NANO/MICROSCALE HEAT TRANSFER

Similar documents
Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Introduction to the Electronic Properties of Materials

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Semiconductor Physical Electronics

MOLECULAR SPECTROSCOPY

With Modern Physics For Scientists and Engineers

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

Electronic and Optoelectronic Properties of Semiconductor Structures

Solid Surfaces, Interfaces and Thin Films

The Oxford Solid State Basics

The Physics of Semiconductors

FUNDAMENTALS OF POLARIZED LIGHT

The Boltzmann Equation and Its Applications

List of Comprehensive Exams Topics

Electronic Properties of Materials An Introduction for Engineers

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Preface Introduction to the electron liquid

CONTENTS. vii. CHAPTER 2 Operators 15

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

ELECTRODYNAMICS OF CONTINUOUS MEDIA

EXPERIMENTS IN PHYSICAL CHEMISTRY

Physics of atoms and molecules

Semiconductor Physical Electronics

M.Sc. Physics

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Marcelo Alonso. Edward J. Finn. Georgetown University. Prentice Hall

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Nanophysics: Main trends

Suggestions for Further Reading

The Dielectric Function of a Metal ( Jellium )

PRINCIPLES OF PHYSICAL OPTICS

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

MESOSCOPIC QUANTUM OPTICS

ELECTROMAGNETIC FIELDS AND RELATIVISTIC PARTICLES

INTRODUCTION TO MODERN THERMODYNAMICS

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Minimal Update of Solid State Physics

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

Concepts in Surface Physics

Introduction to Semiconductor Integrated Optics

NON-EQUILIBRIUM THERMODYNAMICS

Principles of Equilibrium Statistical Mechanics

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

CLASSICAL ELECTRICITY

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Near-Field Nano/Atom Optics and Technology

Dynamics inertia, mass, force. Including centripetal acceleration

Computational Nanoscience

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

Introduction to Modern Physics

Lasers and Electro-optics

Quantum Tunneling and

Elementary Lectures in Statistical Mechanics

The Physics of Nanoelectronics

Diode Lasers and Photonic Integrated Circuits

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Electrical Transport in Nanoscale Systems

Structure and Dynamics : An Atomic View of Materials

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

Molecular Aggregation

Mathematical Pattern of Plasmon Surface Selection Rules According to DrudeModel

Thermal Plasmas. Fundamentals and Applications. Volume 1

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Near-field thermal radiation energy conversion

Optical Characterization of Solids

Olivier Bourgeois Institut Néel

INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS

Distributed feedback semiconductor lasers

Physics of Light and Optics

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Many-Body Problems and Quantum Field Theory

College Physics 10th edition

1. Thermodynamics 1.1. A macroscopic view of matter

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

QUANTUM WELLS, WIRES AND DOTS

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

Computational Physics. J. M. Thijssen

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Nanomaterials and their Optical Applications

Topics for the Qualifying Examination

AP Goal 1. Physics knowledge

MASTER OF SCIENCE IN PHYSICS

Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.)

Functional Materials. Optical and Magnetic Applications. Electrical, Dielectric, Electromagnetic, Deborah D. L Chung.

Transcription:

NANO/MICROSCALE HEAT TRANSFER Zhuomin M. Zhang Georgia Institute of Technology Atlanta, Georgia New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto

CONTENTS Preface xiii List of Symbols xvii Chapter 1. Introduction 1 l. I Limitations of the Macroscopic Formulation / 2 1.2 The Length Scales / 3 1.3 From Ancient Philosophy to Contemporary Technologies / 5 1.3.1 Microelectronics and Information Technology / 6 1.3.2 Lasers, Optoelectronics, and Nanophotonics / 8 1.3.3 Microfabrication and Nanofabrication / 10 1.3.4 Probing and Manipulation of Small Structures / 12 1.3.5 Energy Conversion Devices / 15 1.3.6 Biomolecule Imaging and Molecular Electronics / 17 1.4 Objectives and Organization of This Book / 19 References / 22 Chapter 2. Overview of Macroscopic Thermal Sciences 25 2.1 Fundamentals of Thermodynamics / 25 2.1.1 The First Law of Thermodynamics / 26 2.1.2 Thermodynamic Equilibrium and the Second Law / 27 2.1.3 The Third Law of Thermodynamics / 31 2.2 Thermodynamic Functions and Properties / 32 2.2.1 Thermodynamic Relations / 32 2.2.2 The Gibbs Phase Rule / 34 2.2.3 Specific Heats / 36 2.3 Ideal Gas and Ideal Incompressible Models / 38 2.3.1 The Ideal Gas / 38 2.3.2 Incompressible Solids and Liquids / 40 2.4 Heat Transfer Basics / 41 2.4.1 Conduction / 42 2.4.2 Convection / 44 2.4.3 Radiation / 46 2.5 Summary / 51 References / 51 Problems / 52 Chapter 3. Elements of Statistical Thermodynamics and Quantum Theory 57 3.1 Statistical Mechanics of Independent Particles / 58 3.1.1 Macrostates versus Microstates / 59 3.1.2 Phase Space / 59 VII

VIII CONTENTS 3.1.3 Quantum Mechanics Considerations / 60 3.1.4 Equilibrium Distributions for Different Statistics / 62 3.2 Thermodynamic Relations / 67 3.2.1 Heat and Work / 67 3.2.2 Entropy / 67 3.2.3 The Lagrangian Multipliers / 68 3.2.4 Entropy at Absolute Zero Temperature / 68 3.2.5 Macroscopic Properties in Terms of the Partition Function / 69 3.3 Ideal Molecular Gases / 71 3.3.1 Monatomic Ideal Gases / 71 3.3.2 Maxwell's Velocity Distribution / 73 3.3.3 Diatomic and Polyatomic Ideal Gases / 75 3.4 Statistical Ensembles and Fluctuations / 81 3.5 Basic Quantum Mechanics / 82 3.5.1 The Schrödinger Equation / 82 3.5.2 A Particle in a Potential Well or a Box / 84 3.5.3 A Rigid Rotor / 86 3.5.4 Atomic Emission and the Bohr Radius / 88 3.5.5 A Harmonic Oscillator / 90 3.6 Emission and Absorption of Photons by Molecules or Atoms / 92 3.7 Energy, Mass, and Momentum in Terms of Relativity / 94 3.8 Summary / 96 References / 96 Problems / 96 Chapter 4. Kinetic Theory and Micro/Nanofluidics 101 4.1 Kinetic Description of Dilute Gases / 101 4.1.1 Local Average and Flux / 102 4.1.2 The Mean Free Path / 105 4.2 Transport Equations and Properties of Ideal Gases / 108 4.2.1 Shear Force and Viscosity / 109 4.2.2 Heat Diffusion / 110 4.2.3 Mass Diffusion / 112 4.2.4 Intermolecular Forces / 115 4.3 The Boltzmann Transport Equation / 116 4.3.1 Hydrodynamic Equations / 117 4.3.2 Fourier's Law and Thermal Conductivity / 119 4.4 Micro/Nanofluidics and Heat Transfer / 121 4.4.1 The Knudsen Number and Flow Regimes / 122 4.4.2 Velocity Slip and Temperature Jump / 124 ЛЛ.З Gas Conduction From the Continuum to the Free Molecule Regime / 129 4.5 Summary / 132 References / 132 Problems / 133 Chapter 5. Thermal Properties of Solids and the Size Effect 137 5.1 Specific Heat of Solids / 137 5.1.1 Lattice Vibration in Solids: The Phonon Gas / 137 5.1.2 The Debye Specific Heat Model / 139 5.1.3 Free Electron Gas in Metals / 143 5.2 Quantum Size Effect on the Specific Heat / 148 5.2.1 Periodic Boundary Conditions / 148 5.2.2 General Expressions of Lattice Specific Heat / 149 5.2.3 Dimensionality / 149 5.2.4 Thin Films Including Quantum Wells / 151 5.2.5 Nanocrystals and Carbon Nanotubes / 153

CONTENTS IX 5.3 Electrical and Thermal Conductivities of Solids / 154 5.3.1 Electrical Conductivity / 155 5.3.2 Thermal Conductivity of Metals / 158 5.3.3 Derivation of Conductivities from the BTE / 160 5.3.4 Thermal Conductivity of Insulators / 162 5.4 Thermoelectricity / 166 5.4.1 The Seebeck Effect and Thermoelectric Power / 167 5.4.2 The Peltier Effect and the Thomson Effect / 168 5.4.3 Thermoelectric Generation and Refrigeration / 170 5.4.4 Onsager's Theorem and Irreversible Thermodynamics / 172 5.5 Classical Size Effect on Conductivities and Quantum Conductance / 174 5.5.1 Classical Size Effect Based on Geometric Consideration / 174 5.5.2 Classical Size Effect Based on the BTE / 178 5.5.3 Quantum Conductance / 182 5.6 Summary / 187 References / 187 Problems / 190 Chapter 6. Electron and Phonon Transport 193 6.1 The Hall Effect / 193 6.2 General Classifications of Solids / 195 6.2.1 Electrons in Atoms / 195 6.2.2 Insulators, Conductors, and Semiconductors / 197 6.2.3 Atomic Binding in Solids / 199 6.3 Crystal Structures / 201 6.3.1 The Bravais Lattices / 201 6.3.2 Primitive Vectors and the Primitive Unit Cell / 204 6.3.3 Basis Made of Two or More Atoms / 206 6.4 Electronic Band Structures / 209 6.4.1 Reciprocal Lattices and the First Brillouin Zone / 209 6.4.2 Bloch's Theorem / 210 6.4.3 Band Structures of Metals and Semiconductors / 214 6.5 Phonon Dispersion and Scattering / 217 6.5.1 The 1-D Diatomic Chain / 217 6.5.2 Dispersion Relations for Real Crystals / 219 6.5.3 Phonon Scattering / 221 6.6 Electron Emission and Tunneling / 226 6.6.1 Photoelectric Effect / 226 6.6.2 Thermionic Emission / 227 6.6.3 Field Emission and Electron Tunneling / 229 6.7 Electrical Transport in Semiconductor Devices / 232 6.7.1 Number Density, Mobility, and the Hall Effect / 232 6.7.2 Generation and Recombination / 236 6.7.3 The p-n Junction / 238 6.7.4 Optoelectronic Applications / 240 6.8 Summary / 242 References / 242 Problems / 244 Chapter 7. Nonequilibrium Energy Transfer in Nanostructures 247 7.1 Phenomenological Theories / 248 7.1.1 Hyperbolic Heat Equation / 250 7.1.2 Dual-Phase-Lag Model / 254 7.1.3 Two-Temperature Model / 255

X CONTENTS 7.2 Heat Conduction Across Layered Structures / 262 7.2.1 Equation of Phonon Radiative Transfer (EPRT) / 265 7.2.2 Solution of the EPRT / 266 7.2.3 Thermal Boundary Resistance (TBR) / 271 7.3 Heat Conduction Regimes / 275 7.4 Summary / 278 References / 278 Problems / 281 Chapter 8. Fundamentals of Thermal Radiation 283 8.1 Electromagnetic Waves / 285 8.1.1 Maxwell's Equations / 285 8.1.2 The Wave Equation / 2S6 8.1.3 Polarization / 288 8.1.4 Energy Flux and Density / 290 8.1.5 Dielectric Function / 291 8.1.6 Propagating and Evanescent Waves / 293 8.2 Blackbody Radiation: The Photon Gas / 294 8.2.1 Planck's Law / 294 8.2.2 Radiation Thermometry / 298 8.2.3 Entropy and Radiation Pressure / 301 8.2.4 Limitations of Planck's Law / 305 8.3 Radiative Properties of Semi-Infinite Media / 306 8.3.1 Reflection and Refraction of a Plane Wave / 306 8.3.2 Emissivity / 311 8.3.3 Bidirectional Reflectance / 312 8.4 Dielectric Function Models / 314 8.4.1 Kramers-Kronig Dispersion Relations / 314 8.4.2 The Drude Model for Free Carriers / 315 8.4.3 The Lorentz Oscillator Model for Lattice Absorption / 318 8.4.4 Semiconductors / 321 8.4.5 Superconductors / 325 8.4.6 Metamaterials with a Magnetic Response / 526 8.5 Summary / 329 References / 329 Problems / 330 Chapter 9. Radiative Properties of Nanomaterials 333 9.1 Radiative Properties of a Single Layer / 333 9.1.1 The Ray Tracing Method for a Thick Layer / 334 9.1.2 Thin Films / 335 9.1.3 Partial Coherence / 340 9.1.4 Effect of Surface Scattering / 344 9.2 Radiative Properties of Multilayer Structures / 346 9.2.1 Thin Films with Two or Three Layers / 347 9.2.2 The Matrix Formulation / 348 9.2.3 Radiative Properties of Thin Films on a Thick Substrate / 350 9.2.4 Local Energy Density and Absorption Distribution / 352 9.3 Photonic Crystals / 352 9.4 Periodic Gratings / 356 9.4.1 Rigorous Coupled-Wave Analysis (RCWA) / 358 9.4.2 Effective Medium Formulations / 360 9.5 Bidirectional Reflectance Distribution Function (BRDF) / 362 9.5.1 The Analytical Model / 363 9.5.2 The Monte Carlo Method / 364

CONTENTS XI 9.5.3 Surface Characterization / 367 9.5.4 BRDF Measurements / 368 9.5.5 Comparison of Modeling with Measurements / 370 9.6 Summary / 372 References / 373 Problems I 374 Chapter 10. Near-Field Energy Transfer 377 10.1 Total Internal Reflection, Guided Waves, and Photon Tunneling / 378 10.1.1 The Goos-Hänchen Shift / 379 10.1.2 Waveguides and Optical Fibers / 382 10.1.3 Photon Tunneling by Coupled Evanescent Waves / 386 10.1.4 Thermal Energy Transfer between Closely Spaced Dielectrics / 389 10.1.5 Resonance Tunneling through Periodic Dielectric Layers / 391 10.1.6 Photon Tunneling with Negative Index Materials / 393 10.2 Polaritons or Electromagnetic Surface Waves / 395 10.2.1 Surface Plasmon and Phonon Polaritons / 396 10.2.2 Coupled Surface Polaritons and Bulk Polaritons / 401 10.2.3 Polariton-Enhanced Transmission of Layered Structures / 405 10.2.4 Radiation Transmission through Nanostructures / 408 10.2.5 Superlens for Perfect Imaging and the Energy Streamlines / 410 10.3 Spectral and Directional Control of Thermal Radiation I 414 10.3.1 Gratings and Microcavities / 417 10.3.2 Metamaterials / 421 10.3.3 Modified Photonic Crystals for Coherent Thermal Emission / 422 10.4 Radiation Heat Transfer at Nanometer Distances / 425 10.4.1 The Fluctuational Electrodynamics / 426 10.4.2 Heat Transfer between Parallel Plates / 428 10.4.3 Asymptotic Formulation / 430 10.4.4 Nanoscale Radiation Heat Transfer between Doped Silicon / 431 10.5 Summary / 436 References / 437 Problems / 440 Appendix A. Physical Constants, Conversion Factors, and SI Prefixes 443 Physical Constants / 443 Conversion Factors / 443 SI Prefixes / 443 Appendix B. Mathematical Background 445 B.l Some Useful Formulae / 445 B.l.l Series and Integrals / 445 B.l.2 The Error Function / 446 B.1.3 Stirling's Formula / 447 B.2 The Method of Lagrange Multipliers / 447 B.3 Permutation and Combination / 448 B.4 Events and Probabilities / 450 B.5 Distribution Functions and the Probability Density Function / 451 B.6 Complex Variables / 454 B.7 The Plane Wave Solution / 455 B.8 The Sommerfeld Expansion / 459 Index 461