Introduction to Electrical Engineering

Similar documents
Circuit Theorems DR. GYURCSEK ISTVÁN

Resonance Circuits DR. GYURCSEK ISTVÁN

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better.

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302

4/27 Friday. I have all the old homework if you need to collect them.

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Chapter 10: Sinusoids and Phasors

Circuit Analysis. by John M. Santiago, Jr., PhD FOR. Professor of Electrical and Systems Engineering, Colonel (Ret) USAF. A Wiley Brand FOR-

Sinusoids and Phasors

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Fall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits

Chapter 10: Sinusoidal Steady-State Analysis

EIE/ENE 104 Electric Circuit Theory

Electric Circuit Theory

NETWORK ANALYSIS WITH APPLICATIONS

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10 AC Analysis Using Phasors

Sinusoidal Steady-State Analysis

UC DAVIS. Circuits I Course Outline

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Sinusoidal Steady State Analysis (AC Analysis) Part I

ELEC 250: LINEAR CIRCUITS I COURSE OVERHEADS. These overheads are adapted from the Elec 250 Course Pack developed by Dr. Fayez Guibaly.

ECE 202 Fall 2013 Final Exam

Frequency Response DR. GYURCSEK ISTVÁN

E2.2 Analogue Electronics

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

UNIVERSITY OF MASSACHUSETTS LOWELL DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING SYLLABUS FOR THE DOCTORAL QUALIFYING EXAM

Sinusoidal Steady State Analysis (AC Analysis) Part II

ECE 201 Fall 2009 Final Exam

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Refinements to Incremental Transistor Model

1 Phasors and Alternating Currents

11. AC Circuit Power Analysis

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

ECE-202 FINAL April 30, 2018 CIRCLE YOUR DIVISION

Updated: Page 1 of 6

Notes on Electric Circuits (Dr. Ramakant Srivastava)

2. The following diagram illustrates that voltage represents what physical dimension?

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Basic Electrical Circuits Analysis ECE 221

The Mechanical Engineering Undergraduate Program Term Stevens Institute of Technology

ECE 5260 Microwave Engineering University of Virginia. Some Background: Circuit and Field Quantities and their Relations

LAPLACE TRANSFORMATION AND APPLICATIONS. Laplace transformation It s a transformation method used for solving differential equation.

Fundamentals of Electrical Circuit Analysis

Overview of Electromagnetic Fields 2

INSTRUMENTAL ENGINEERING

Review of Linear Time-Invariant Network Analysis

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

EE292: Fundamentals of ECE

Review of 1 st Order Circuit Analysis

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE40 Lecture 11 Josh Hug 7/19/2010

EE100Su08 Lecture #11 (July 21 st 2008)

ECE 205: Intro Elec & Electr Circuits

Introduction to AC Circuits (Capacitors and Inductors)

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Total No. of Questions :09] [Total No. of Pages : 03

OPERATIONAL AMPLIFIER APPLICATIONS

University Of Pennsylvania Department of Physics PHYS 141/151 Engineering Physics II (Course Outline)

ECE 3110 Electromagnetic Fields I Spring 2016

EE 212 PASSIVE AC CIRCUITS

Fourier series. XE31EO2 - Pavel Máša. Electrical Circuits 2 Lecture1. XE31EO2 - Pavel Máša - Fourier Series

Phasors: Impedance and Circuit Anlysis. Phasors

Physics 116A Notes Fall 2004

EIT Quick-Review Electrical Prof. Frank Merat

09/29/2009 Reading: Hambley Chapter 5 and Appendix A

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Lecture 24. Impedance of AC Circuits.

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

Transient Analysis of First-Order Circuits: Approaches and Recommendations

COURSE OUTLINE. Upon completion of this course the student will be able to:

P A R T 2 AC CIRCUITS. Chapter 9 Sinusoids and Phasors. Chapter 10 Sinusoidal Steady-State Analysis. Chapter 11 AC Power Analysis

Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Midterm 2

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

CIRCUIT ANALYSIS II. (AC Circuits)

A system that is both linear and time-invariant is called linear time-invariant (LTI).

Basics of Network Theory (Part-I)

Sinusoidal Response of RLC Circuits

EE40 Midterm Review Prof. Nathan Cheung

ECE145A/218A Course Notes

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

ELECTRICAL ENGINEERING

Chapter 5 Steady-State Sinusoidal Analysis

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09

10/11/2018 1:48 PM Approved (Changed Course) PHYS 42 Course Outline as of Fall 2017

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002.

To find the step response of an RC circuit

ECE Spring 2017 Final Exam

Chapter 9 Objectives

15 n=0. zz = re jθ re jθ = r 2. (b) For division and multiplication, it is handy to use the polar representation: z = rejθ. = z 1z 2.

BIOEN 302, Section 3: AC electronics

ECE Circuit Theory. Final Examination. December 5, 2008

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS CALCULUS BASED PHYSICS I PHYS 2110

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Transcription:

DR. GYURCSEK ISTVÁN Introduction to Electrical Engineering Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016 ISBN:978-3-330-71341-3 1 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Introduction (Bio-1) At a glance Contact DR. GYURCSEK ISTVÁN Department of Electrical Networks Institute of Information and Electrical Technology University of Pécs Office: Boszorkány street 2 Room: B.232 Web: http://gyurcsekportal.hu/mik.html E-mail: gyurcsek.istvan@mik.pte.hu Phone: +36 72 503 650 / 23852 [msc: electrical engineer] - [dr.univ: physics] [text books:08] [periodicals:10] [patents:06] [conferences:15] [pmmff-a] - [tkb] 2 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Introduction (Bio-2) [budapest] [münchen] [berlin] [frankfurt] [wien]-[moscow] [samara]-[hhi,sc/usa] [hiking] [swimming] [photography] [blue track:5705] [dubai]-[kuwait] [yerevan] [peterborough] [london] [warsaw]-[lodz]-[pécs] [2 children] [2 locations] [1 car] 3 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Course Introduction Topics and Requirements Mathematics Background 4 gyurcsek.istvan@mik.pte.hu 2018.09.04.

The Method I hear and I forget I see and I remember I do and I understand 5 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Language The book of nature is written in the language of mathematics. 6 gyurcsek.istvan@mik.pte.hu 2018.09.04.

How to TRUE USEFUL ESTHETIC MIN REQ: 2 OUT OF 3 THE ONLY QUESTION IS WHY? 7 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Course Introduction Topics and Requirements Mathematics Background 9 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Presence 10 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Prerequisites FOUR BASIC OPERATIONS ( IN ENGINEERING ) Differential calculus f(t) t Integral calculus Laplace transform Fourier transform L f(t), t2, න f t dt t1 F f(t) L 1 f(t), F 1 f(t) 11 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Electrical Engineering 1 INTRODUCTION Course overview (covered topics and required background in mathematics) ELECTROMAGNETIC FIELDS Electric field (characteristics of static electric field, Gauss law, energy of the electric field, interaction with matter, characteristics of stationary electric field, theoretical background of Ohm s law and Kirchhoff s laws) (examples) Magnetic field (Energy in static and stationary magnetic field, interaction with matter, induction, self and mutual inductance, Amperee s excitation law, Faraday s induction law, Time varying electric and magnetic fields, Maxwell equations) DC CIRCUIT ANALYSIS Concepts and definitions (charge and current, voltage, power and energy, circuit elements) (examples) Basic laws (Ohm s Law, nodes, branches, and loops, Kirchhoff s laws, series resistors and voltage division, parallel resistor and current division, wye-delta transformations) (examples) Methods of analysis (nodal analysis, mesh analysis, applications: DC transistor circuits) (examples) Circuit theorems (linearity property, superposition, source transformation, Thevenin s theorem, Norton s theorem, maximum power transfer) (examples) Operational amplifiers (ideal op amp, inverting amplifier, noninverting amplifier, summing amplifier, difference amplifier, cascaded op amp circuits) (examples) BASIC AC CIRCUITS Capacitors and inductors (capacitors, series and parallel capacitors, inductors, series and parallel inductors, applications) (examples) Sinusoids and phasors (sinusoids, phasors, phasor relationships for circuit elements, impedance and admittance, Kirchhoff s laws in the frequency domain, impedance combinations) (examples) Sinusoidal steady-state analysis (nodal analysis, mesh analysis, superposition theorem, source transformation, Thevenin and Norton equivalent circuits, op amp AC circuits) AC power analysis (instantaneous and average power, maximum average power transfer, effective or RMS value, apparent power and power factor, complex power, conservation of AC power, power factor correction) (examples) 13 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Electrical Engineering 2 ADVANCED AC CIRCUITS Three-phase circuits (balanced three-phase voltages, balanced wye-wye, wye-delta, delta-delta, delta-wye connections, power in a balanced system, unbalanced three-phase systems, applications) (examples) Magnetically coupled circuits (mutual inductance, energy in a coupled circuit, linear transformers, ideal transformers, three-phase transformers, applications) (examples) Frequency response (transfer function, decibel scale, Bode plots) (examples) Resonance circuits (series and parallel resonances, passive and active filters, applications) (examples) Circuits with general periodic excitations (trigonometric and exponential Fourier series, symmetry considerations, frequency spectra, circuit applications, average power and RMS values) (examples) Two-port networks (impedance and admittance parameters, hybrid parameters, transmission parameters, relationships between parameters, interconnection of networks, symmetric two-ports, applications) (examples) DYNAMIC CIRCUITS First-order circuits (source-free RC and RL circuits, singularity functions, step response of RC and RL circuits, applications) (examples) Second-order circuits (finding initial and final values, source-free series and parallel RLC circuits, step response of a series and parallel RLC circuits, general second-order circuits, electrical duality, applications) (examples) INTEGRAL TRANSFORMS IN CIRCUIT ANALYSIS The Laplace transform (definitions, properties, inverse Laplace transform,, application to integrodifferential equations, convolution integral, circuit element models, circuit analysis, transfer functions in s-domain) (examples) The Fourier transform (definitions, properties, circuit applications, Parseval s theorem, comparing the Fourier and Laplace transforms, applications) (examples) 14 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Required Performance 1 Requirements Two approved classroom studies (scheduled during the semester) Written examination (scheduled for the exam terminus) Grading guidelines Outstanding work (mark 5, 90-100%). Execution of work is thoroughly complete and demonstrates a superior level of achievement overall with a clear attention to details. The student is able to synthesize the course material with new concepts and ideas in a thoughtful manner and is able to express those ideas in clear way. High quality work (mark 4, 76-89%). Student work demonstrates a high level of knowledge with consistency. The student demonstrates a level of thoughtfulness in addressing concepts and ideas. Work demonstrates excellence but less consistency than a 5 student. Satisfactory work (mark 3, 63-75%). Student work addresses all of the task and assignment objectives with few minor or major problems. Less than satisfactory work. (mark 2, 51-62%). Work is incomplete in significant ways and lacks attention to details. Unsatisfactory work (mark 1, 0-50%). Work exhibits several major and minor problems with basic conceptual premise, lacking both intention and resolution. Results are severely lacking and are weak in clarity and completeness. 15 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Readings, Sources (EN) Globe Edit, ISBN:9783330713413 http://gyurcsekportal.hu/mik.html 17 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Readings, Sources (HU) Torda B.: Bevezetés az elektrotechnikába 1-2. SZIE 2005 (kézirat) Simonyi K.: Villamosságtan. AK Budapest 1983, ISBN:9630534134 Simonyi K. - Zombory L.: Elméleti villamosságtan. MK Budapest 2000, ISBN:9631630587 Zombory L.: Elektromágneses terek. MK Budapest 2006, (www.electro.uni-miskolc.hu) Dr.Selmeczi K. - Schnöller A.: Villamosságtan 1. MK Budapest 2002, TK szám: 49203/I Dr.Selmeczi K. - Schnöller A.: Villamosságtan 2. TK Budapest 2002, ISBN:9631026043 Fodor Gy.: Elméleti elektrotechnika 1-2. TK Budapest 1974, TK. szám: 44340 Fodor Gy.: Hálózatok és rendszerek. Műegyetemi Kiadó Budapest 2006. Fodor Gy.: Villamosságtan példatár. TK Budapest 2001. Simonyi K.- Fodor Gy. Vágó I.: Elméleti villamosságtan példatár. TK Bp. 1967, TK szám: 44301 18 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Course Introduction Topics and Requirements Mathematics Background 19 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Functions 20 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Linearity Conditions of linearity Homogenity y = h(x) a y = h(a x) Additivity y 1 = h x 1, y 2 = h x 2 y 1 + y 2 = h x 1 + x 2 Example 1 Differential calculus Example 2 - Relationship bw. excitation and response Homogenity y = dx dt Additivity a y = d a x dt y 1 = dx 1 dt, y 2 = dx 2 dt = a dx dt Homogenity V = R I a V = R (a I) Additivity V 1 = R I 1, V 2 = R I 2 y 1 + y 2 = d x 1 + x 2 dt = dx 1 dt + dx 2 dt V = R I 1 + I 2 = R I 1 + R I 2 = V 1 + V 2 21 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Matrix 1 R = R 11 R 1N R N1 R NN R 11 R 1N R N1 R NN i 1 i N = v 1 v N M = a 11 a 12 a 21 a 22 = a 11 a 22 a 12 a 21 I = i 1 i N V = v 1 v N R 11 i 1 + R 12 i 2 + + R 1N i N = v 1 R 21 i 1 + R 22 i 2 + + R 2N i N = v 2 adjm = a 22 a 12 a 21 a 11 adjoint M 1 = 1 adjm = R I = V R N1 i 1 + R N2 i 2 + + R NN i N = v N = a 22 a 12 a 21 a 11 22 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Matrix 2 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 x 1 x 2 x 3 = b 1 b 2 b 3 Cramer s rule (n n) x 1 = 1, x 2 = 2, x 3 = 3 = det a 11 a 12 a 13 a 21 a 22 a 23 1 = det a 31 a 32 a 33 = det b 1 a 12 a 13 a 11 b 1 a 13 b 2 a 22 a 23 2 = det a 21 b 2 a 23 b 3 a 32 a 33 a 31 b 3 a 33 3 a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 Sarrus rule 3 3 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33 extension right OR extension down 23 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Differential Calculus f x + x f x x + x x = f x x df x dx = f (x) (slope at arbitrary point x) f(x) g(x) = f x g x g x f(x) g(x) 2 df g x dx = df g x dg x dg x dx example. 1; sin ωt = ω cos ωt example. 2; cos ωt = ω sin ωt example.3; e st = s e st 24 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Integral Calculus i b f(x i) x න f(x) dx a S ab below f(x) b න f(x) dx = F(x) b a = F b F(a) a example. 1; F = F s W ab F s, example. 2; U avg = 1 T න 0 T u(t) dt W ab = example. 3; ර A i b F(s i) s න F(s) ds = න a a B da = 0 b F (s) cos α ds 25 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Trigonometry 2 cos x cos y = cos x y + cos x + y sin x ± y = sin x cos y ± cos x sin y cos x ± y = cos x cos y sin x sin y sin 2x = 2 sin x cos x cos 2x = cos 2 x sin 2 x cos 2 x + sin 2 x = 1 Calculus f(x) f (x) F(x) sin x cos x cos x cos x sin x sin x tan x 1 + tan 2 x ln cos x 26 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Complex Numbers Complex number SCALAR z ҧ = x + j y or z = x + j y (signed simply bold although not a vector) z = x + j y = r cos φ + j sin φ = r e jφ j = 1 = 1 e jπ = 1 e jπ/2 Calculus e jφ = cos φ + j sin φ Euler z 1 = x 1 + j y 1, z 2 = x 2 + j y 2 r = x 2 + y 2, φ = tan 1 y x z 1 + z 2 = x 1 + x 2 + j y 1 + y 2 x = r cos φ, y = r sin φ z 1 z 2 = r 1 r 2 e j φ 1+φ 2 * cos φ = ejφ + e jφ 2 sin φ = ejφ e jφ j 2 z 1 z 2 = r 1 r 2 e j φ 1 φ 2 z = x j y = r e jφ HW: j 2j =? 27 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Function Transform 1 v t = V cos ω t + φ v t = V m e j ω t+φ = V m e jφ jω t e v t V, V v t, PHASOR(supressing time factor) V = V e jφ v t = Re v t 28 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Function Transform 2 x t, τ = rect t, τ X Ω, τ = F x t, τ = τ sin Ωτ/2 Ωτ/2 = τ sinc Ωτ/2 (sinc cardinal sine) f t F ω = F f(t) = න f(t)e jωt dt F ω f t = F 1 F(ωt = 1 2π න F jω e jωt dω 29 gyurcsek.istvan@mik.pte.hu 2018.09.04.

Questions 30 gyurcsek.istvan@mik.pte.hu 2018.09.04.