Robustness for a Liouville type theorem in exterior domains

Similar documents
The speed of propagation for KPP type problems. II - General domains

A Dirichlet problem in the strip

LECTURE 15: COMPLETENESS AND CONVEXITY

On a general definition of transition waves and their properties

REACTION-DIFFUSION EQUATIONS FOR POPULATION DYNAMICS WITH FORCED SPEED II - CYLINDRICAL-TYPE DOMAINS. Henri Berestycki and Luca Rossi

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1.

Generalized transition waves and their properties

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations

GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS

Convergence and sharp thresholds for propagation in nonlinear diffusion problems

Centre for Mathematics and Its Applications The Australian National University Canberra, ACT 0200 Australia. 1. Introduction

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

Symmetry of nonnegative solutions of elliptic equations via a result of Serrin

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

Equilibria with a nontrivial nodal set and the dynamics of parabolic equations on symmetric domains

Stationary isothermic surfaces and some characterizations of the hyperplane in the N-dimensional Euclidean space

Qualitative properties of monostable pulsating fronts : exponential decay and monotonicity

Bistable entire solutions in cylinder-like domains

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS

Homogenization and error estimates of free boundary velocities in periodic media

The optimal partial transport problem

Laplace s Equation. Chapter Mean Value Formulas

A LOCALIZATION PROPERTY AT THE BOUNDARY FOR MONGE-AMPERE EQUATION

Saddle Solutions of the Balanced Bistable Diffusion Equation

Blow-up directions for quasilinear parabolic equations UNIVERSITY OF TOKYO

Local semiconvexity of Kantorovich potentials on non-compact manifolds

Introduction. Christophe Prange. February 9, This set of lectures is motivated by the following kind of phenomena:

Obstacle Problems Involving The Fractional Laplacian

Varying the direction of propagation in reaction-diffusion equations in periodic media

arxiv: v1 [math.ap] 18 Jan 2019

Some lecture notes for Math 6050E: PDEs, Fall 2016

Threshold solutions and sharp transitions for nonautonomous parabolic equations on R N

Heat kernels of some Schrödinger operators

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

Travelling fronts for the thermodiffusive system with arbitrary Lewis numbers

Non-Constant Stable Solutions to Reaction- Diffusion Equations in Star-Shaped Domains

The effects of a discontinues weight for a problem with a critical nonlinearity

THE HOT SPOTS CONJECTURE FOR NEARLY CIRCULAR PLANAR CONVEX DOMAINS

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS EXERCISES I (HARMONIC FUNCTIONS)

Geometry and topology of continuous best and near best approximations

NONTRIVIAL SOLUTIONS TO INTEGRAL AND DIFFERENTIAL EQUATIONS

REGULARITY OF POTENTIAL FUNCTIONS IN OPTIMAL TRANSPORTATION. Centre for Mathematics and Its Applications The Australian National University

REGULARITY RESULTS FOR THE EQUATION u 11 u 22 = Introduction

Takens embedding theorem for infinite-dimensional dynamical systems

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION

TRAVELING WAVES FOR A BOUNDARY REACTION-DIFFUSION EQUATION

Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping.

The influence of a line with fast diffusion on Fisher-KPP propagation : integral models

A GENERALIZATION OF THE FLAT CONE CONDITION FOR REGULARITY OF SOLUTIONS OF ELLIPTIC EQUATIONS

Global unbounded solutions of the Fujita equation in the intermediate range

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger

Perron method for the Dirichlet problem.

SYMMETRY AND REGULARITY OF AN OPTIMIZATION PROBLEM RELATED TO A NONLINEAR BVP

MINIMAL SURFACES AND MINIMIZERS OF THE GINZBURG-LANDAU ENERGY

u xx + u yy = 0. (5.1)

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N.

An introduction to Mathematical Theory of Control

On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds

A sufficient condition for observability of waves by measurable subsets

Explosive Solution of the Nonlinear Equation of a Parabolic Type

A Liouville theorem for the Euler equations in the plane

The local equicontinuity of a maximal monotone operator

Blow-up for a Nonlocal Nonlinear Diffusion Equation with Source

SOME PROPERTIES ON THE CLOSED SUBSETS IN BANACH SPACES

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coefficients

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

Key Words: critical point, critical zero point, multiplicity, level sets Mathematics Subject Classification. 35J25; 35B38.

A TWO PARAMETERS AMBROSETTI PRODI PROBLEM*

arxiv: v1 [math.ap] 25 Jul 2012

GLOBAL LIPSCHITZ CONTINUITY FOR MINIMA OF DEGENERATE PROBLEMS

Symmetry and monotonicity of least energy solutions

A note on the moving hyperplane method

arxiv: v1 [math.ap] 18 Jan 2019

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

TWO-SCALE CONVERGENCE ON PERIODIC SURFACES AND APPLICATIONS

How fast travelling waves can attract small initial data

REAL RENORMINGS ON COMPLEX BANACH SPACES

KPP Pulsating Traveling Fronts within Large Drift

Convex solutions to the mean curvature flow

Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R

Local Asymmetry and the Inner Radius of Nodal Domains

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

Krein-Rutman Theorem and the Principal Eigenvalue

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

Appendix B Convex analysis

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

Course 212: Academic Year Section 1: Metric Spaces

arxiv: v2 [math.ag] 24 Jun 2015

Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations

Homogeniza*ons in Perforated Domain. Ki Ahm Lee Seoul Na*onal University

Traveling waves in a one-dimensional heterogeneous medium

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle

Ambrosetti-Prodi Problem for Non-variational Elliptic Systems Djairo Guedes de Figueiredo

Problem Set 6: Solutions Math 201A: Fall a n x n,

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

Transcription:

Robustness for a Liouville type theorem in exterior domains Juliette Bouhours 1 arxiv:1207.0329v3 [math.ap] 24 Oct 2014 1 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France e-mail adress: juliette.bouhours@ljll.math.upmc.fr Abstract We are interested in the robustness of a Liouville type theorem for a reaction diffusion equation in exterior domains. Indeed H. Berestycki, F. Hamel and H. Matano (2009) proved such a result as soon as the domain satisfies some geometric properties. We investigate here whether their result holds for perturbations of the domain. We prove that as soon as our perturbation is close to the initial domain in the C 2,α topology the result remains true while it does not if the perturbation is not smooth enough. 2010 Mathematics Subject Classification: 35K57, 35B51,35B53. Keywords: elliptic equation, Liouville type result, obstacle, maximum principle. 1 Introduction and main results 1.1 Problem and motivations This paper investigates the exterior domain problem: u = f(u) ν u = 0 in R N \K, on K, 0 < u 1 in R N \K, u(x) 1 as x + uniformly in x R N \K, (1.1) where K is a compact set of R N, f is a bistable non-linearity. This problem is motivated by the construction of generalized transition fronts for the associated parabolic problem u t u = f(u) for all t R, x R N \K, (1.2) ν u = 0 for all t R, x K, 1

such that sup u(t, x) φ(x 1 ct) 0 as t, x R N \K where φ is a planar traveling wave connecting 1 to 0, i.e φ cφ = f(φ) in R, φ( ) = 1, φ(+ ) = 0. (1.3) It is proved in [1] that the unique solution of (1.2) converges toward a solution of (1.1) as t +. Thus problem (1.1) determines whether there is a complete invasion or not, that is whether u(t, x) 1 as t + for all x R N \K. More precisely, complete invasion is shown to hold if and only if (1.1) has no solution different from 1. In [1], Berestycki, Hamel and Matano have shown that if K is star-shaped or directionally convex the unique solution of (1.1) is 1 (see at the end of this section for precise definitions of star-shaped or directionally convex domain). The present paper examines under which conditions this Liouville type theorem is robust under perturbations of the domain. This is shown here to strongly depend on the smoothness of the perturbations that are considered. Indeed our main result is to show that it is true for C 2,α perturbations but not for C 0 ones. This is stated precisely in the next section. We leave as an open problem to determine what is the optimal space of regularity of the perturbation for which the result remains true. In this paper f is assumed to be a C 1,1 ([0, 1]) function such that and there exists θ (0, 1) such that, f(0) = f(1) = 0, f (0) < 0, f (1) < 0, (1.4a) f(s) < 0 s (0, θ), f(s) > 0 s (θ, 1). (1.4b) Moreover we suppose that f satisfies the following positive mass property, 1 0 f(τ)dτ > 0. (1.5) Before stating the main results, let explain what we mean by star-shaped or directionally convex obstacles. Definition 1.1 K is called star-shaped, if either K =, or there is x K such that, for all y K and t [0, 1), the point x + t(y x) lies in K and ν K (y) (y x) 0, where ν K (y) denotes the outward unit normal to K at y. Definition 1.2 K is called directionally convex with respect to a hyperplane P if there exists a hyperplane P = x R N, x e = a} where e is a unit vector and a is some real number, such that for every line Σ parallel to e the set K Σ is either a segment or empty, K P = π(k) where π(k) is the orthogonal projection of K onto P. 2

1.2 Main results Our main result is the following Theorem Theorem 1.3 Let (K ε ) 0<ε 1 be a family of C 2,α compact sets of R N, for some α > 0. Assume that K ε K for the C 2,α topology as ε 0, and K is either star-shaped or directionally convex with respect to some hyperplane P. Then there exists ε 0 > 0 such that for all 0 < ε < ε 0, the unique solution of (1.1) is u ε 1 This theorem means that for obstacles that are compact sets in R N and close enough (in the C 2,α sense) to some star-shaped or directionally convex domains, the unique solution of (1.1) is the constant 1. And thus a sufficient condition for the Liouville theorem to be robust under perturbation is the C 2,α convergence. On the other hand one can prove that the C 0 convergence of the perturbation is not enough for the result to stay true. This is stated in the Theorem below. Theorem 1.4 There exists (K ε ) ε a family of compact manifolds of R N such that K ε B R0 for the C 0 topology as ε 0, and for all ε > 0 there exists a solution u ε of (1.1) such that 0 < u ε < 1 in R N \K ε. Notations We denote by B R0 the ball of radius R 0 centred at 0 in R N, i.e B R0 := x R N, x < R 0 }, and by B r (x 0 ) the ball of radius r centred at x 0 in R N, i.e B r (x 0 ) := x R N, x x 0 < r }, Remark 1.5 (C 0 or C 2,α convergence) When we write K ε K for the X topology we mean that for each x 0 in K, and for some r > 0 such that K ε B r (x 0 ) there exists a couple of functions ψ ε and ψ defined on B r (x 0 ), parametrization of K ε and K, such that, ψ ε X(B r (x 0 )) and ψ X(B r (x 0 )) with ψ ε ψ X(Br(x 0 )) 0 as ε 0. For more details about the C 2,α topology one can look at [2], chapter 6. Before proving the previous statements, let give some examples of domains (K ε ) ε and K to illustrate our results. 1.3 Examples of domains We assume that N = 2 and we construct two families of obstacles; one which converges to a star-shaped domain and the other which converges to a directionally convex domain. The black plain line represents the limit K and the thin parts represent the small perturbations (of order ε). 3

Figure 1: Obstacle that converges toward a star-shaped domain Figure 2: Obstacle that converges toward a directionally convex domain The long-dashed lines are used during the construction of K. For the star-shaped domain, it is on this line that we could find the center(s) of the domain (i.e the point x in Definition 1.1). For the directionally convex domain it represents the hyperplane P. We can clearly see that for all ε > 0, K ε is not star-shaped for figure 1 and not directionally convex for figure 2. One needs to be careful on the shape of the perturbations. Indeed in figure 3 below K ε converges to an ellipse as ε 0 but the convergence of K ε is not C 2,α (see section 3 for more details) but only C 0 which is not enough for the Liouville theorem to remain valid. Figure 3: Obstacles converging only in the C 0 topology We will prove Theorem 1.3 in section 2 below and Theorem 1.4 in section 3. 2 Robustness of the result for C 2,α perturbations In this section we prove the robustness of the Liouville result when the perturbation is close to a star-shaped or directionally convex domain in the C 2,α topology. To prove Theorem 1.3, we will need the following Proposition: Proposition 2.1 For all 0 < δ < 1, there exists R = R δ such that, if u ε is a solution of (1.1) with K ε, then u ε (x) 1 δ for all x R and for all 0 < ε < 1. This proposition means that u ε converges toward 1 as x + uniformly in ε. Let first admit this result and prove Theorem 1.3. 2.1 Proof of Theorem 1.3 As u ε is uniformly bounded for all ε > 0, using Schauder estimates, we know that up to a subsequence u εn u 0 in Cloc 2 as n +, in the sense that for all r > 0, u εn u 0 C 2 (B r\(k εn K)) 0 as n + 4

and u 0 satisfies: u 0 + f(u 0 ) = 0 ν u 0 = 0 in R N \K, on K. (2.1) Using Proposition 2.1 we get lim u 0(x) = 1. And K is either star-shaped or directionally x + convex. We now recall the following results from [1]: Theorem 1 (Theorem 6.1 and 6.4 in [1]) Let f be a Lipschitz-continuous function in [0, 1] such that f(0) = f(1) = 0 and f is nonincreasing in [1 δ, 1] for some δ > 0. Assume that 0 s < 1, 1 s f(τ)dτ > 0. (2.2) Let Ω be a smooth, open, connected subset of R N (with N 2) with outward unit normal ν, and assume that K = R N \Ω is compact. Let 0 u 1 be a classical solution of u = f(u) in Ω, ν u = 0 on Ω, (2.3) u(x) 1 as x +. If K is star-shaped or directionally convex, then u 1 in Ω. (2.4) It thus follows that u 0 1. It also proves that the limit u 0 is unique and thus u ε u 0 as ε 0 in Cloc 2 (and not only along a subsequence). Now we need to prove that there exists ε 0 > 0 such that u ε 1 for all 0 < ε < ε 0. Let assume that for all ε > 0, u ε 1 in Ω ε = R N \K ε. Then there exists x 0 Ω ε such that u ε (x 0 ) = min u ε (x) < 1 and x 0, which depends on ε, is uniformly bounded with respect to x Ω ε ε (using Proposition 2.1). Assume that u ε (x 0 ) > θ, as u ε is a solution of (1.1), the Hopf lemma yields that, if x 0 K ε then δu ε δν (x 0) < 0, which is impossible due to Neumann boundary conditions. Hence x 0 Ω ε and u ε (x 0 ) = f(u ε (x 0 )) > 0, which is impossible since x 0 is a minimizer. So, for all 0 < ε < 1, 0 min x Ω ε u ε (x) θ, But min x Ω ε u ε 1 as ε 0 by Proposition 2.1 and the local uniform convergence to u 0 1, which is a contradiction. Thus there exists ε 0 such that for all ε < ε 0, u ε 1. 5

2.2 Proof of Proposition 2.1 We will now prove Proposition 2.1, using the following lemma: Lemma 2.2 There exists ω = ω(r) with r R + such that ω (r) = f(ω(r)), r R +, ω(0) = 0, ω (0) > 0, ω > 0, 0 < ω < 1 in R +, ω(r) = 1. lim r + (2.5) This is a well known result. In deed, by a shooting argument, if ω is a solution of the initial value problem ω = f(ω) in (0, + ), ω(0) = 0, ω (0) = 2F (1), where F (1) = 1 f(s)ds, it is easily seen that ω is also a solution of (2.5). 0 Proof of Proposition 2.1. Now we introduce a function f δ defined in [0, 1 δ ], satisfying 2 the same bistability hypothesis as f but such that f δ f in [0, 1 δ 2 ], f δ = f in [0, 1 δ], f δ (1 δ 2 ) = 0. Notice that 1 δ 2 f 0 δ (z)dz > 0 for δ small. Using the same arguments than in Lemma 2.2 there exists ω = ω δ such that ω δ (x) = f δ(ω δ (x)) in (0, + ), ω δ (0) = 0, ω δ (+ ) = 1 δ, 2 (2.6) 0 < ω δ < 1 δ in (0, + ), 2 ω δ > 0 in (0, + ). As K ε is a compact set of R N converging to a fix compact set K, there exists R 0 such that K ε B R0 for all ε > 0. Next, for any R > R 0 let consider z(x) = ω δ ( x R), for every x R. One gets: We want to prove that z < f(z) in R N \B R. (2.7) ω δ ( x R 0 ) < u ε (x), x R N, x R 0. 6

We know from (1.1) that u ε (x) 1 as x +. Hence there exists A = A(ε) > 0 such that u ε (x) 1 δ 3 > ω δ( x A), for all x A. Consider R = inf R R 0 ; u ε (x) > ω δ ( x R), for all x R}. (2.8) As R R 0 and K ε B R0, u ε is always defined in x > R }. One will prove that R = R 0. As ω δ is increasing, we know that R A u ε (x) ω δ ( x R), x R. Hence R A. Assume that R > R 0. Then there are two cases to study: } either inf x >R u ε (x) ω δ ( x R) > 0, (1) } or inf x >R u ε (x) ω δ ( x R) = 0. (2) In the first case (1), one gets u ε (x) > ω δ ( x R) for all x > R. As u ε and ω δ are bounded, there exists R < R such that u ε (x) ω δ ( x R ) for all x > R. This contradicts the optimality of R. In the second case (2), there necessarily exists x 0 with x 0 > R such that u ε (x 0 ) = ω δ ( x 0 R). Let v(x) = u ε (x) ω δ ( x R), for all x > R. As u ε is a solution of (1.1) and using (2.7), v satisfies: v > c(x)v in x > R }, v > 0 on x = R } (2.9), where c is a bounded function. From the definition of R, v(x) 0, for all x R. But there exists x 0 such that x 0 > R and v(x 0 ) = 0 which implies that v( ) 0. This is impossible because v( ) > 0, for all x = R. Then R = R 0 which does not depend on ε and x R 0 u ε (x) ω δ ( x R 0 ). As ω δ (x) 1 δ 2 as x +, there exists ˆR, independent of ε, such that for all x > ˆR+R 0, u ε (x) > ω δ ( x R 0 ) 1 δ. One has proved Proposition 2.1. 3 Counter example in the case of C 0 perturbations Until now we have assumed that K ε K in C 2,α, in order to use the Schauder estimates and ensure the convergence of u ε as ε 0. One can wonder if we can weaken this hypothesis, i.e would the C 0 or C 1 convergence be enough? We prove that C 0 perturbations are not smooth enough for the Liouville result to remain true. 7

3.1 Construction of a particular family of C 0 perturbations In this subsection we construct a family of obstacles that are neither star-shaped nor directionally convex but converges uniformly to B R0 which is convex. We want to prove that for all ε ]0, 1] there exists a solution of (1.1) which is not identically equal to 1. To do so we will use the counterexample of section 6.3 in [1]. K = B R0 K η ε R 0 Zooming on the dashed part: Figure 4: Liouville counterexample R 2 B R0 β 1 R 1 1 x 0 2η 4η x C 1 A Figure 5: Zoom on the perturbation We consider an obstacle K 1 = K η 1 (see figure 4 and 5), such that: ( A x; x1 x 0 1} ) B R0 C 1 K η 1, A x; x 1 > x 0 1, x > 2η } ( K η 1, K η 1 A x; x 1 > x 0 1, x > η }) ( B R0 A x; x 1 x1} ) 0 C 1. (3.1) 8 1

where x = (x 2,..., x N ) and A = x : R 1 x x 0 R 2 }, R 0, R 1 < R 2, are three positive constants, x 0 = (x 0 1, 0, 0,..., 0) is the center of the annular region A with x 0 1 = R 0 + R 2 + β 1, C 1 is some corridor that links smoothly A and B R0 which length is β 1 and η > 0, small enough. The family (K ε ) is constructed by downsizing K 1 such that for all 0 < ε < 1, A ε stays an annular region, with x ε 0 = (R 0 + R ε 2 + β ε, 0) R N converging to (R 0, 0) R N, R ε 1 = εr 1, R ε 2 = εr 2, β ε converging to 0 as ε 0. We have the following lemma. Lemma 3.1 K ε K for the C 0 topology as ε 0 but not for the C 1 topology. This Lemma is easily proved using smooth parametrization of B R0 and K 1 and noticing that for all ε > 0 there exists a point on the boundary of the perturbation that has an outward unit normal orthogonal to e 1 = (1, 0,..., 0). 3.2 Existence of a non constant solution u ε of (1.1) We want to prove that for all 0 < ε < 1 there exists a solution 0 < u ε < 1 of u ε = f(u ε ) in R N \Kε η = Ω η ε, ν u ε = 0 u ε (x) 1 as x +. on Kε η = Ω η ε, (3.2) We will follow the same steps as in [1], section 6. First, let notice that it is enough to find ω 1 solution of ω = f(ω) in B R \Kε η, ν ω = 0 on Kε η, (3.3) ω = 1 on B R, for some R > 0 large enough such that Kε η B R. Indeed then ω extended by 1 outside B R is a supersolution of (3.2) and one can define: 0 if x < R}\Kε η, ψ(x) = (3.4) U( x R) if x R, where U : R + (0, 1) satisfies U + f(u) = 0 in R +, U(0) = 0, U (ξ) > 0 ξ 0, U(+ ) = 1. It exists as soon as (1.5) is satisfied (see Lemma 2.2). As U( R) is a subsolution, ψ is a subsolution of (3.2). Hence there exists a solution ψ < u ε < ω of (3.2). If we prove that ω 1 then 0 < u ε < 1 (with the maximum principle). 9

Now consider our problem (3.3) and replace ω by v = 1 ω. The problem becomes v = f(1 v) = g(v) in B R \Kε η, ν v = 0 on Kε η, v = 0 on B R. (3.5) Using exactly the same arguments as in [1] one proves that, if we consider: 1 if x B R2 (x 0 )\Kε η x; x 1 x 0 1 2R 1+R 2 3 if 3 R v 0 (x) = 2 R 1 ( R 1+2R 2 (x 3 1 x 0 x B R2 (x 0 )\Kε η } 1)) x; 2R 1+R 2 x 3 1 x 0 1 R 1+2R 2, 3 if x [B R \ ( B R2 (x 0 ) C ε B R0 (0) )] 0 [ B R2 (x 0 )\Kε η } ] x, x 1 x 0 1 R 1+2R 2, 3 (3.6) then for η > 0 small enough, there exists v H 1 (B R \Kε η ) v = 0 on B R } = H 1 0, δ > 0 such that v v 0 H 1 < δ and v is a local minimizer of the associated energy functional in H 1 0. For more clarity we will give the main steps of the proof but for details and proofs see [1], section 6.3. We introduce the energy functional in a domain D: 1 J D (ω) = 2 ω 2 G(ω) } dx, (3.7) defined for functions of H 1 (D), where D G(t) = t 0 }, g(s)ds, (3.8) g defined in (3.5). Using Proposition 6.6 in [1] one gets the following Corollary Corollary 3.2 In B R1 (x 0 ), v 0 1 is a strict local minimum of J BR1 (x 0 ) in the space H 1 (B R1 (x 0 )). More precisely, there exist α > 0 and δ > 0 for which J BR1 (x 0 )(v) J BR1 (x 0 )(v 0 ) + α v v 0 2 H 1 (B R1 (x 0 )), (3.9) for all v H 1 (B R1 (x 0 )) such that v v 0 2 H 1 (B R1 (x 0 )) δ. And then using Proposition 6.8 of [1] and Corollary 3.2 one gets the following Corollary Corollary 3.3 There exist γ > 0 and η 0 > 0 (which depend on ε) such that for all 0 < η < η 0 and v H 1 0 such that v v 0 2 B R = δ, then \Kε η J BR \Kε η(v 0) < J BR \Kε η (v) γ. 10

The proof of this corollary relies on the existence of a channel of width of order η > 0 opening on the interior of the annular region A (third assumption in (3.6)). This condition cannot be satisfied if the convergence of the obstacle is C 1 (see Lemma 3.1). The functional J BR \K η ε admits a local minimum in the ball of radius δ around v 0 in H 1 (B R \K η ε ) v = 0 on B R }. This yields a (stable) solution v of (3.5) for small enough η > 0. Furthermore, provided that δ is chosen small enough, this solution does not coincide either with 1 or with 0 in B R \K η ε. We have proved that for all ε ]0, 1], 0 < u ε < 1. One has proved that C 0 convergence of the domain is not sufficient and thus Theorem 1.4. One can conclude that if the perturbation is smooth in the C 2,α topology, we still have a Liouville type result for reaction diffusion equation in exterior domain. Whereas one can construct a counterexample of this Liouville result for C 0 perturbations. One question that is still open is thus the optimal space of regularity of the perturbation for the results to remain true under perturbation. For instance is the C 1 convergence of the perturbation enough to get the result? Acknowledgments The author thanks Henri Berestycki, Grégoire Nadin and François Hamel for their fruitful discussions and encouragements, Sylvain Arguillère for his geometric insights. This study was supported by the French Agence Nationale de la Recherche through the project PREF- ERED (ANR 08-BLAN-0313) and by the French Région Ile de France through the fellowship Bourse Hors DIM. References [1] Henri Berestycki, François Hamel, and Hiroshi Matano. Bistable traveling waves around an obstacle. Comm. Pure Appl. Math., 62(6):729 788, 2009. [2] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. 11