Pacing 8th Grade Math

Similar documents
8.G.1. Illustrative Mathematics Unit 1. 8.G.1a 8.G.2 8.G.3. 8.G.1c. Illustrative Mathematics Unit 2 8.G.2

I can Statements Grade 8 Mathematics

Grade 8 Common Core Lesson Correlation

AHSAA Homeschool Student Eligibility Exams Mathematics Grade 8

3 RD 9 WEEKS. EE 1 EE 3 EE 4 EE 7a EE 7b EE 8a EE 8b EE 8c SP 1 SP 2 SP 3 SP 4 F 2 F 3 F 5

MD College and Career Ready Standards: Grade 8 Math

, Eighth Grade Mathematics, Quarter 1

8.EE.7a; 8.EE.7b 1.3 (Extra) 7 I can rewrite equations to solve for a different variable. 8.EE.7 1.4

CORRELATION OF STANDARDS FOR MATHEMATICAL CONTENT PRENTICE HALL COURSE 3 MATHEMATICS

Common Core Correlations. Mathematics Grade 8. Know and apply the properties of integer exponents to generate equivalent numerical expressions.

BPS PreAlgebra Math Planning Guide

Repeated Reasoning. Reason A & Q. Make sense. Construct & Critique. Model Tools Precision Structure NS

IA_CCSS_Math Math (2011) Grade 8

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M MATHEMATICS Integrated Algebra 8

The descriptions below provide an overview of the concepts and skills that students explore throughout the 8 th grade.

8 th Grade Math Instructional Guide. 1 st Quarter Expressions and Equations (Exponents) and the Number System. 8 th Math Draft 6/7/16 1

Test Blueprint ATI AzMERIT Math 08 Gr. CBAS #1 TE AZ-8.NS THE NUMBER SYSTEM. 6.7% on Test. # on AP. % on Test. # on Test

Correlation of Final Common Core Standards (06/02/10) Grade 8 to UCSMP Algebra, 2008

Lesson 1: Properties of Integer Exponents

Alabama Course of Study Mathematics

Middle School Math 3 Grade 8

Standards to Topics. Louisiana Student Standards for Mathematics Mathematics 8 Grade 8

Agile Mind Mathematics 8 Scope & Sequence for Common Core State Standards, DRAFT

GRADE 8. Know that there are numbers that are not rational, and approximate them by rational numbers.

Pre-Algebra 8 Overview

Textbook: Chapter 1 Lesson 1

Diocese of Erie Mathematics Curriculum Eighth Grade August 2012

The descriptions elo pro ide an o er ie of the concepts and skills that students explore throughout the 8 th grade.

The following Practice Standards and Literacy Skills will be used throughout the course:

Mathematics Grade 8. Prepublication Version, April 2013 California Department of Education 51

Arkansas Mathematics Standards Grade

Grade 8 Math Spring 2017 Item Release

Lee County Schools Curriculum Road Map Pre-Algebra

DRAFT EAST POINSETT CO. SCHOOL DIST. - GRADE 8 MATH

Curriculum Map Grade 8 Math

Days 1-2: Perfect Squares/ Perfect Cubes Days 3-4: Square Roots of Perfect Squares /Cube Roots of

Sequence of Grade 8 Modules Aligned with the Standards

AIMS Common Core Math Standards Alignment

COMMON CORE STATE STANDARDS FOR

Mathematics Grade 8 focuses on three critical areas:

Focus Topic 1 Graphing Proportional Relationships Including Similar Triangles & Unit Rates (3 Weeks)

Mathematics 8 Essential Curriculum

Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

Madison County Schools Suggested 8 th Grade Math Pacing Guide for Connected Mathematics

Mathematics Grade 8 focuses on three critical areas:

First Six Weeks Math Standards Sequence Grade 8 Domain Cluster Standard Dates The Number System

Common Core State Standards for Mathematics

Correlated to the New York State Common Core Mathematics Curriculum. Grade 8. Contents

Grade 8 Yearlong Mathematics Map

CK-12 Middle School Math Grade 8

Washington Island School Grade Level: 8th Subject: Mathematics. Curriculum Map Date Approved: Teacher: Daniel Jaeger

Five District Partnership 1

Eighth Grade Mathematics

The School District of Palm Beach County M/J GRADE 8 PRE-ALGEBRA Unit 1: Real Numbers, Exponents & Scientific Notation

Oakwood City School District Grade Eight Mathematics. Grade Eight Mathematics

Skills available for New York eighth grade math standards

Middle School Math Course 3. Correlation of the ALEKS course Middle School Math Course 3 to the Common Core State Standards for Grade 8 (2010)

8 th Grade Remediation Guide

Common Core State Standards with California Additions 1 Standards Map for a Basic Grade-Level Program. Grade Eight Mathematics

A TRADITION of EXCELLENCE A VISION for TOMORROW

Grade 8: Mathematics Curriculum (2010 Common Core) Hamburg School

Pittsburg Unified School District. Math 8 CCSS. Teaching Guide for Mathematics Common Core Curriculum REVISED

Mountain Home School District 8 th Grade Math Claim (SBAC) Content Domain Target CCSS Depth of Knowledge Level Claim 1:Concepts and Procedures

Smarter Balanced Assessment Consortium Claims, Targets, and Standard Alignment for Math Interim Assessment Blocks

Sequence of Math 8 SDC Units Aligned with the California Standards

BPS Accelerated 7th Grade Math Planning Guide UNIT 7.1: THE NUMBER SYSTEM

How do I apply concepts of rational and irrational numbers? Concepts Competencies Resources Assessments CC E.1. number system properties.

+ Curriculum Mapping Template

EIGHTH GRADE Mathematics Standards for the Archdiocese of Detroit

Pre-AP 8th Grade Math Year At A Glance

Subject Area: Mathematics State-Funded Course: Mathematics/Grade 8

Mr. Miles 8 th Grade Math Class Info & Syllabus

I can demonstrate for rational numbers that the decimal expansion repeats eventually.

Middle School Math Solution: Course 3

April 2016 Draft. Mathematics Florida Standards (MAFS) Correlation to Eureka Math Page 1. eureka-math.org 2016 Great Minds

Monroe County Schools th Grade Math Pacing Guide

Math 8 CCSS Guide. Unit 1 Variables, Expressions and Equations (Chapters 1, 2 and 5)

MCPS Math 8 2Q Instructional Guide

8 th Grade Math. Units of Study. Overview

April 2016 Draft. DRAFT New Louisiana Standards for Correlation to Eureka Math Page 1. eureka math.org 2016 Great Minds

7th Grade Advanced Pacing Guide

UNIT 1 Unit Title: The Number System Unit Description: Know that there are numbers that are not rational, and approximate them by rational numbers

FLORIDA STANDARDS TO BOOK CORRELATION FOR GRADE 7 ADVANCED

GRADE 8 MATH Curriculum Map

Neshoba Central Middle School 8 th Grade Pacing Guide Pre-Algebra

I can calculate percent of change. I can calculate percent increases (sales tax, tip/gratuity, commission, fees, markup, etc ).

Pennsylvania System of School Assessment

Sequence of Math 7 Accelerated Units Aligned with the California Standards

Smarter Balanced Assessment Consortium Claims, Targets, and Standard Alignment for Math

Core Focus on Math and the 2010 Common Core State Standards. Common Core State Standard Clusters

Horizontal Progression Recommendations

Grade 7 Honors Yearlong Mathematics Map

PRAIRIE-HILLS ELEMENTARY SCHOOL DISTRICT th Grade Math Curriculum Map

OAKLYN PUBLIC SCHOOL MATHEMATICS CURRICULUM MAP EIGHTH GRADE

GRADE 8 MATH Curriculum Map

Common Core State Standards for Mathematics Grade 8 Houghton Mifflin Harcourt Go Math, Grade 8 Common Core Edition 2014

Math 8A. Content Description Content Location U01-L01-A05. Learn: Text. Video U04-L18-A05. Learn: Text and. Video. Learn: Text and U04-L19-A03.

Mathematics Pacing. Instruction 9/9-10/18/13 Assessment 10/21-10/25/13 Remediation 10/28 11/1/13. # STUDENT LEARNING OBJECTIVES CCSS Resources

Achievement Level Descriptors Mathematics Grade 8

Pre-Algebra GT (Grade 6) Essential Curriculum. The Mathematical Practices

Transcription:

O.U.R. Unit 1 Big Ideas: Chapters 2 and 3 8.G.1 8.G.1a 8.G.1b 8.G.1c 8.G.3 1st Nine Weeks Rigid Transformations and Congruence Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length. Angles are taken to angles of the same measure. Parallel lines are taken to parallel lines. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so. Embedded Review: 3.NF.2, 4.MD.4, 4.MD.5, 4.GA.1, 4.GA.2, 5.OA.2, 5.NF.4, 7.G.5 Dilations and Similarity O.U.R. Unit 2 Big Ideas: Chapters 2 and 3 8.G.2 8.G.3 8.EE.6 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; know and derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. Embedded Review: 3.OA.5, 5.OA.1, 5.OA.2, 5.NF.3, 6.NS.A Linear Relationships O.U.R. Unit 3 Big Ideas: Chapters 4 and 5 8.G.A 8.EE.6 Understand and describe the effects of transformations on two-dimensional figures and use informal arguments to establish facts about angles. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; know and derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. Embedded Reviews: 4.OA.5, 5.MD.3, 6.NS.A, 6.NS.1, 6.G.1, 6.EE.3, 6.EE.9, 7.NS.A, 7.RP.2

2nd Nine Weeks Linear Equations and Linear Systems O.U.R. Unit 4 Big Ideas: Chapters 4 and 5 8.EE.6 8.EE.7 8.EE.7a 8.EE.7b 8.EE.8 8.EE.8a 8.EE.8b Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; know and derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. Solve linear equations in one variable. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Analyze and solve systems of two linear equations. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6. Embedded Review: 6.EE.5, 6.EE.9, 7.NS.1 8.EE.8c Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Introducing Functions 8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in 8th grade.) 8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and another linear function represented by an algebraic expression, determine which function has the greater rate of change. O.U.R. Unit 5 Big Ideas: Chapter 6 8.F.3 8.F.4 8.F.5 Know and interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models and in terms of its graph or a table of values. Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. Embedded Review: 6.EE.1 8.SP.2 Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line and informally assess the model fit by judging the closeness of the data points to the line. O.U.R. Unit 6 Big Ideas: Chapter 9 8.SP.1 8.SP.2 8.SP.3 Bivariate Data Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line and informally assess the model fit by judging the closeness of the data points to the line. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height. Embedded Review: 5.G.2, 6.SP.4

Probability 7th Grade O.U.R. Unit 8 Lessons 7-9 Other Resources 8.SP.4 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.

3rd Nine Weeks Integer Exponents and Scientific Notation O.U.R. Unit 7 Big Ideas: Chapters 7 and 10 8.EE.1 8.EE.3 8.EE.4 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 x 3 5 = 3 3 = 1/33 = 1/27. Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 x 108 and the population of the world as 7 x 109, and determine that the world population is more than 20 times larger. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. Embedded Review: 5.NBT.2, 5.NF.5b, 6.EE.1 Pythagorean Theorem and Irrational Numbers 8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 x 3 5 = 3 3 = 1/33 = 1/27. O.U.R. Unit 8 Big Ideas: Chapters 7 and 10 8.EE.2 8.NS.1 8.NS.2 8.G.4 8.G.5 Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that 2 is irrational. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually or terminates, and convert a decimal expansion which repeats eventually or terminates into a rational number. Use rational approximations of irrational numbers to compare the size of irrational numbers locating them approximately on a number line diagram. Estimate the value of irrational expressions such as π2. For example, by truncating the decimal expansion of 2, show that 2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations. Explain a proof of the Pythagorean Theorem and its converse. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. Embedded Review: 5.NF.4a, 6.EE.1, 6.G.1, 7.G.6, 7.RP.3 8.G.6 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Cylinders, Cones, and Spheres O.U.R. Unit 9 (Lessons 1-10) Big Ideas: Chapter 8 8.G.7 8.F.1 8.F.2 Know and understand the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in 8th grade.) Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and another linear function represented by an algebraic expression, determine which function has the greater rate of change. Embedded Review: 6.EE.A, 6.EE.5, 7.G.B, 7.G.4 4th Nine Weeks Putting It All Together O.U.R. Unit 9 (Lessons 11 & 12) PBL Tasks and Other Resources Review All Standards