Plasmon-suppressed vertically-standing nanometal structures

Similar documents
U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

Biosensing based on slow plasmon nanocavities

Substrate effect on aperture resonances in a thin metal film

Enhanced Transmission by Periodic Hole. Arrays in Metal Films

Surface Plasmon Resonance in Metallic Nanocylinder Array

Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Light transmission through a single cylindrical hole in a metallic film

Superconductivity Induced Transparency

Demonstration of Near-Infrared Negative-Index Materials

Surface plasmon coupling in periodic metallic nanoparticle structures: a semi-analytical model

Aluminum for nonlinear plasmonics: Methods Section

Polarization anisotropic transmission through metallic Sierpinski-Carpet aperture array

Efficiency and finite size effects in enhanced transmission through subwavelength apertures

Full-color Subwavelength Printing with Gapplasmonic

Transmission of Light Through Small Elliptical Apertures (Part 2)

Tunable plasmon resonance of a touching gold cylinder arrays

Negative Index of Refraction in Optical Metamaterials

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

SUPPLEMENTARY INFORMATION

The Dielectric Function of a Metal ( Jellium )

Symmetry breaking and strong coupling in planar optical metamaterials

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

MODAL ANALYSIS OF EXTRAORDINARY TRANSMISSION THROUGH AN ARRAY OF SUBWAVELENGTH SLITS

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Intraparticle Surface Plasmon Coupling in Quasi-One-Dimensional Nanostructures

Lecture 10: Surface Plasmon Excitation. 5 nm

Supplementary Figure S1 SEM and optical images of Si 0.6 H 0.4 colloids. a, SEM image of Si 0.6 H 0.4 colloids. b, The size distribution of Si 0.

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Broadband Plasmonic Couplers for Light Trapping and Waveguiding

Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials

A negative permeability material at red light

Optics Communications

An efficient way to reduce losses of left-handed metamaterials

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Surface plasmon polariton excitation and manipulation by nanoparticle arrays

COVER SHEET. This is the author version of article published as:

Tuning of plasmon resonance through gold slit arrays with Y-shaped channels

Engineering the properties of terahertz filters using multilayer aperture arrays

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Nanoscale optical circuits: controlling light using localized surface plasmon resonances


Microcavity enhanced directional transmission through a subwavelength plasmonic slit

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Information

Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals

Gratings in Electrooptic Polymer Devices

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

SPP-associated dual left-handed bands and field enhancement in metal-dielectric-metal metamaterial perforated by asymmetric cross hole arrays

ABSTRACT 1. INTRODUCTION

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

Mixed Dimer Double-Resonance Substrates for Surface-Enhanced Raman Spectroscopy

Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain

Supplementary Information Effects of asymmetric nanostructures on the extinction. difference properties of actin biomolecules and filaments

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

SUPPLEMENTARY INFORMATION

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Flexible, Transparent and Highly Sensitive SERS. Substrates with Cross-nanoporous Structures for

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

Nanosphere Lithography

ECE280: Nano-Plasmonics and Its Applications. Week8

Study of polarization-dependent energy coupling between near-field optical probe and mesoscopic metal structure

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary

A Broadband Flexible Metamaterial Absorber Based on Double Resonance

Effect of Paired Apertures in a Periodic Hole Array on Higher Order Plasmon Modes

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

Third harmonic upconversion enhancement from a single. semiconductor nanoparticle coupled to a plasmonic antenna

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

Nanophysics: Main trends

Invited Paper ABSTRACT 1. INTRODUCTION

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

TRANSMISSION PROPERTIES OF SUB-WAVELENGTH HOLE ARRAYS IN METAL FILMS

Frustrated energy transport through micro-waveguides decorated by gold nanoparticle chains

Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings

ARTICLE. Surface-enhanced Raman scattering

PHYSICAL REVIEW B 69,

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

S-matrix approach for calculations of the optical properties of metallic-dielectric photonic crystal slabs

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

Nanostrukturphysik (Nanostructure Physics)

Nanomaterials and their Optical Applications

Supporting information:

Near dispersion-less surface plasmon polariton resonances at a metal-dielectric interface with patterned dielectric on top

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

Angular and polarization properties of a photonic crystal slab mirror

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

MSN551 LITHOGRAPHY II

Strong plasmon coupling between two gold nanospheres on a gold slab

Influence of spatial incident angles on polarizer with a slit in grooved metal slabs for terahertz communication

Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection

Surface Plasmon Wave

Transmission resonances on metallic gratings with very narrow slits

Transcription:

Plasmon-suppressed vertically-standing nanometal structures Jin-Kyu Yang 1,2*, In-Kag Hwang 3, Min-Kyo Seo 1, Se-Heon Kim 1, and Yong-Hee Lee 1 1 Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea 2 Current address: Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea 3 Department of Physics, Chonnam National University, Gwangju, 500-757, Korea *Corresponding author: jin9ya@gmail.com Abstract: The authors report plasmon-suppressed vertically-standing nanometal-stripe-array structures fabricated by Ar ion sputtering after electron-beam lithography and Ag deposition. When the width of the Ag stripe is comparable to the skin depth of a metal (~ 20 nm, the particle plasmon resonance is strongly suppressed for electric fields oscillating perpendicular to the length of the stripe. This suppression of the particle plasmon excitation is attributed to the limited movement of free electrons localized near the bottom of Ag stripe. This plasmon-suppressed vertica llystanding nanometal structures could be used for broad band polarizers. 2008 Optical Society of America OCIS codes: (250.5403 Plasmonics; (310.6628 Subwavelength structure, nanostructures References and links 1. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J.W. Park, J. Kim, Q. H. Park, and C. Lienau, Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures, Phys. Rev. Lett. 91, 143901 (2003. 2. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Magnetic response of metamaterials at 100 Terahertz, Science 306, 1351-1353 (2004. 3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667-669 (1998. 4. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, Garnett W. Bryant, and F. J. Garcia de Abajo, Optical properties of gold nanorings, Phys. Rev. Lett. 90, 057401 (2003. 5. W. L. Barnes, A. Dereux and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424, 824-830 (2003. 6. J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors Actuat. B 54, 3 15 (1999. 7. S. Nie and S. R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275, 1102-1106 (1997. 8. J. L. Coutaz, M. Neviere, E. Pic, and R. Reinisch, Experimental study of surface-enhanced secondharmonic generation on silver grating, Phys. Rev. B 32, 2227 2232 (1985. 9. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, Optical properties of Ag and Au nanowire gratings, J. Appl. Phys. 90, 3825-3830 (2001. 10. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, Optical properties of planar metallic photonic crystal structure: Experiment and theory, Phys. Rev. B 70, 125113 (2004. 11. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, Boston, 2005. 12. David W. Lynch and W. R. Hunter, Silver (Ag, in Handbook of Optical Constant of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985. 1. Introduction As nanotechnologies have matured rapidly in recent years, various methods have been tried to fabricate nano-scale metallic structures. The most common method employs dry etching techniques after electron-beam lithography [1]. The lift-off technique is another famous method to define patterns utilizing the electron-beam lithography and metal deposition [2]. (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1951

The focused ion beam etching method is also used to fabricate metallic nano patterns directly [3]. In addition, self-assembled metallic rings based on the sputter re-deposition were reported recently [4]. However, in the case of the self-assembly, it is nontrivial to generate desired nano-patterns at specific positions. In this report, novel vertical nanometal structures prepared by Ar ion milling and electron-beam lithography are investigated. The plasmonic resonance appearing in metallic structures [5] has attracted many researchers because of a wide variety of applications such as surface plasmon resonance sensors [6], surface-enhanced Raman spectroscopy [7], and second-harmonic generation [8]. However, the spectral dependence of the plasmonic resonance prevents these metallic structures from their application to broadband polarizers [9]. Here, we propose and demonstrate vertically-standing nanometal-stripe-array structures in which the plasmonic resonance is strongly suppressed over the entire visible spectrum. The optical characteristics are studied by polarization-dependent transmission measurement. The interaction between the free electrons and the localized plasmonic field is analyzed by the finite difference time domain method to understand the physical origin of the suppression of the plasmon resonance. Fig. 1. SEM images of fabricated vertically-standing gold nanometal structures: (a side view (60r. (b top view. (c schematic of nanometal stripe array. 2. Sample fabrication and experimental setup The vertically-standing nanometal-stripe-array structures are prepared as follows. First, a 125- nm-thick indium tin oxide (ITO layer is prepared on glass substrate to avoid charging effects during the electron-beam writing. Next, Polymethyl Methacrylate (PMMA is spin-coated and one-dimensional grating structures are defined on the PMMA layer by the electron-beam lithography. And then, Ag (or other metals is deposited over the grating structure by thermal evaporation. During the subsequent Ar ion milling process, the deposited Ag is removed and simultaneously sputter-deposited on the side walls of the PMMA. Finally, the sample is covered with PMMA overcoat to prevent the Ag film from oxidation. The fabricated structure just before the protective PMMA overcoat is shown in Fig. 1(a. Typically, the width of the stripe is ~ 20 nm, which can be controlled by the thickness of the initial metal layer. The height of the stripe is 200 nm, the same as the thickness of the PMMA layer. The total size of the pattern is 50 μm 50 μm. A white light (halogen lamp transmission setup is used for experiment. A Glan-Thomson polarizer is placed in front of a sample to control the polarization state of the input light. Two representative directions of electric fields, oscillating parallel (TE-like polarization and perpendicular (TM-like (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1952

polarization to the stripe axis, are chosen for our measurement and defined as described in Fig. 1(c. Because of the small size of the pattern, the transmitted beam is magnified and the light passing through the patterned area is sampled by a pin hole. The spatially-filtered light is collected into the entrance slit of the Optical Multi-channel Analyzer. The transmission spectrum taken from the same wafer without the pattern is used as a reference. (a (b 307 nm 349 nm 396 nm 451 nm 495 nm Wavelnegth (nm Fig. 2. Normalized transmission spectra of vertically-standing Ag nanometal stripe arrays of different periods: (a TM-like polarization and (b TE-like polarization. The width and the height of Ag stripes are 20 nm and 200 nm, respectively. The number in (b is the period of the array. 3. Results and discussion In periodic metallic structures, the particle plasmon resonance is easily observed with the help of the Bragg momentum [9, 10]. In order to study the particle plasmon resonance in our vertically-standing Ag nanometal stripe arrays, polarization-dependent transmission spectra are taken at normal incidence as a function of period. Figure 2(a shows normalized transmission spectra of TM-polarized light. Unlike in the conventional metal stripe array, no noticeable plasmonic resonance is identified over the whole visible spectrum. In addition, the transmission spectra show no dependence on the period of the array. In other words, the vertically-standing Ag nanometal stripe arrays do not seem to interact with TM-like fields. However, in the transmission spectra of TE-like fields, unambiguous resonant lines are easily observed as shown in Fig. 2(b. These asymmetric resonances are identified as the Fanoresonance, a kind of Wood s anomaly related to the ITO guided mode [10]. In this case, the wavelength of the Fano-resonance varies with the grating period. The electric field of a particle plasmon resonance is highly concentrated at the metal/dielectric interface. Therefore, the width of Ag stripe plays an important role for the plasmonic excitation [9]. To investigate the width dependence, we prepare Ag stripes of various widths as shown in Fig. 3(b. Here the nanometallic pattern repeats at a fixed interval of 340 nm. The vertically-standing Ag stripe (w = 25 nm is 125-nm high and over-covered with PMMA. Those comparison samples fabricated by conventional lift-off techniques are smaller in height (55-nm. In the case of TM-like polarization (Fig. 3(a, the transmission spectra show noticeable dependency on the width of the Ag stripe. When the width is 141 nm, the particle plasmon resonance near 600 nm is broad and strong. As the width decreases, the resonance becomes narrower and weaker. It is interesting to observe that the plasmon resonance almost disappears in the vertically-standing Ag stripe array. Also note that the particle plasmon resonance red-shifts with the increase of the width of the metal. In comparison, in the case of TE-like light (Fig. 3(b, the spectral position of the Fanoresonance is fixed near 540 nm independent on the width of the metal. It is not unexpected because the resonance of the ITO-guided mode depends only on the period of the metallic grating. When the width of the Ag stripe decreases, the Fano-resonance becomes weaker because the scattering cross section is reduced. However, the asymmetric line shape is still maintained even in the very thin vertically-standing structure. (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1953

(a (b 25nm 77nm 95nm 117nm 141nm (a Normalized Transmission T/T 0 Fig. 3. Normalized transmission spectra of various widths of Ag stripe arrays: (a TM-like polarization, (b TE-like polarization. The numbers in (b are the widths of the Ag stripe. The pictures on the right of (b are the vertical cross sections. The Ag stripe of w = 25 nm has 125- nm height with PMMA over-coat. The other samples are 55-nm high without PMMA overcoat. 1.0 (b 100 0.5 0.0 TM-like polarization 0.5 TE-like polarization 0.0 Transmission contrast (% 80 60 40 20 0 Fano-resonance Particle plasmon resonance 50 100 150 Silver stripe width (nm Fig. 4. (a Description of the transmission contrast of the resonance. (b Transmission contrasts of Ag stripe arrays as a function of the width. The particle plasmon resonance and the Fanoresonance are considered for TM-like and TE-like polarizations, respectively. To study the width dependence, transmission spectra near resonances are plotted as shown in Fig. 4. The maximum reduction of the transmission is one way to represent the strength of the coupling between the incident photons and the resonant mode. In this study, we define the transmission contrast as the ratio of the minimum transmission and the maximum transmission as indicated in Fig. 4(a. It seems natural that the transmission contrast increases with the increase of the width of the metal. However, it is worth pointing out that the transmission contrast of the particle plasmon resonance diminishes more rapidly than that of the Fano-resonance. The periodic Finite-Difference Time-Domain (FDTD method [11] is employed to understand our observation. In these analyses, the stripe width is varied from 10 nm to 141 nm, while the height and period of the Ag stripe are fixed at 55 nm and 340 nm, respectively. As shown in Fig. 5, the computed transmission spectra (solid lines compares reasonably with those of the measurement (dotted lines. In the case of the Fano-resonance, the transmission contrast shows a rather large value even when the width is 20 nm and becomes saturated when the silver stripe width is over 40 nm. In comparison, the transmission contrast of the particle plasmon resonance drops rapidly when the width becomes smaller than 60 nm and becomes weaker when the width is 20 nm. It is worth remembering that the particle plasmon resonance disappears when the dimension of the metal width is comparable to the skin depth (25 nm of Ag metal [12]. (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1954

(c Transmission contrast (% 100 80 60 40 20 Fano-resonance Plasmonic resonance 0 20 40 60 80 100 120 140 Silver stripe width (nm Fig. 5. Calculated normalized transmission spectra and transmission contrasts for Ag stripe arrays of various widths. (a TM-like polarization, (b TE-like polarization, (c Transmission contrasts as a function of width. The dotted lines are the experimental data. The numbers in (b indicate the width of Ag stripes. The electromagnetic field distribution and the induced current density are analyzed by FDTD method. The induced current density, J(t, is calculated using the equation shown below [11], Jt ( 2 + γj ( t = ε0ωpe( t. (1 t Here, the plasma frequency, ω p is 1.155 10 16 s -1 and the electron-neutral collision frequency, γ is 1.108 10 14 s -1. These values are estimated using the data in the reference [13] and the resultant Drude model generates optical constants that deviate less than 5% from the reported data over a spectral range of 400 nm ~ 800 nm. Figure 6(a shows the calculated transmission spectra of the vertically-standing Ag stripes with thickness of the skin depth of 25 nm formed on 125-nm-thick ITO film. The particle plasmon resonance appearing at 488 nm is much weaker than the Fano-resonance at 558 nm. For TM-like light, the dipolar E z field is strongly localized near the bottom edge of Ag stripe as shown in Fig. 6(b. The induced current is highly concentrated at the bottom of the Ag stripe, where the electrons oscillate perpendicular (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1955

to the stripe (x-direction. In this case, the movement of the electron is severely restricted by the finite metal width on the order of the skin depth. In other words, the electron motion perpendicular to the surface 1D structure is more restricted in comparison to that along the surface of the 3D structure. Estimating from the data shown in Fig. 4, the width of Ag stripe needs to be at least more than twice the skin depth for electrons to move freely. The transmission of TE-like light decreases for longer wavelengths as shown in Fig. 6(a. However, note that the transmission of TM-like light maintains a value close to one. As the width of the metal increases with a fixed period, the extinction ratio between two polarizations gets better as one can see in Fig. 7. On the other hand, the Fano-resonance still remains relatively strong. As shown in Fig. 6(c, the H z field component of this Fano-resonance is mostly confined within the ITO layer. This is one of the evidences that the Fano-resonance is Wood s anomaly related to the ITO guided mode. Moreover, electrons oscillate freely along the length (y-direction of the stripe and the induced current spreads out without restriction. Note that the electromagnetic field becomes weak inside the metal film. Unlike at the particle plasmon resonance, the metal width comparable to one skin depth provides enough room for electrons oscillating parallel to the stripe. (a Normalized Transmission (T/T 0 1.0 0.8 0.6 0.4 0.2 TM TE 0.0 (b TM (c TE Z E z field J x current H z field X J y current Fig. 6. (a Normalized transmission spectra of vertically-standing Ag stripe array at TE-like and TM- like polarizations. (b E z field distribution and J x current distribution for the particle plasmon resonance at 488 nm (the blue arrow in (a. (c H z field distribution and J y current distribution for the Fano-resonance at 558 nm (the red arrow in (a. (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1956

1 TM pol. Transmission 0.1 0.01 1E-3 TE pol. Ag (w=20nm Ag (w=30nm Al (w=20nm Al (w=30nm Fig. 7. Transmission spectra of vertically-standing metallic stripes. The period is 200 nm and the height of the stripe is 200nm. The black and the green lines indicate Ag stripes of 20-nm width and 30-nm width, respectively. The red and the blue lines indicate Al stripes of 20-nm width and 30-nm width, respectively. 4. Summary In summary, we fabricate plasmon-suppressed vertically-standing nanometal structures by the electron-beam lithography and Ar ion sputter redeposition. In this novel structure, the particle plasmon excitation is strongly suppressed for TM-like light. However, the Fano-resonance is still observed for TE-like light. We conclude that the localized interaction between the electromagnetic field and the free electron oscillation is responsible for the disappearance of the particle plasmon when the width become comparable or smaller than the skin depth. The plasmon-suppressed vertically-standing nanometal structure could be a good candidate for a broad polarizer over the entire visible spectral range. Acknowledgments This work was supported by the Korea Science and Engineering Foundation (KOSEF (No. ROA-2006-000-10236-0 and the Korea Foundation for International Cooperation of Science and Technology (KICOS (No. M60605000007-06A0500-00710 through grants provided by the Korean Ministry of Science and Technology (MOST. (C 2008 OSA 4 February 2008 / Vol. 16, No. 3 / OPTICS EXPRESS 1957