Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions

Similar documents
Complete Moment Convergence for Weighted Sums of Negatively Orthant Dependent Random Variables

A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES

On complete convergence and complete moment convergence for weighted sums of ρ -mixing random variables

ON THE COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF DEPENDENT RANDOM VARIABLES UNDER CONDITION OF WEIGHTED INTEGRABILITY

COMPLETE QTH MOMENT CONVERGENCE OF WEIGHTED SUMS FOR ARRAYS OF ROW-WISE EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

Complete Moment Convergence for Sung s Type Weighted Sums of ρ -Mixing Random Variables

Complete moment convergence for moving average process generated by ρ -mixing random variables

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

Wittmann Type Strong Laws of Large Numbers for Blockwise m-negatively Associated Random Variables

Complete q-moment Convergence of Moving Average Processes under ϕ-mixing Assumption

Research Article On Complete Convergence of Moving Average Process for AANA Sequence

This condition was introduced by Chandra [1]. Ordonez Cabrera [5] extended the notion of Cesàro uniform integrability

ON THE STRONG LIMIT THEOREMS FOR DOUBLE ARRAYS OF BLOCKWISE M-DEPENDENT RANDOM VARIABLES

A note on the growth rate in the Fazekas Klesov general law of large numbers and on the weak law of large numbers for tail series

Random Bernstein-Markov factors

A Remark on Complete Convergence for Arrays of Rowwise Negatively Associated Random Variables

PRECISE ASYMPTOTIC IN THE LAW OF THE ITERATED LOGARITHM AND COMPLETE CONVERGENCE FOR U-STATISTICS

The strong law of large numbers for arrays of NA random variables

Exact Asymptotics in Complete Moment Convergence for Record Times and the Associated Counting Process

Han-Ying Liang, Dong-Xia Zhang, and Jong-Il Baek

Limiting behaviour of moving average processes under ρ-mixing assumption

Almost Sure Convergence of the General Jamison Weighted Sum of B-Valued Random Variables

Oscillation Criteria for Delay Neutral Difference Equations with Positive and Negative Coefficients. Contents

An almost sure central limit theorem for the weight function sequences of NA random variables

A Note on the Strong Law of Large Numbers

Almost Sure Central Limit Theorem for Self-Normalized Partial Sums of Negatively Associated Random Variables

An improved result in almost sure central limit theorem for self-normalized products of partial sums

New Versions of Some Classical Stochastic Inequalities

Spatial autoregression model:strong consistency

Convergence theorems for mixed type asymptotically nonexpansive mappings in the intermediate sense

Wald for non-stopping times: The rewards of impatient prophets

WLLN for arrays of nonnegative random variables

KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BASED ON LINEAR PLACEMENTS

A Strong Law of Large Numbers for Set-Valued Negatively Dependent Random Variables

Conditional independence, conditional mixing and conditional association

Online publication date: 29 April 2011

Asymptotic behavior for sums of non-identically distributed random variables

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Soo Hak Sung and Andrei I. Volodin

ON A SURVEY OF UNIFORM INTEGRABILITY OF SEQUENCES OF RANDOM VARIABLES

Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces

General Bahr-Esseen inequalities and their applications

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

Commentationes Mathematicae Universitatis Carolinae

Research Article Complete Convergence for Weighted Sums of Sequences of Negatively Dependent Random Variables

Research Article Exponential Inequalities for Positively Associated Random Variables and Applications

RELATION BETWEEN SMALL FUNCTIONS WITH DIFFERENTIAL POLYNOMIALS GENERATED BY MEROMORPHIC SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Mi-Hwa Ko. t=1 Z t is true. j=0

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

Limit Theorems for Exchangeable Random Variables via Martingales

Journal of Inequalities in Pure and Applied Mathematics

CONVERGENCE THEOREMS FOR MULTI-VALUED MAPPINGS. 1. Introduction

The smallest Randić index for trees

On Some Estimates of the Remainder in Taylor s Formula

MEAN SQUARE ESTIMATE FOR RELATIVELY SHORT EXPONENTIAL SUMS INVOLVING FOURIER COEFFICIENTS OF CUSP FORMS

arxiv:math/ v1 [math.fa] 4 Jun 2004

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

On the approximation problem of common fixed points for a finite family of non-self asymptotically quasi-nonexpansive-type mappings in Banach spaces

THE STRONG LAW OF LARGE NUMBERS FOR LINEAR RANDOM FIELDS GENERATED BY NEGATIVELY ASSOCIATED RANDOM VARIABLES ON Z d

MIXED TYPE OF ADDITIVE AND QUINTIC FUNCTIONAL EQUATIONS. Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee

ON A DIFFERENCE EQUATION WITH MIN-MAX RESPONSE

Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces

arxiv: v1 [math.ca] 15 Jan 2018

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

AN EXTENSION OF THE HONG-PARK VERSION OF THE CHOW-ROBBINS THEOREM ON SUMS OF NONINTEGRABLE RANDOM VARIABLES

A central limit theorem for randomly indexed m-dependent random variables

Strong Convergence Theorems for Nonself I-Asymptotically Quasi-Nonexpansive Mappings 1

W P ZI rings and strong regularity

Complete Convergence for Asymptotically Almost Negatively Associated Random Variables

PM functions, their characteristic intervals and iterative roots

Iterative common solutions of fixed point and variational inequality problems

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions

Marcinkiewicz-Zygmund Type Law of Large Numbers for Double Arrays of Random Elements in Banach Spaces

arxiv: v1 [math.pr] 17 May 2009

Research Article Weighted Strong Law of Large Numbers for Random Variables Indexed by a Sector

Growth properties at infinity for solutions of modified Laplace equations

BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION

MEAN CONVERGENCE THEOREM FOR ARRAYS OF RANDOM ELEMENTS IN MARTINGALE TYPE p BANACH SPACES

Bulletin of the Iranian Mathematical Society Vol. 39 No.6 (2013), pp

Burkholder s inequality for multiindex martingales

IN PROBABILITY. Kragujevac Journal of Mathematics Volume 42(1) (2018), Pages

ON HOCHSCHILD EXTENSIONS OF REDUCED AND CLEAN RINGS

CHARACTERIZATIONS OF UNIFORM AND EXPONENTIAL DISTRIBUTIONS VIA MOMENTS OF THE kth RECORD VALUES RANDOMLY INDEXED

Fixed point theorems of nondecreasing order-ćirić-lipschitz mappings in normed vector spaces without normalities of cones

Research Article Convergence Theorems for Infinite Family of Multivalued Quasi-Nonexpansive Mappings in Uniformly Convex Banach Spaces

P(I -ni < an for all n > in) = 1 - Pm# 1

Functions of several variables of finite variation and their differentiability

arxiv: v3 [math.nt] 16 Jun 2009

Research Article Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS IN BANACH SPACES

The general solution of a quadratic functional equation and Ulam stability

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

INTEGRABILITY CONDITIONS PERTAINING TO ORLICZ SPACE

CHARACTERIZATIONS OF POWER DISTRIBUTIONS VIA MOMENTS OF ORDER STATISTICS AND RECORD VALUES

Mi-Hwa Ko and Tae-Sung Kim

PRZEMYSLAW M ATULA (LUBLIN]

Transcription:

Proc. Indian Acad. Sci. Math. Sci.) Vol. 124, No. 2, May 214, pp. 267 279. c Indian Academy of Sciences Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions JUN AN College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 467, China E-mail: scottan@sina.com MS received 22 January 213; revised 31 January 213 Abstract. For weighted sums of sequences of asymptotically almost negatively associated AANA) random variables, we study the complete moment convergence by using the Rosenthal type moment inequalities. Our results extend the corresponding ones for sequences of independently identically distributed random variables of Chow [4]. Keywords. Asymptotically almost negatively associated; weighted sums; complete moment convergence. 21 Mathematics Subject Classification. 6F15, 6F99. 1. Introduction A sequence X n,n 1} of random variables is said to be asymptotically almost negatively associated AANA) if there exists a nonnegative sequence qn) asn such that Cov f X n ), gx n1,x n2,...,x nk )) qn) [ Var fx n )Var gx n1,x n2,...,x nk )) ] 1/2 1.1) for all n, k 1 and for all coordinate-wise nondecreasing continuous functions f and g whenever the variances exist. qn),n 1} is called the mixing coefficients of X n, n 1}. Since this concept was introduced by Chandra and Ghosal [6] in 1996, many authors have studied its limit properties. For example, Chandra and Ghosal [6] derived the Kolmogorov type inequality and strong law of large numbers SLLN). Chandra and Ghosal [7] obtained the almost sure convergence of weighted average. Kim et al. [1] established the Hájek Rényi type inequalities and Marcinkiewicz Zygmund type SLLN. Cai [2] investigated the complete convergence of weighted sums. Yuan and An [16] got the Rosenthal type inequalities, L p convergence, complete convergence and Marcinkiewicz Zygmund type SLLN see Wang et al. [14] who obtained the complete convergence and SLLN). Yang et al. [15] derived complete convergence of moving average process for AANA sequence. Recently, An [1] got the following complete convergence of weighted sums for sequences of AANA random variables. 267

268 Jun An Theorem A [1]. Let X n,n 1} be a sequence of identically distributed AANA random variables with mixing coefficients qn),n 1},E X 1 p <,αp > 1,α > 1/2. Suppose that EX 1 for p>1. Leta ni,i 1,n 1} be a sequence of real numbers with n a ni r On),r > αp 1)/α 1/2) if p>2; or r 2 if <p 2. Take r 1/2 k 1 2/r)r/r 1) where k is a positive integer number satisfying 2 k <r 2 k1.if q r n) <, then for any ε>, ) n αp 2 P a ni X i >εn α < 1.2) and n αp 2 P sup kn k α ) a ni X i >ε <. 1.3) Theorem B [1]. Let X n,n 1} be a sequence of mean zero, identically distributed AANA random variables with q 2 n) <. Leta ni,i 1,n 1} be a sequence of real numbers satisfying sup n1 n a 2 ni <.IfE X 1 p <, <p<2, then n 1/p a ni X i completely. 1.4) Chow [4] first investigated the complete moment convergence for sequences of independently identically distributed i.i.d.) random variables and obtained the following result. Theorem C [4]. Let X n,n 1} be a sequence of i.i.d. random variables. If <p< 2,r >1,rp 1, then implies E X 1 rp X 1 log1 X 1 )} < 1.5) } n r 1/p 2 E X i kex 1 εn 1/p for any ε>, where and in the following x x,}. < 1.6) Recently, Li and Zhang [11] extended Theorem C to moving average processes under dependent assumptions, Chen and Wang [3] extended Theorem C to identically distributed ϕ-mixing random variables, Zhou and Lin [17] extended Theorem C to moving average processes of ϕ-mixing random variables and Yang et al. [15] extended Theorem C to moving average processes of AANA sequence. The purpose of this paper is to further study the limit properties of weighted sums for sequences of identically distributed AANA random variables and to obtain complete moment convergence by using the Rosenthal type moment inequality. Our results extend the corresponding one of Chow.

2. Main results Complete moment convergence of weighted sums 269 Throughout this paper we use the following notations: I ) denotes the indicator function, C stands for a positive constant, its value may be different at different places, represents the Vinogradov symbol O, : means defined as. Theorem 2.1. Let X n,n 1} be a sequence of identically distributed AANA random variables with mean zero and mixing coefficients qn),n 1}, q >,p > 1,αp > 1,α > 1/2. Leta ni,i 1,n 1} be a sequence of real numbers with n a ni r On). r>αp 1)/α 1/2) if p 2, or r 2 if 1 <p<2. q r n) < where r 1/2 k 1 2/r)r/r 1), k is a positive integer number satisfying 2 k <r 2 k1.if E X 1 p < for q p, or E X 1 p log1 X 1 )< for q p, then for any ε>, and } n αp αq 2 q E a ni X i εn α < 2.1) n αp 2 E sup kn k α a ni X i ε } q <. 2.2) Theorem 2.2. Let X n,n 1} be a sequence of mean zero, identically distributed AANA random variables with q 2 n) < and let a ni,i 1,n 1} be a sequence of real numbers satisfying sup n n1 ani 2 <, 1 p<2,q >. IfE X 1 p < for q p, or E X 1 p log1 X 1 )<for q p, then for any ε>, n q/p E a ni X i 1/p}q εn < 2.3) and n q/p E sup a ni X i ε kn } q <. 2.4) The following lemmas are useful for the proofs of our main results. Lemma 2.1 [16].LetX n,n 1} be a sequence of AANA random variables with mixing coefficients qn),n 1}. Letf 1,f 2,... be all nondecreasing or all nonincreasing) functions, then f n X n ), n 1} is still a sequence of AANA random variables with mixing coefficients qn),n 1}. Lemma 2.2 [1,16].LetX n,n 1} be a sequence of AANA random variables with mean zero and mixing coefficients qn),n 1}. Then there exists a positive constant C p depending only on p such that E p n 1 ) p X i C p E X i p q 2 2/p i) X i p 2.5)

27 Jun An for all n 1 and 1 <p 2, and such that E p X i C p 1 C ) p 1 q p i) n 1 E X i p EX 2 i ) p/2 2.6) for all n 1 and 2 k < p 2 k1 where integer number k 1, p 1/2 k 1 2/p)p/p 1). In particular, if q 2 n) <, then E p X i C p E X i p 2.7) for all n 1 and 1 <p 2, and if q 1/p 1) n) <, then E p X i C p E X i p EX 2 i ) p/2 2.8) for all n 1 and 3 2 k <p 4 2 k 1 where integer number k 1. Remark 2.1. Since 2 k <p 2 k1 we know 1/2 k 1 2/p 2/p. Byqn) n ) and Hölder inequalities one can easily get 2.6) from 2.2)of[16] see Corollary 2.1 of [1]). Proof of Theorem 2.1. Without loss of generality, we assume a ni foralln 1,i 1. Let Y xi X i I X i x 1/q ) and Y xi X ii X i >x 1/q ). From Lemma 2.1 it is easy to see that for any fixed x>, Y xi,i 1} and a ni Y xi,i 1} are AANA for all n 1. We have n αp αq 2 E a ni X i α}q εn ) n αp αq 2 P a ni X i >εn α x 1/q dx ) n αq n αp αq 2 P a ni X i >εn α x 1/q dx n αp αq 2 n αq P ) a ni X i >εn α x 1/q dx

Complete moment convergence of weighted sums 271 ) n αp 2 P a ni X i >εn α n αp αq 2 n αq P ) a ni X i >x 1/q dx : I 1 I 2. 2.9) To prove 2.1) it suffices to prove I 1 < and I 2 <. From Theorem A we have I 1 <. ) I 2 n αp αq 2 P a ni X i >x 1/q dx n αq ) n αp αq 2 P a ni Y n αq xi >x1/q /2 dx ) n αp αq 2 P a ni Y xi >x 1/q /2 dx n αq : I 21 I 22. 2.1) No matter 1 <p<2orp 2, r 2 holds constantly. By C r inequality, [ ) r ] 1/r a ni a ni n r 1 1/r ani) r n. For the first part of 2.1)weget ) I 21 n αp αq 2 x 1/q E a ni Y n αq xi dx n αp αq 2 a ni E X i I X i >x 1/q ) dx n αq x 1/q n αp αq 1 x 1/q E X 1 I X 1 >x 1/q ) dx n αq j1) αq n αp αq 1 x 1/q E X 1 I X 1 >x 1/q ) dx jn j αq n αp αq 1 j αq α 1 E X 1 I X 1 >j α ) jn j αq α 1 E X 1 I X 1 >j α ) j n αp αq 1 2.11)

272 Jun An If q p, then I 21 j αp α 1 E X 1 I X 1 >j α ) j αp α 1 E X 1 Il α < X 1 l 1) α ) lj E X 1 Il α < X 1 l 1) α ) l j αp α 1 l αp α E X 1 Il α < X 1 l 1) α )since p>1) E X 1 p Il α < X 1 l 1) α ) E X 1 p <. 2.12) If q p, then j αp α 1 log je X 1 I X 1 >j α ) I 21 j αp α 1 log j E X 1 Il α < X 1 l 1) α ) lj E X 1 Il α < X 1 l 1) α ) l j αp α 1 log j l αp α log le X 1 Il α < X 1 l 1) α )sincep >1) E X 1 p log1 X 1 )I l α < X 1 l 1) α ) E X 1 p log1 X 1 )<. 2.13) Thus I 21 < holds. It is easy to see that a ni EY xi as x ). 2.14) x 1/q So by 2.14)and2.6) of Lemma 2.2 we have ) I 22 n αp αq 2 P a ni Y xi >x 1/q /2 dx n αq ) n αp αq 2 a ni Y xi EY xi ) >x1/q /4 dx n αq P

Complete moment convergence of weighted sums 273 r n αp αq 2 x r/q E n αq a ni Y xi EY xi ) dx n αp αq 2 n αq x r/q n αp αq 2 n αq x r/q ) r 1 1 C q r i) E a ni Y xi r dx ) r/2 Ea ni Y xi ) 2 dx : I 221 I 222. 2.15) Since q r n) < and n a r ni On),weget I 221 n αp αq 2 n αq x r/q ani r E Y xi r dx n αp αq 1 x r/q E X 1 r I X 1 x 1/q ) dx n αq j1) αq n αp αq 1 x r/q E X 1 r I X 1 x 1/q ) dx jn j αq n αp αq 1 j αrαq 1 E X 1 r I X 1 j 1) α ) jn j αrαq 1 E X 1 r I X 1 j 1) α ) j n αp αq 1 2.16) If q p, then I 221 j αp αr 1 E X 1 r I X 1 j 1) α ) j1 j αp αr 1 E X 1 r I l 1) α < X 1 l α ) E X 1 r I l 1) α < X 1 l α ) jl 1 j αp αr 1 l αp αr E X 1 r I l 1) α < X 1 l α )since r>p) E X 1 p I l 1) α < X 1 l α ) E X 1 p <. 2.17)

274 Jun An If q p, then I 221 j αp αr 1 log je X 1 r I X 1 j 1) α ) j1 j αp αr 1 log j E X 1 r I l 1) α < X 1 l α ) E X 1 r I l 1) α < X 1 l α ) jl 1 j αp αr 1 log1 j) l αp αr log1 l)e X 1 r I l 1) α < X 1 l α ) E X 1 p log1 X 1 )I l 1) α < X 1 l α ) E X 1 p log1 X 1 )<. 2.18) By C r inequality and r 2, ) r/2 n r/2 1 ani r nr/2. ani 2 The second part of 2.15) can be dominated by r/2 I 222 n αp αq 2 ani 2 EX2 1 I X 1 x )) 1/q dx n αq x r/q n αp αqr/2 2 We consider the following two situations. n αq x r/q EX 2 1 I X 1 x 1/q )) r/2dx. 2.19) i) If p 2, then EX1 2I X 1 x 1/q ) EX1 2 <.Sincer>αp 1)/α 1/2),so for q r, I 222 n αp αqr/2 2 x r/q dx n αq n αp αrr/2 2 <, 2.2) and for q r, I 222 n αp αrr/2 2 log n<. 2.21)

Complete moment convergence of weighted sums 275 ii) If 1 <p<2, then r 2. I 222 n αp αq 1 x 2/q EX 2 n αq 1 I X 1 x 1/q ) dx n αp αq 1 jn j1) αq j αq x 2/q EX 2 1 I X 1 x 1/q ) dx n αp αq 1 j αq 2α 1 EX1 2 I X 1 j 1) α ). 2.22) jn Similar to 2.16), 2.17) and2.18) wehavei 222 <. SoI 22 < and I 2 <. The first part of Theorem 2.1 is proved. As for the second part of Theorem 2.1, one can get ) n αp 2 P sup a ni X i >ε x 1/q dx kn k α 2 j 1 n αp 2 P sup n2 j 1 kn k α P sup k2 j 1 k α 2 jαp 1) P sup 2 jαp 1) P 2 jαp 1) P lj 2 lαp 1) P a ni X i >ε x 1/q ) ) a ni X i >ε x 1/q dx k2 j 1 k α sup lj P 2 j 1 dx n2 j 1 2 jαp 2) ) a ni X i >ε x 1/q dx 2 l 1 k<2 l k α 2 l 1 k<2 l k α 2 lαp αq 1) P 2 l 1 k<2 l k α 2 l 1 k<2 l ) a ni X i >ε x 1/q dx ) a ni X i >ε x 1/q dx ) a ni X i >ε x 1/q dx 2 l 1 k<2 l 2 lαp αq 1) P 1k<2 l l 2 jαp 1) ) a ni X i >ε x 1/q )2 l 1)α dx ) a ni X i >2 l 1)α εy 1/q dy letting y 2 l 1)αq x) ) a ni X i > 2 l 1)α ε y 1/q dy

276 Jun An 2 l1 1 n αp αq 2 n2 l ) P a ni X i > 2 l1)α 2 2α ε y 1/q dy 1k<2 l 2 l1 1 ) n αp αq 2 P a ni X i >ε n α y 1/q dy n2 l 1k<n ) letting ε 2 2α ε ) n αp αq 2 P a ni X i >ε n α y 1/q dy 1k<n } n αp αq 2 q E a ni X i ε n α <. 2.23) The proof of Theorem 2.1 is completed. Proof of Theorem 2.2. We agree on Y xi and a ni such as the proof of Theorem 2.1. Similarly for the proof of 2.1), we have } n q/p q E a ni X i εn 1/p ) n q/p P a ni X i >εn 1/p x 1/q dx ) n q/p n q/p P a ni X i >εn 1/p dx ) n q/p P a ni X i >x 1/q dx n q/p ) P a ni X i >εn 1/p ) n q/p P a ni X i >x 1/q dx n q/p : I 1 I 2 2.24) By Theorem B, we know I 1 <.Fromsup n1 n a 2 ni < and C r inequality we get n a ni n 1/2.SinceEX 1, it is easy to see that x 1/q a ni EY xi x 1/q a ni EY xi as x ). 2.25)

Complete moment convergence of weighted sums 277 So the second part of 2.24) can be dominated by ) I 2 n q/p a ni Y xi EY ni ) >x 1/q /4 dx n q/p P n q/p n q/p P ) a ni Y xi EY xi ) >x1/q /4 dx ) 2 n q/p x 2/q E a ni Y n q/p xi Y ni ) dx 2 n q/p x 2/q E a ni Y xi Y ni )) dx n q/p n q/p n q/p x 2/q n q/p n q/p x 2/q ani 2 EX2 1 I X 1 >x 1/q ) dx ani 2 EX2 1 I X 1 x 1/q ) dx using 2.7)) n q/p x 2/q EX 2 n q/p 1 I X 1 >x 1/q ) dx n q/p x 2/q EX 2 n q/p 1 I X 1 x 1/q ) dx n q/p jn j1) q/p j q/p x 2/q EX 2 1 I X 1 >x 1/p ) dx n q/p jn j1) q/p j q/p x 2/q EX 2 1 I X 1 x 1/p ) dx n q/p j q/p 2/p 1 EX1 2 I X 1 >j 1/p ) jn n q/p j q/p 2/p 1 EX1 2 I X 1 j 1) 1/p ) jn j q/p 2/p 1 EX1 2 I X 1 >j 1/p ) j n q/p j j q/p 2/p 1 EX1 2 I X 1 j 1) 1/p ) n q/p. 2.26)

278 Jun An We consider the following two situations. i) If q p, then I 2 j 2/p EX1 2 I X 1 >j 1/p ) j 2/p EX1 2 I X 1 j 1) 1/p ) j 2/p EX1 2 Il1/p < X 1 l 1) 1/p ) jl j1 j 2/p EX1 2 I l 1)1/p < X 1 l 1/p ) l EX1 2 Il1/p < X 1 l 1) 1/p ) j 2/p EX1 2 I l 1)1/p < X 1 l 1/p ) jl 1 l 2/p1 EX1 2 Il1/p < X 1 l 1) 1/p ) l 2/p1 EX1 2 Il1/p < X 1 l 1) 1/p ) E X 1 p Il 1/p < X 1 l 1) 1/p ) j 2/p E X 1 p <. 2.27) ii) If q p, then I 2 j 2/p log j EX1 2 Il1/p < X 1 l 1) 1/p ) lj j1 j 2/p log j EX1 2 I l 1)1/p < X 1 l 1/p ) l EX1 2 Il1/p < X 1 l 1) 1/p ) j 2/p log j EX1 2 Il1/p < X 1 l 1) 1/p ) j 2/p log1 j) jl 1 l 2/q1 log1 l)ex1 2 Il1/p < X 1 l 1) 1/p )

Complete moment convergence of weighted sums 279 E X 1 p log1 X 1 )I l 1/p < X 1 l 1) 1/p ) E X 1 p log1 X 1 )<. 2.28) As for 2.4), we can prove it similar to 2.22). We omit its details. The proof of Theorem 2.2 is completed. Acknowledgments The author is very grateful to the anonymous referee for helpful suggestions on the original manuscript. This work is supported by the Projects of Science and Technology Research of Chongqing City Education Committee. References [1] An J, Complete convergence of weighted sums for sequences of AANA radom variables submitted) [2] Cai G H, Complete convergence for weighted sums of sequences of AANA random variables, Glasgow Math. J. 171) 24) 165 181 [3] Chen P Y and Wang D C, Complete moment convergence for sequence of identically distributed ϕ-mixing random variables, Acta Math. Sin. Engl. Ser. 264) 21) 679 69 [4] Chow Y S, On the rate of moment complete convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin. 16 1988) 177 21 [5] Chow Y S and Teicher H, Probability theory: independent, interchangeability, Martingales, third edition 1997) New York: Springer) [6] Chandra T K and Ghosal S, Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta Math. Hung. 714) 1996a) 327 336 [7] Chandra T K and Ghosal S, The strong law of large numbers for weighted averages under dependence assumptions, J. Theor. Probab. 93) 1996b) 797 89 [8] Ghosal S and Chandra T K, Complete convergence of martingale arrays, J. Theor. Probab. 11 1998) 621 631 [9] Gut A, Probability theory: a graduate course 25) New York: Springer) [1] Kim T S, Ko M H and Lee I H, On the strong laws for asymptotically almost negatively associated random variables, Rocky Mt. J. Math. 343) 24) 979 989 [11] Li Y X and Zhang L X, Complete moment convergence of moving average under dependent assumptions, Stat. Probab. Lett. 7 24) 191 197 [12] Li D L, Rao B, Jiang T F and Wang X C, Complete convergence and almost sure convergence of weighted sums of random variables, J. Theor. Probab. 8 1995) 49 76 [13] Petrov V V, Limit theorems of probability: sequences of independent random variables 1995) Oxford: Clarendon Press) [14] Wang X J, Hu S H and Yang W Z, Complete convergence for arrays of rowwise asymptotically almost negatively associated random variables, Discret. Dyn. Nat. Soc., Article ID 717126 211) 11 page. doi:1.1155/212/717126 [15] Yang W Z, Wang X J, Ling N X and Hu S H, On complete convergence of moving average process for AANA sequence, Discret. Dyn. Nat. Soc., Article ID 86391 212) 24 pages. doi:1.1155/212/863931 [16] Yuan D M and An J, Rosenthal type inqualities for asymptotically almost negatively associated random variables and applications, Sci. China Ser. A 529) 29) 1887 194 [17] Zhou X C and Lin J G, Complete q-moment convergence of moving average process under ϕ-mixing assumption, J. Math. Res. Expo. 314) 211) 687 697