CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

Similar documents
, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

Design of Analog Integrated Circuits

Part III Lectures Field-Effect Transistors (FETs) and Circuits

EE 215A Fundamentals of Electrical Engineering Lecture Notes Operational Amplifiers (Op Amps) 8/6/01 Reviewed 10/04

Faculty of Engineering

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

55:041 Electronic Circuits

EE 221 Practice Problems for the Final Exam

Feedback Principle :-

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Linear Amplifiers and OpAmps

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Circuit Theorems. Introduction

CHAPTER 5. Solutions for Exercises

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

Introduction to Electronic circuits.

The Operational Amplifier and Application

ELG4139: Op Amp-based Active Filters

Week 11: Differential Amplifiers

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Si Oxidation. SiO 2. ! A method of forming SiO 2

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Section I5: Feedback in Operational Amplifiers

FYSE400 ANALOG ELECTRONICS

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Conduction Heat Transfer

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Richard s Transformations

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

V V. This calculation is repeated now for each current I.

EE C245 ME C218 Introduction to MEMS Design

The three major operations done on biological signals using Op-Amp:

Diodes Waveform shaping Circuits

Chapter 3 Applications of resistive circuits

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Module B3. VLoad = = V S V LN

Physics 107 HOMEWORK ASSIGNMENT #20

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Lesson #15. Section BME 373 Electronics II J.Schesser

III. Operational Amplifiers

varying with time, but its phasor amplitude (e.g., A) is constant.

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

Energy & Work

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

T-model: - + v o. v i. i o. v e. R i

VI. Transistor Amplifiers

Electric and magnetic field sensor and integrator equations

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

Wp/Lmin. Wn/Lmin 2.5V

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Transfer Characteristic

Lecture 27 Bipolar Junction Transistors

Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

Small signal analysis

R th is the Thevenin equivalent at the capacitor terminals.

Bipolar-Junction (BJT) transistors

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Lesson #14. Section BME 373 Electronics II J.Schesser

Lecture 2 Feedback Amplifier

1. Ideal OP Amps. +V cc. R o. v 1 v 2. v o. R d 2 1. V cc. Ideal Characteristics A = (gain is infinite) (no offset voltage) R

1. Elementary Electronic Circuits with a Diode

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

55:041 Electronic Circuits

Lecture 5: Operational Amplifiers and Op Amp Circuits

OPERATIONAL AMPLIFIERS

Ch5 Appendix Q-factor and Smith Chart Matching

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

PT326 PROCESS TRAINER

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

Modeling and Analysis of a High-Voltage DC-DC Converter with Vin/3-Voltage Stress on the Primary s Switches

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

Copyright 2004 by Oxford University Press, Inc.

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Technote 6. Op Amp Definitions. April 1990 Revised 11/22/02. Tim J. Sobering SDE Consulting

The Decibel and its Usage

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

Square law expression is non linear between I D and V GS. Need to operate in appropriate region for linear behaviour. W L

Common Base Configuration

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

CTN 2/23/16. EE 247B/ME 218: Introduction to MEMS Design Lecture 11m2: Mechanics of Materials. Copyright 2016 Regents of the University of California

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Novel current mode AC/AC converters with high frequency ac link *

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Graphical Analysis of a BJT Amplifier

Energy Storage Elements: Capacitors and Inductors

Conservation of Momentum

EECE 301 Signals & Systems Prof. Mark Fowler

55:041 Electronic Circuits

II. PASSIVE FILTERS. H(j ω) Pass. Stop

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

Grumman F-14 Tomcat Control Design BY: Chike Uduku

Fourier Analysis, Low Pass Filters, Decibels

Transcription:

CHPTE Slutn fr Exerce E. (a nnnertng amplfer ha pte gan. Thu ( t ( t 50 ( t 5.0 n(000πt (b n nertng amplfer ha negate gan. Thu ( t ( t 50 ( t 5.0 n(000πt E. V V 75 500 + 5+ 75 c 75 V 000 75 500 V + + 500 + 000 5 + 75 I 000 4 75 0 I 75 G.75 0 c 00 E. ecall that t maxmze the pwer elere t a la frm a urce wth fxe nternal retance, we make the la retance equal t the nternal (r Théenn retance. Thu we make 5 Ω. epeatng the calculatn f Exerce. wth the new alue f, we hae V 5 c 500 50 V + 5+ 5 I 000 50 0 I 5 G 5 0 4

E.4 By npectn, 000 Ω an 0 Ω. V c c c c V + + V 000 000 c 0 0 0 557 V 00+ 000 00+ 000 E.5 Swtchng the rer f the amplfer f Exerce.4 t --, we hae 000 Ω an 00 Ω V c c c c V + + V 000 000 c 0 0 0 448 V 00+ 000 00+ 000 E. P ( 5 V (.5.5 W P P + P P.5 + 0.5.5 0.5 W P η 00 %.% P E.7 The nput retance an utput retance are the ame fr all f the amplfer mel. Only the crcut cnfguratn an the gan parameter are fferent. Thu we hae kω an 0 Ω an we nee t fn the pen-crcut ltage gan. The current amplfer wth an pen-crcut la :

c c 00 0 000 c c 4 E.8 Fr a trancnuctance-amplfer mel, we nee t fn the hrtcrcut trancnuctance gan. The current-amplfer mel wth a hrtcrcut la : G 00 500 c c c mc 0. S The mpeance are the ame fr all f the amplfer mel, we hae 500 Ω an 50 Ω. E.9 Fr a tranretance-amplfer mel, we nee t fn the pen-crcut tranretance gan. The trancnuctance-amplfer mel wth an pen-crcut la : mc c Gm c Gmc 0.05 0 0 500 kω / The mpeance are the ame fr all f the amplfer mel, we hae MΩ an 0 Ω. E.0 The amplfer ha kω an kω. (a We hae < 0 Ω whch much le than, an we al hae > 00 kω whch much larger than. Therefre fr th urce an la, the amplfer apprxmately an eal ltage amplfer.

(b We hae > 00 kω whch much greater than, an we al hae < 0 Ω whch much maller than. Therefre fr th urce an la, the amplfer apprxmately an eal current amplfer. (c We hae < 0 Ω whch much le than, an we al hae < 0 Ω whch much maller than. Therefre fr th urce an la, the amplfer apprxmately an eal trancnuctance amplfer. ( We hae > 00 kω whch much larger than, an we al hae > 00 kω whch much larger than. Therefre fr th urce an la, the amplfer apprxmately an eal tranretance amplfer. (e Becaue we hae, the amplfer e nt apprxmate any type f eal amplfer. E. We want the amplfer t repn t the hrt-crcut current f the urce. Therefre, we nee t hae <<. Becaue the amplfer hul eler a ltage t the la that nepenent f the la retance, the utput retance hul be ery mall cmpare t the mallet la retance. Thee fact ( ery mall an ery mall ncate that we nee a nearly eal tranretance amplfer. E. The gan magntue hul be cntant fr all cmpnent f the nput gnal, an the phae hul by prprtnal t the frequency f each cmpnent. The nput gnal ha cmpnent wth frequence f 500 Hz, 000 Hz an 500 Hz, repectely. The gan 5 0 at a frequency f 000 Hz. Therefre the gan hul be 5 5 at 500 Hz, an 5 45 at 500 Hz. E. We hae n( t Vm c( ωt ( t 0 n( t 0.0 0V c[ ω( t 0.0] 0V c( ωt 0.0ω m The crrepnng phar are V n V m 0 an V 0V m 0.0ω. Thu the cmplex gan V 0V m 0.0ω 0 0.0ω V V 0 n m m 4

0.5 0.5 E.4 B 5.47 MHz 9.7 0 t r E.5 Equatn. tate Percentage tlt 00πf T Slng fr f an ubttutng alue, we btan percentage tlt f 5.9 Hz 00 00 00 0 πt π a the upper lmt fr the lwer half-pwer frequency. E. (a ( 00 ( t t + ( t 00 c( ω t + c ( ωt 00 c( ω t + 0.5 + 0.5 c(ωt The ere term ha an ampltue f V 00 an a ecn-harmnc trtn term wth an ampltue f V 0.5. There are n hgher rer trtn term we hae D V V 0. 005 r 0.5%. / + D + D4... 0.5% D D D (b ( t 00 ( t ( t + 500 c( ω t + 5 c ( ωt 500 c( ω t +.5 +.5 c(ωt The ere term ha an ampltue f V 500 an a ecn-harmnc trtn term wth an ampltue f V.5. There are n hgher rer trtn term we hae D V V 0. 05 r.5%. / D D + D + D4... D.5% E.7 Wth the nput termnal te tgether an a -V gnal apple, the fferental gnal zer an the cmmn-me gnal V. The cmmn-me gan V V 0. / 0., whch equalent t -0 cm / cm 0lg / B. Then we hae CM ( cm 0lg(500,000 4.0 B. E.8 (a V ( + / 0 V cm ( + / + cm cm Thu ( / +. 5

(b 0 V ( + / V cm ( + Thu cm. cm cm cm (c ( / + (00 + 0 / 00. 5 cm 00 0 + CM 0lg 0lg cm + 00 + 0 CM 0lg 0lg 40.0 B. 00 0 E.9 Except fr numercal alue th Exerce the ame a Example. n the bk. Wth equal retance at the nput termnal, the ba current make n cntrbutn t the utput ltage. The extreme cntrbutn t the utput ue t the ffet ltage are n VV ff Vff + + n 00 0 500 ( ± 0 0 ±.5 V (00 + 50 + 500 The extreme cntrbutn t the utput ltage ue t the ffet current are Iff n( + V Iff n + + 9 ± 00 0 00 0 (50 + 50 0 500 ±.5 V (00 + 50 + 500 Thu, the extreme utput ltage ue t all urce are ±. 75 V. E.0 Th Exerce mlar t Example. n the bk wth 50 kω an 0. Wth unequal retance at the nput termnal, the ba current make a cntrbutn t the utput ltage gen by n VBa I B + n 9 50 0 00 0 500 400 0 50 0 + 00 0 +.7 V

The extreme cntrbutn t the utput ue t the ffet ltage are n VV ff Vff n + + 00 0 500 ( ± 0 0 ±. V (00 + 50 + 00 The extreme cntrbutn t the utput ltage ue t the ffet current are Iff n( + V Iff n + + 9 ± 00 0 00 0 (50 + 0 0 500 ± 0.8 V (00 + 50 + 00 Thu, the extreme utput ltage ue t all urce are a mnmum f.5 V an a maxmum f 0.8 V. nwer fr Selecte Prblem P.4* 50..5 0 G.5 0 P.5* 00 00 Ω P.8*. 7 Ω. P.* P.7* n MΩ kω kω c. 0 P.9* Fe amplfer mut be cacae t attan a ltage gan n exce f 000. 7

P.* P P P P + + 40 W P.* 000 500 G 0 P 9.87 W η 7.% P.* The ltage-amplfer mel : The trancnuctance-amplfer mel : P.5* c 00 500 c 00 kω mc P.4* x. Ω P.44* T ene the pen-crcut ltage f a enr, we nee an amplfer wth ery hgh nput retance (cmpare t the Théenn retance f the enr. T a lang effect by the arable la retance, we nee an amplfer wth ery lw utput retance (cmpare t the mallet la retance. Thu, we nee a nearly eal ltage amplfer wth a gan f 000. P.45* The nput retance that f the eal tranretance amplfer whch zer. The utput retance f the cacae the utput retance f the eal trancnuctance amplfer whch nfnte. n amplfer 8

hang zer nput retance an nfnte utput retance an eal current amplfer. l, we hae G. c mc mc P.49* We nee a nearly eal trancnuctance amplfer. 98 kω 9.7 kω P.55* The cmplex gan fr the 000-Hz cmpnent 00 0 The cmplex gan fr the 000-Hz cmpnent 75 0 P.5* The gnal t be amplfe the hrt-crcut current f an electrchemcal cell (r battery. Th gnal c an therefre a ccuple amplfer neee. P.58* f 0. 4f hp B P.* The gan at 000 Hz mut be 00 90. The utput gnal t c 000π t 45 + c 4000πt 90 The plt are: ( ( ( P.9* t r. µ Percentage tlt 8.8% 9

P.70* (a (b (c P.7* D 0. 0 D 0.0 D 4 0 D 0. 0 P.78* CM 47.9 B P.8* The extreme alue f the utput ltage are: ±5 mv 0

If the retr are exactly equal, then the utput ltage zer. P.8* The utput ltage can range frm -. t +. V.