Nelinearna regresija. SetOptions Plot, ImageSize 6 72, Frame True, GridLinesStyle Directive Gray, Dashed, Method "GridLinesInFront" True,

Similar documents
Accessibility of the lower-hybrid resonance


Introductions to InverseErfc

Quantum Mechanics using Matrix Methods

COMPUTATIONAL EXPLORATIONS IN MAGNETRON SPUTTERING

Class 4: More Pendulum results

What is r 2 0? 4 Feb 2010

Ex. 3. Mathematica knows about all standard probability distributions. c) The probability is just the pdf integrated over the interval

5 Linear Homotopy. 5-1 Introduction

Point Charge Between Two Parallel Conducting Plates

Open quantum systems applied to condensed matter physics

Depending on your Mathematica installation, you might see the solution curve corresponding to q

Point Charge Between Two Parallel Conducting Plates

Concepts of Approximate Error: Approximate Error, Absolute Approximate Error, Relative Approximate Error, and Absolute Relative Approximate Error

Mathematica for Calculus II (Version 9.0)

Two parallel line charges with ± Charge.

Biokmod: A Mathematica toolbox for modeling Biokinetic Systems

Project 2 by Kayli-Anna Barriteau

MSE 310/ECE 340. Instructor: Bill Knowlton. Initialize data Clear somedata, someplot. Place data in list somedata

PHYSICS 110A : CLASSICAL MECHANICS PROBLEM SET #5. (x). (g) Find the force of constraint which keeps the bead on the wire.

The Mathematics 4 course in Wolfram Mathematica

Introduction to Neural Networks U. Minn. Psy "Energy" and attractor networks Graded response Hopfield net. Graded response Hopfield network

Baroklina nestabilnost

ME 406 Bifurcations VII Subcritical Hopf Bifurcation

ME201/MTH281ME400/CHE400 Convergence of Bessel Expansions

Sample Mathematica code for the paper "Modeling a Diving Board"

JPEG BMP. jpeg1.nb 1 JPEG. [Reference] /10/ /10/21 Takuichi Hirano (Tokyo Institute of Technology)

2 EC-wave propagation using Mathematica. 2.1 O-X propagation for 2nd harmonic resonance for KSTAR tokamak with low density

Chapter 11 Parametric Equations, Polar Curves, and Conic Sections

ams-514-lec-10-m.nb 1

Introduction. x 1 x 2. x n. y 1

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1

One-Parameter Residual Equations

Notes on the Unicycle Puzzle (PoW 1248)

Lecture 22 Appendix B (More on Legendre Polynomials and Associated Legendre functions)

Physics 229& 100 Homework #1 Name: Nasser Abbasi

A Poor Example of a Project - But Gives Some Direction

Introduction II. accompany our textbook",john H. Mathews, and Russell W.


A small note on the statistical method of moments for fitting a probability model to data

Appendix A: Mathematica Functions

6.4 Directional derivatives

1 14a. 1 14a is always a repellor, according to the derivative criterion.

Alpha Decay. 1. Introduction. 2. Constants, Commands, and Functions. 2.1 Constants:

ME201/MTH281/ME400/CHE400 Newton's Law of Cooling

Fitting Data in Mathematica

For continuous models, the so-called linear superposition operator for an image transformation can be expressed as:

3. The Gaussian kernel

HW #6. 1. Inflaton. (a) slow-roll regime. HW6.nb 1

December 18, 2017 Section W Nandyalam

Math Differential Equations Material Covering Lab 2

Physics 235 Chapter 4. Chapter 4 Non-Linear Oscillations and Chaos

Task: Role of moderation

A new solvable many-body problem of goldfish type

Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

Optical Fiber Intro - Part 1 Waveguide concepts

Fragments in eic. S.White 6/5/10 Forward physics at colliders. measurement of fragments Experience from RHIC/LHC the machine

Chapter 2. Coulomb s Law

On the Maximal Orbit Transfer Problem Marian Mureşan

Supervised learning. Introduced the idea of a cost function over weight space

Acta Chim. Slov. 2003, 50,

PHYS 606 Spring 2015 Homework VIII Solution

11 Ranging by Global Navigation Satellite Systems (GNSS)

Eigen decomposition for 3D stress tensor

Rigid Body Pendulum on a Flywheel

Dispersion relation (10 min)

Homework 10: Do problem 6.2 in the text. Solution: Part (a)

Homework 3 and Mid-term

Global Warming? Effects on Glaciers

Relativistic Spin Rotation

Bilinear Transformations via a Computer Algebra System

Introduction to Mathematica and Graphing in 3-Space

Haar function construction of Brownian bridge and Brownian motion Wellner; 10/30/2008

arxiv: v1 [physics.ed-ph] 24 Apr 2018

Mathematica for Calculus I and II

TOPIC 3. Taylor polynomials. Mathematica code. Here is some basic mathematica code for plotting functions.

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

Confidence regions and intervals in nonlinear regression

Degradation Parameters Estimation from Interpolated Temperature Data (Version B - Heat Processing).nb

Degradation Parameters Estimation from Interpolated Temperature Data (Version A - Storage).nb

Tref is the user-chosen reference temperature for the calculations. It should be in the same temperature range as the data.

TOPLJENEC ASOCIIRA LE V VODNI FAZI

4. Gaussian derivatives

PHYSICS 200A : CLASSICAL MECHANICS SOLUTION SET #2

THE CONDITIONAL DISTRIBUTION OF THE EIGENVALUES OF THE GINIBRE ENSEMBLE

Documentation on the java T M packet Scattering at a potential well. Technische Universität Berlin Institut für Theoretische Physik

Introduction. Introduction to Neural Networks. "Energy" and attractor networks Hopfield networks. Last time

The wave equation. The basic equation and it's fundamental solutions on bounded domains. u t t = c 2 u x x. An amalgam of sections 1.5 and 2.2.

AMS Computational Finance

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

RANDOM NUMBERS with BD

Two Limit Cycles in a Two-Species Reaction

The Ramsey model - linearization, backward integration, relaxation (complete)

MATH 505b Project Random Matrices

Calculus of Vector-Valued Functions

Using Simulink to analyze 2 degrees of freedom system

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

Mathematica Project, Math21b Spring 2008

Analysis of a Partial Differential Equation Model of Surface Electromigration

CplexA: a Mathematica package to study macromolecularassembly control of gene expression

Transcription:

Nelinearna regresija In[1]:= SetOptions ListPlot, ImageSize 6 72, Frame True, GridLinesStyle Directive Gray, Dashed, Method "GridLinesInFront" True, PlotStyle Directive Thickness Medium, PointSize Large, Black, TicksStyle Thickness Medium, AxesStyle Thickness Medium, LabelStyle Directive FontFamily "Helvetica", FontSize 12, Axes False ; SetOptions Plot, ImageSize 6 72, Frame True, GridLinesStyle Directive Gray, Dashed, Method "GridLinesInFront" True, PlotStyle Directive Thickness Large, PointSize Large, Red, TicksStyle Thickness Medium, AxesStyle Thickness Medium, LabelStyle Directive FontFamily "Helvetica", FontSize 12, Axes False ; SetOptions ContourPlot, ImageSize 4 72, Frame True, GridLinesStyle Directive Gray, Dashed, Method "GridLinesInFront" True, TicksStyle Thickness Medium, AxesStyle Thickness Medium, LabelStyle Directive FontFamily "Helvetica", FontSize 12, Axes False ; In[4]:= In[5]:= data Table t, Sin 0.8 t 0.2 Sin 2 t Random NormalDistribution 0, 0.1, t, 20, 20, 0.1 ; pdata ListPlot data, PlotRange All, FrameLabel "t s ", "x m " Out[5]= x m 20 0 20 In[6]:= f1 a_, Ω_, t_ : a Sin Ω t chi21 a_, Ω_ : Sum data i, 2 f1 a, Ω, data i, 1 ^2, i, Length data Length data contour1 ContourPlot Log chi21 a, Ω, a, 5, 0.75, Ω, 0.6, 4, Contours 20, MaxRecursion 0, PlotPoints 40, ColorFunction ColorData "TemperatureMap", AspectRatio 2, FrameLabel "x 0 m ", "Ω s 1 " ;

In[19]:= ManipulateA ModuleA8fit, eval, p1, p2<, eval = 8<; fit = NonlinearModelFit@data, f1@a,, td, 88a, 0.4<, 8, 0 <<, t, EvaluationMonitor AppendTo@eval, 8a,, chi21@a, D<DD; p1 = Show@contour1, Graphics@8Red, Thickness@LargeD, Line@eval@@1 ;; n, 1 ;; 2DDD<DD; p2 = Show@pdata, Plot@f1@eval@@n, 1DD, eval@@n, 2DD, td, 8t, - 20, 20<DD; RowA9 p1, " ", ColumnA9 StyleForm@ToString@TraditionalForm@x0 Sin@ tddd, FontSize 20, FontFamily "Helvetica", FontColor RedD, p2, StyleFormA ToStringATraditionalFormAΧ2 NEE <> " = " <> ToString@eval@@n, 3DDD, FontSize 20, FontFamily "Helvetica", FontColor RedE, StyleForm@"Korelacijska matrika v minimumu:", FontColor RedD, StyleForm@TableForm@fit@"CorrelationMatrix"D, TableHeadings 88"x0 ", ""<, 8"x0 ", ""<<D, FontColor RedD =, Center, Spacings 2E =E E, 80, 80.93, 11<<, 8n, Range@1, D< E 0 0.93 n 4 2 Hs -1 L 2 0 11

0.8 Out[19]= 0.6 0.1 0.2 0.3 0.4 0.6 0.7 x0 HmL x0 sinht L x HmL - -20 0 - t HsL Χ2 N = 290324 Korelacijska matrika v minimumu: x0 x0 3758 3758 20 3

4 In[]:= 0 = 0.8; t1 = 40; t2 = 60; f2@_, Λ_, t_d := Sin@ t + Tanh@Λ tdd chi22@_, Λ_D := Sum@Hdata@@i, 2DD - f2@, Λ, data@@i, 1DDDL ^ 2, 8i, Length@dataD<D Length@dataD contour2 = ContourPlotALog@chi22@, ΛDD, 8, 0.6, 1<, 8Λ, - 0.2, 0.2<, Contours 20, MaxRecursion 0, PlotPoints 40, ColorFunction ColorData@"TemperatureMap"D, AspectRatio 1, FrameLabel 9" Hs-1 L", "Λ Hs-1 L"=E; In[16]:= ManipulateA ModuleA8fit, fit1, eval, p1, p2<, eval = 8<; fit = NonlinearModelFit@data, f2@, Λ, td, 88, 0.9<, 8Λ, 5<<, t, EvaluationMonitor AppendTo@eval, 8, Λ, chi22@, ΛD<DD; fit1 = NonlinearModelFit@data, f2@, 0, td, 88, 0.9<<, td; p1 = Show@contour2, Graphics@8Red, Thickness@LargeD, Line@eval@@1 ;; n, 1 ;; 2DDD<DD; p2 = Show@pdata, Plot@fit1@tD, 8t, - 20, 20<, PlotStyle Directive@Blue, Thickness@LargeDDD, Plot@f2@eval@@n, 1DD, eval@@n, 2DD, td, 8t, - 20, 20<DD; RowA9 p1, " ", ColumnA9 StyleForm@ToString@TraditionalForm@x0 Sin@ tddd, FontSize 20, FontFamily "Helvetica", FontColor BlueD, StyleForm@ToString@TraditionalForm@x0 Sin@ t + Tanh@Λ tdddd, FontSize 20, FontFamily "Helvetica", FontColor RedD, p2, StyleFormA ToStringATraditionalFormAΧ2 NEE <> " = " <> ToString@eval@@n, 3DDD, FontSize 20, FontFamily "Helvetica", FontColor RedE, StyleForm@"Korelacijska matrika v minimumu:", FontColor RedD, StyleForm@TableForm@fit@"CorrelationMatrix"D, TableHeadings 88"", "Λ"<, 8"", "Λ"<<D, FontColor RedD =, Center, Spacings 2E =E E, 8n, Range@1, D< E n 0.2 0.1

Λ Hs -1 L -0.1-0.2 0.6 0.7 0.8 0.9 0 Hs -1 L x0 sinht L x0 sinhtanhhλ tl + t L Out[16]= x HmL - -20 0-20 t HsL Χ2 N = 279961 Korelacijska matrika v minimumu: Λ - 0.914781 Λ - 0.914781 naloga: Teorija kemijske kinetike napove za sigmoidno krivuljo iz podatkov Adrenalin.dat naslednjo odvisnost F / Fmax = c / (a + c), kjer pomeni a koncentracijo s polovi nim maksimalnim u inkom. S pomo jo nelinearne regresije dolo i koeficienta Fmax in a. Rezultate primerjaj z rezultati naloge 7.2. 2. naloga: V datoteki RefractiveIndex.txt so zbrane meritve lomnega koli nika nekega materiala v odvisnosti od valovne dol ine pri razli nih temperaturah. Odvisnost lomnega koli nika od valovne dol ine opisuje Sellmeierjeva formula N nhλl2-1 = Úi=1 Si Λ 2 1-J i N, kjer so Λi valovne dol ine elektronskih prehodov v opazovanem materialu, Si pa pripadajo e Λ ute i. Z nelinearno regresijo dolo i Λi in Si (a) ob predpostavki, da meritev lahko opi emo z enim samim elektronskim prehodom (N=1) in (b) ob predpostavki, da lahko meritev opi emo z dvema takima prehodoma (N=2). Nari i temper- 5

6 n Λ 2 N 1 i 1 S i 1 Λ i Λ 2, kjer so Λ i valovne dol ine elektronskih prehodov v opazovanem materialu, S i pa pripadajo e ute i. Z nelinearno regresijo dolo i Λ i in S i (a) ob predpostavki, da meritev lahko opi emo z enim samim elektronskim prehodom (N=1) in (b) ob predpostavki, da lahko meritev opi emo z dvema takima prehodoma (N=2). Nari i temperaturno odvisnost valovnih dol in Λ i in ute i S i.