENTITIES INVOLVING π,

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x]

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

On a general q-identity

Exponential Functions and Taylor Series

A New Sifting function J ( ) n+ 1. prime distribution. Chun-Xuan Jiang P. O. Box 3924, Beijing , P. R. China

arxiv: v1 [math.nt] 26 Feb 2014

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

A q-analogue of some binomial coefficient identities of Y. Sun

An elementary proof that almost all real numbers are normal

Discrete Mathematics: Lectures 8 and 9 Principle of Inclusion and Exclusion Instructor: Arijit Bishnu Date: August 11 and 13, 2009

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

Double Derangement Permutations

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

ALMOST CONVERGENCE AND SOME MATRIX TRANSFORMATIONS

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters!

arxiv: v1 [math.co] 3 Feb 2013

Transcription:

J. Nuber Theory 0, o., 9-9. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES Zhi-Hog Su School of Matheatical Scieces, Huaiyi Noral Uiversity, Huaia, Jiagsu 00, PR Chia Eail: zhihogsu@yahoo.co Hoeage: htt://www.hytc.edu.c/xsjl/szh Abstract. For ay ositive iteger È ad variables a ad x we defie the geeralized Legedre a olyoial P a, x by P a, x a 0 x. Let be a odd rie. I this aer we rove ay cogrueces odulo related to P a, x. For exale, we show that P a, x a P a, x od, where a is a ratioal adic iteger ad a is the least oegative residue of a odulo. We also geeralize soe cogrueces of Zhi-Wei b a od. Su, ad establish cogrueces for È 0 Æ 5 ad È 0 MSC: Priary A07, Secodary C5, 05A0, 05A9, E5 Keywords: Cogruece; bioial coefficet; geeralized Legedre olyoial a. Itroductio. Let be a oegative iteger ad let [ ] be the greatest iteger fuctio. The the faous Legedre olyoial P x is give by. P x [/] 0 x! d dx x see for exale [B,.79-80]. For ay ositive iteger ad variables a ad x we itroduce the geeralized Legedre olyoial. P a x a a x 0 a + x. 0 0 a + x We ote that a a+ ad a a+ a+ a x ad P x P x see [B,.80].. Clearly P a x P The author is suorted by the Natioal Natural Sciece Foudatio of Chia grat o. 7.

Let > be a rie. I 00, based o his wor cocerig hyergeoetric fuctios ad Calabi-Yau aifolds, Rodriguez-Villegas [RV] cojectured the followig cogrueces:...5. 0 0 0 0 od 7 od od od where is the Legedre sybol. These cogrueces were later cofired by Morteso [M-M] via the Gross-Koblitz forula. Recetly the author s brother Zhi-Wei Su [Su] osed ore cojectures cocerig the followig sus odulo : 0 x 0 7 x 0 x 0 x. For the rogress o these cojectures see [S-S5]. As observed by Tauraso [T], Zudili ad the author [S,.9-97, 90], [S,.95], [S5,.8], we have 5 7. This is the otivatio that we itroduce ad study P a x od. Let Z be the set of itegers. For a rie let Z deote the set of ratioal adic itegers. For a adic iteger a let a {0... } be give by a a od. Let be a odd rie ad a Z. I this aer we show that.7 P a x a P a x od. Note that P a. Taig x i.7 we obtai.8 0 a P a a od.

For a we get.-. iediately fro.8. If a is odd, by.7 we have a a.9 P a 0 0 od. 0 This geeralizes revious secial results i [S] ad [Su]. If f0 f... f are adic itegers, we rove the followig ore geeral cogruece: a a.0 a f f 0 od. 0.7-.9 ca be viewed as vast geeralizatios of soe cogrueces roved i [S,S] with a ad [Su,Su] with a. Whe a od, taig f / i.0 we get. 0 a 0 0 od. This ilies several cojectures of Rodriguez-Villegas [RV], see.7-.0. I this aer we also establish the cogruece a + P a + x a + xp a x + ap a x 0 od for a 0 od ad use it to rove our ai results. As a alicatio, we deduce the cogruece for / 0 5 od >, see Theore.. I Sectio, we obtai a geeral cogruece for b a 0 od, where is a odd rie ad a b Z.. Geeral cogrueces for P a x od. Lea.. Let be a ositive iteger. The Proof. It is clear that a + P a + x a + xp a x + ap a x a a + x +. a + aa + a + a + a + + a + a + a + a + +. Thus, a + a + + a + a + a + a + a + a + a + a + a aa + a! + a + a + + a + a + a + a + + 0.

Therefore, a + a + + a + a + a + a +. a + a +. For ay egative iteger set α 0. Usig. we deduce that a + P a + x a + xp a x + ap a x { a + + a + a + + a 0 a + + x a + }x a + x + a + { a + + a + + a + + a 0 a + a + }x a + + a a + x +. a + This roves the lea. Theore.. Let be a odd rie ad a Z. The a + P a + x a + xp a x + ap a x a + a + a a + a a x od if a 0 od, a + a + x od if a 0 od, a + a x od if a od. Proof. Clearly a a + If a 0, the aa a a + a + a +!. aa a a + a + a + a a a + a { a a a + a + a + a } a a + a a! a a + a a + a a a + od.

If a 0, the a + If a, the a 0 od ad so a a + aa + a a a! aa + aa +! aa + + aa + + a + a + a + a od. a a + a + a a + + a + od. Now uttig all the above together with Lea. i the case we deduce the result. Lea.. Let be a odd rie ad let t ad x be -adic itegers. The + x x P t x t + t + t od ad so P t x od. Proof. It is clear that P t x 0 t + t t + x t t + x x { + t + t + x x } { + x x } t + t + od. Sice ±x ±x od, by the above we obtai P t x od. This roves the lea. Lea.. Let be a odd rie ad let t ad x be adic itegers. The P + t x tx + t x { + t + x + x x + x + x + x + } + + + od 5

ad so P + t x x od. Proof. It is clear that ad so P + t x t + t + + x 0 + t + t + x + t + x + t + t x P + t x + t + + + x + t + + t t t t + + x + x od + t + t x + x x x + t + t + + t + t x { + t + x + x x + + + + x + x x x } tx + t x { + t + x + x x + + + x + x + x + } + od. Observe that ±x ±x od. Fro the above we see that { x P + t x tx + t + x x tx + tx x od. This coletes the roof. + + x Theore.. Let be a odd rie ad a Z. The + x P a x a P a x od x } x

ad so 0 a x a x 0 od. Proof. Suose {... } ad t Z. Fro Theore. we have Thus,. + + tp + + t ±x + t + ±xp + t ±x + + tp + t ±x 0 od. + + tp + + t x + P + + t x + t + xp + t x P + t x + tp + t x P + t x od. Fro Lea. we ow that Fro Lea. we see that Thus, P t x P t x od. P + t x + P + t x x t + x { x + t + + x x } + + + + x x t + t + 0 od. + x + x t + t + x + x x + P + t x P + t x 0 od for 0. By. ad iductio we deduce that P +t x P +t x 0 od for all 0.... Sice a a + t for soe t Z, we see that P a x a P a x od ad hece 0 a This coletes the roof. x P a x a P a x a 0 a x od. Rear. I the case a, Theore. was give by the author i [S] ad ideedetly by Tauraso i [T]. I the cases a, Theore. was give by Z. W. Su i [Su]. 7

Corollary.. Let be a odd rie ad a Z. The a a a od. 0 Proof. Taig x i Theore. we obtai the result. As etioed i Sectio, taig a i Corollary. we deduce.-.. Corollary.. Let be a odd rie ad a Z with a od. The a a 0 od....5. 0 Proof. Taig x i Theore. we obtai the result. Puttig a i Corollary. we deduce the followig cogrueces: 0 0 0 0 0 od for od 5 0 od for od 8 0 od for 5 7 od 8 8 0 od for od where is a rie greater tha. We rear that. was cojectured by Z. W. Su ad roved by the author i [S] ad Tauraso i [T], ad. was cojectured by the author i [S] ad roved by Z. W. Su i [Su]..5 ad. were cojectured by Z. W. Su ad fially roved by hi i [Su], although the author roved the corresodig cogrueces odulo earlier. Lea.. Let be a ositive iteger. The a a + 0 a + Proof. Set a f ad g + It is easily see that g g f. Thus, f f0 + 0 This roves the lea.. a + g g f0 g0 + g g. 8.

Theore.. Let be a odd rie ad a Z. i If {... }, the a x + a x 0 od. ii If a 0 od, the 0 a x + + a x + + 0 od. Proof. By Theore., 0 a x a x fx where fx is a olyoial of x with ratioal -itegral coefficiets ad degree at ost. Sice d x dx! x ad d dx x! x! x for, we see that a x + a x! d dx fx. As! for ad d dx fx is a olyoial of x with ratioal -itegral coefficiets ad degree at ost, we deduce the first art. Now we suose a 0 od. It is easy to see that a Thus, by Theore. we have a 0 od ad so 0 a a a 0 od. x a x gx where gx is a olyoial of x with ratioal -itegral coefficiets ad degree at ost. It is easy to see that x gtdt 0 0 a x + + a x +. + 9

Thus, usig Lea. we get a a x + + a x + + 0 a a a a a a od. + 0 Sice a 0 od, we see that a a a a 0 od. a a Thus the secod art follows ad the roof is colete. Corollary.. Let be a odd rie, a Z ad {... }. The a a + a a a od. Proof. Taig x i Theore.i we obtai the result. Corollary.. Let be a odd rie ad a Z with a {... }. The a a + 0 od. 0 Proof. Taig x i Theore.ii we obtai the result. Theore.. Let be a odd rie ad a Z. If f0 f... f are adic itegers, the a a a f f 0 od. 0 0 Proof. Fro Corollaries. ad. we see that a a f 0 f 0 0 0 a f + a a a a 0 a f od. This yields the result. Rear. I the case a, Theore. was obtaied by the author i 00. I the cases a, Theore. was recetly obtaied by Z.W. Su i [Su]. 0

Theore.5. Let be a odd rie ad a Z with a od. The 0 a 0 od. Proof. Set f /. Fro [S, Exale 0] we ow that 0 f f. Thus, alyig Theore. we deduce the result. Puttig a i Theore.5 we deduce that for ay rie >,.7.8.9.0 0 0 0 0 0 od for od 08 0 od for 5 od 0 od for 5 7 od 8 5 78 0 od for od. Here.7 was cojectured by Beuers [Beu] i 987 ad roved by va Hae [vh]..8-.0 were cojectured by Rodriguez-Villegas [RV] ad roved by Z. W. Su [Su].. Cogrueces for P a 0 od. For give ositive iteger ad rie we defie H 0 0 H + + + + ad q a a. Theore.. Let be a odd rie ad t Z. i If {0... }, the P + + t 0 0 od. ii If {0... }, the P + t 0 + + th t + H tq od. Proof. Puttig x 0 i Theore. we see that P a + 0 a a + P a 0 od for a 0 od.

Assue {... }. The By Lea., P + + t 0 + t + + t P + t 0 + t + t + + t + t + t + t P + t 0 od. P + t 0 t + t + + + t + t 0 od. Thus, fro the above we deduce that P ++t 0 0 od for 0.... This roves i. Now let us cosider ii. Assue {... }. The P + t 0 By [S, Lea.],. Fro Lea. we have + t P + t 0 + t + t + t + t + t + t + P t 0 t + + t + t + t + t + t + t P t 0 P t 0 t P t 0 + th H P t 0 od. + H H od. t t + t q tq od. Therefore, for 0... we have P + t 0 + H H + th H tq + + th t + H tq od. This roves ii ad hece the roof is colete.

Corollary.. Let be a odd rie ad let a be a -adic iteger with a 0 od. The P a 0 0 od or P a 0 0 od. Proof. If a + od with {0... }, by Theore.i we have P a 0 0 od. If a od for soe {... }, the a + od ad so P a 0 0 od by Theore.i. For a b Z ot both zero let a b be the greatest coo divisor of a ad b. Theore.. Let be a odd rie, Z, >, r {± ±... ± }, r ad + r. i If r, the r P 0 r/ r/ 0 / ii If ad r, the + s H + s H + s q od if r s od for soe s {... } ad s +r/, 0 od if r s od for soe s {... }. r P 0 r/ r/ 0 / iii If ad r, the + s H + s H + s if r ad s+r/ 0 od if r r P 0 r/ r/ 0 / + s q od s od for soe s {... }, s od for soe s {... }. H + s H + s q od if r s od for soe s {... } ad s+r, 0 od if r s od for soe s {... }. Proof. We first cosider i. If r ad r s od for soe s {... s r }, settig ad t s we fid {0... } ad

++t r. Thus, fro Theore.i we obtai P r 0 P r 0 P ++t 0 0 od. If r ad r s od with s {... }, settig s +r/ ad t s we fid {... } ad + t r. Thus, fro Theore.ii we deduce that r P 0 P r 0 P + t 0 / + s H + s H + s q od. This roves i. Now we cosider ii. Suose ad r. If r s od for soe s {... s r/ }, settig ad t s we fid that {0... } ad ++t r. Thus, fro Theore.i we obtai P r 0 P r 0 P ++t 0 0 od. If r s od for soe s {... }, settig s+r/ ad t s we fid that {0... } ad + t r. Thus, fro Theore.ii we deduce the result. Let us cosider iii. Assue ad r. If r s od for soe s {... }, settig s r ad t s we fid that {0... } ad ++t r. Thus, fro Theore.i we obtai P r 0 P r 0 P + + t 0 0 od. If r s od for soe s {... }, settig s+r ad t s we fid that {0... } ad + t r. Now alyig Theore.ii we deduce the result. The roof is ow colete. Fro Corollary. or Theore. we deduce the followig result. Theore.. Let be a odd rie. The P / 0 0 od P / 0 0 od P / 0 0 od P /5 0 0 od P / 0 0 od P /7 0 0 od P /8 0 0 od P /9 0 0 od P /0 0 0 od P / 0 0 od for od for od for od 8 for od 5 for od for 5 od 7 for 7 od for od 9 for 7 9 od 0 for 5 8 9 od P / 0 0 od for 5 7 od.

Lea. [L]. Let be a odd rie. The i H q od, H [ ] q od. ii For > we have H [ ] q od ad H [ ] q q od. Theore.. Let > be a rie. The 0 5 { A A od if, A + B ad A, 0 od if. Proof. Fro Theore.i we see that 5 P 0 0 { + H + H + q od if od, 0 od if od. Now we assue od ad A + B with A B Z ad A od. Fro Lea. we have H q od ad Thus, H H H + H By [BEW, Theore 9..], Therefore, P 0 A A This coletes the roof. / / q od. + q q q + q q q od. A A q + q od. + H A A od. + H q q + q + q q Rear. I [S] the author cojectured Theore. ad roved the cogruece odulo. I [Su], Z.W. Su roved the result for od. 5

. Cogrueces for b a 0 od. Let be a oegative iteger. For two variables a ad b we defie a b a. S a b. Set a b a Fa It is easy to see that Thus, a b 0 ad Ga a b + b a a bfa + a + Fa + Ga + Ga. Fa + a + 0 Fa + 0 Ga + Ga Ga + Ga 0 Ga +. 0 That is, a b a. a bs a b + a + S a + b a b +. Lea.. Let be a odd rie ad b c t Z. The b t b + ct + t od. 0 Proof. Clearly t b + ct 0 + + t t t b + ct + b b + t b + t b + t 0 0 x b x 0 This roves the lea. b + t t x dx + t 0 dx + t b u du + t 0 b b 0 b 0 b u b u du + od.. x dx

Lea.. Let be a odd rie, {... } ad t Z. The + t t t + t od. Proof. For < we see that + t + t + t + t tt t! t t t t t! t! t! t! t H H + od. For > we also have + t + t + t + t tt t! t t t t + t +! + t t!!! t! t H H + od. Sice! H od, by the above we get + t! t t! H th H t + H t th H t t t + th H H od. To see the result, we ote that H H r + r 0 od. 7 + / r r + r

Lea.. Let be a odd rie, {... } ad b t Z. The od b + t if b +, b b t b+ od if b, b b t+ b+ od if > b +. Proof. If b +, settig b r + we fid r Z ad so b t + r t + r t + r t! + r t + r t + od. Now we assue b + ad b b +r. The r Z, b ad b + t! 0 r t b + b + r t r t! r t b + b b t b + b 0 b od. Sice we see that { b if b, b + b if > b +, { b b b b if b, b b b + b b b if > b +. Now cobiig all the above we obtai the result. Theore.. Let be a odd rie ad a b Z. The 0 b a a b a b a b b b od if a > b, b a + b b H b a a H a b a b a H b a od if a b. Proof. If a 0, the result follows fro Lea. with t a ad c. Fro ow o we assue a. Set a a + t ad b b + s. The s t Z. For 8

{... }, by. ad Leas.-. we obtai. + ts + t b + + t b S + t b + t b + t + t b b t b b t b+ od if b, b t + t t + H od if b +, b t b b t+ b+ od if > b +. Hece, if a b, the S a b S a + t b a + t b S a + t b a + t + b a + s t S a + t b a + t + b a + s t a + t a + b + s t + t + b a + s t S a + t b a + t S t b od. Now alyig Lea. we see that for a b, S a b b b b a + + s th b H b a + th b a! + th a b + s th b H b a th a + th b a b + sh b th a s th b a a b + b b H b a a H a b a b a H b a od. a Now we assue a > b. Clearly b + t b b t b b t S b + t b + od. This together with. yields b + + ts b + + t b t b + t bs b + t b + b + b b + b b t + t b b od. 9

Thus,. S b + + t b b b b + + t b b b + od. This shows that the result is true i the case a b +. Now fro.-. we deduce that for a > b +, b + S a b S a + t b a + t S a + t b b + a + t b + a + t S a + t b a b + This coletes the roof. a b + b + + t S b + + t b b + b b b + a b a b a b b b od. Rear. Let be a odd rie ad a Z. Taig b i Theore. ad the alyig the fact H a H a H a od we deduce Corollary.. I [Su], Z.W. Su showed that 0 a a od. a This ca be deduced fro Theore. by taig b a. Corollary.. Let be a odd rie ad a b Z. The 0 b a b od. a Corollary.. Let be a odd rie ad a Z. The 0 { a 0 od if a 0 od, od if a 0 od. Proof. Taig b 0 i Theore. we deduce the result. 0

Corollary.. Let be a odd rie ad a Z. The.5. 0 a 0 od if a a 0 od, + a od if a 0 od, a od if a od. Proof. Taig b i Theore. we deduce the result. Usig the ethod i the roof of Lea. we ca show that for ay ositive iteger, a + a a a a a a 0 0 Theore.. Let be a odd rie. The 0 a + + od if od, x x od if x + y od ad x. Proof. Set a ad b. The. a { if od, if od, ad b { if od, if od. If od, the a > b. Thus, by Theore. we have Sice 0 + + + + + +! +! + od + by the above we obtai the result i the case od. + + / + / od.

Now we assue od ad so x + y with x y Z ad x od. By the roof of Lea. ad Lea.i we have H H q od ad q od. Now alyig the above ad Theore. we deduce that H 0 By [BEW, Theore 9..] we have Hece H + H + H q + q + q od. x x q od. 0 x od. x This roves the result i the case od. The roof is ow colete. Theore.. Let > be a rie. The 0 Proof. Set a ad b. The 5 od if od, A A od if A + B od ad A. b ad a { if od, 5 if od. For od we have a > b. Thus, by Theore. we get 0 Note that 5 5 5 5 + 5 + + + + + + + + + + 5 5 od. od.

We the get the result i the case od. Now we assue od ad so A + B od with A. By Theore. ad Lea. we obtai 0 By [BEW, Theore 9..], Therefore, 0 H + H + H q + q q + + q q od. A A q q od. q A A q q A A od. This roves the result i the case od. Hece the theore is roved. Refereces [RV] [B] H. Batea, Higher Trascedetal Fuctios, Vol.II, McGraw-Hill, New Yor, 95. [BEW] B.C. Berdt, R.J. Evas ad K.S. Willias, Gauss ad Jacobi Sus, Wiley, New Yor, 998. [Beu] F. Beuers, Aother cogruece for the Aéry ubers, J. Nuber Theory 5 987, 0-0. [vh] L. va Hae, Soe cojectures cocerig artial sus of geeralized hyergeoetric series, i: -adic Fuctioal Aalysis, 99, i: Lect. Notes Pure Al. Math., vol. 9, Deer, New Yor, 997,. -. [L] E. Leher, O cogrueces ivolvig Beroulli ubers ad the quotiets of Ferat ad Wilso, A. of Math. 9 98, 50-0. [M] E. Morteso, A suercogruece cojecture of Rodriguez-Villegas for a certai trucated hyergeoetric fuctio, J. Nuber Theory 99 00, 9-7. [M] E. Morteso, Suercogrueces betwee trucated F hyergeoetric fuctios ad their Gaussia aalogs, Tras. Aer. Math. Soc. 55 00, 987-007. F. Rodriguez-Villegas, Hyergeoetric failies of Calabi-Yau aifolds, i: Norio Yui, Jaes D. Lewis Eds., Calabi-Yau Varieties ad Mirror Syetry, Toroto, ON, 00, i: Fields Ist. Cou., vol. 8, Aer. Math. Soc., Providece, RI, 00,.-. [S] Z.H. Su, Ivariat sequeces uder bioial trasforatio, Fiboacci Quart. 9 00, -. [S] Z.H. Su, Cogrueces cocerig Legedre olyoials, Proc. Aer. Math. Soc. 9 0, 95-99. [S] Z.H. Su, Cogrueces ivolvig, J. Nuber Theory 0, 57-595. [S] Z.H. Su, Cogrueces cocerig Legedre olyoials II, J. Nuber Theory 0, 950-97. [S5] Z.H. Su, Legedre olyoials ad suercogrueces, Acta Arith. 59 0, 9-00.

[Su] Z.W. Su, Oe cojectures o cogrueces, arxiv:09.55v59, 0. [Su] Z.W. Su, O sus of Aéry olyoials ad related cogrueces, J. Nuber Theory 0, 7-99. [Su] Z.W. Su, O sus ivolvig roducts of three bioial coefficiets, Acta Arith. 5 0, -. [Su] Z.W. Su, Suercogrueces ivolvig roducts of two bioial coefficiets, Fiite Fields Al. 0, -. [T] R. Tauraso, A eleetary roof of a Rodriguez-Villegas suercogruece, arxiv:09., 009. [T] R. Tauraso, Suercogrueces for a trucated hyergeoetric series, Itegers 0, A5,.