Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

Similar documents
Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

ME 3560 Fluid Mechanics

Chapter Finite Difference Method for Ordinary Differential Equations

ABSTRACT. Magnetohydrodynamics, heat and mass transfer, thermal radiation, heat source, chemical reaction, porous medium, vertical plate.

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Analysis of Heat Transfer of Ribbed Turbulent Channel using ANSYS

EN221 - Fall HW # 7 Solutions

Control Volume Derivation

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

M E FLUID MECHANICS II

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba


CSE Winter School 2012

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

MECHANICS OF MATERIALS Poisson s Ratio

ME 425: Aerodynamics

Entropy ISSN

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

Exercise 4: Adimensional form and Rankine vortex. Example 1: adimensional form of governing equations

PHYS PRACTICE EXAM 2

Propagation of Torsional Surface Waves. in Heterogeneous Half-Space. with Irregular Free Surface

Stress, Cauchy s equation and the Navier-Stokes equations

Engineering Accreditation. Heat Transfer Basics. Assessment Results II. Assessment Results. Review Definitions. Outline

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

Chapter 7. Interference

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

Orthotropic Materials

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Fluid Flow and Heat Transfer Characteristics across an Internally Heated Finned Duct

Fully developed free convective flow of a Williamson fluid in a vertical channel under the effect of a magnetic field

2-d Motion: Constant Acceleration

Key Chemistry 102 Discussion #4, Chapter 11 and 12 Student name TA name Section. ; u= M. and T(red)=2*T(yellow) ; t(yellow)=4*t(red) or

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1

NUMERICAL ANALYSIS OF THERMAL PERFORMANCE OF AN EXTERNALLY LONGITUDINALLY FINNED RECEIVER FOR PARABOLIC TROUGH SOLAR COLLECTOR

Lecture 22 Electromagnetic Waves

An Exact Solution of Navier Stokes Equation

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

EFFECTS OF WALL CURVATURE ON TURBULENT HEAT TRANSFER IN CURVED PIPE FLOW

MODELLING OF ROTATIONAL FLUID WITH AN ACCELERATED VERTICAL PLATE EMBEDDED IN A DARCIAN POROUS REGIME

ME 425: Aerodynamics

Influence of Velocity Slip on the Peristaltic Pumping of a Jeffrey Fluid in a Non Uniform Annulus

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Flow-Induced Vibration Analysis of Supported Pipes with a Crack

Pressure Vessels Thin and Thick-Walled Stress Analysis

q r 1 4πε Review: Two ways to find V at any point in space: Integrate E dl: Sum or Integrate over charges: q 1 r 1 q 2 r 2 r 3 q 3

ELEMENTS OF ACOUSTIC WAVES IN POROUS MEDIA

Effects of Surface Roughness and Fluid on Amplifier of Jet Pipe Servo Valve

10. Euler's equation (differential momentum equation)

3.3 Properties of Vortex Structures

A 1. EN2210: Continuum Mechanics. Homework 7: Fluid Mechanics Solutions

The sudden release of a large amount of energy E into a background fluid of density

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

Physics 207 Lecture 13

r r r r r EE334 Electromagnetic Theory I Todd Kaiser

Mat 267 Engineering Calculus III Updated on 04/30/ x 4y 4z 8x 16y / 4 0. x y z x y. 4x 4y 4z 24x 16y 8z.

ROTOR SUPPORTED. J. Tůma, J. Škuta, R. Klečka VSB Technical University of Ostrava J. Šimek TECHLAB Praha

ME 321: FLUID MECHANICS-I

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

Low-complexity Algorithms for MIMO Multiplexing Systems

Physics 201 Lecture 18

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

Chapter 7 Response of First-order RL and RC Circuits

A Most Useful Device of Studying Electrode Processes: The Rotating Disk Electrode

Physics 201, Lecture 5

Field due to a collection of N discrete point charges: r is in the direction from

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

PROBLEM SET 5. SOLUTIONS March 16, 2004

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

Critical statics and dynamics of QCD CEP

Lecture Angular Momentum

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Fluid flow in curved geometries: Mathematical Modeling and Applications

INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: ), VOL. 5, NO. 2,

Transient convective heat and mass transfer flow in an axially varying pipe with traveling thermal wave

Fundamentals of Heat Transfer Muhammad Rashid Usman

RTT relates between the system approach with finite control volume approach for a system property:

v T Pressure Extra Molecular Stresses Constitutive equations for Stress v t Observation: the stress tensor is symmetric

Experiment 123 Determination of the sound wave velocity with the method of Lissajous figures

Cylindrical and Spherical Coordinate Systems

Math 209 Assignment 9 Solutions

Welcome to Physics 272

ME 304 FLUID MECHANICS II

CH.7. PLANE LINEAR ELASTICITY. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

EGN 3353C Fluid Mechanics

Heat Transfer. Revision Examples

KINEMATICS OF RIGID BODIES

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Structural Dynamics and Earthquake Engineering

2.25 Advanced Fluid Mechanics

The Production of Polarization

7 Wave Equation in Higher Dimensions

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

RaNS.1 RaNS + PDE Turbulence Closure Models

AST1100 Lecture Notes

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Transcription:

Convecive Hea Tansfe (6) Foced Convecion (8) Main Andesson

Agenda Convecive hea ansfe Conini eq. Convecive dc flow (inodcion o ch. 8)

Convecive hea ansfe

Convecive hea ansfe

Convecive hea ansfe f flid vämeledande kopp Hea condcing bod w () (,) Q! α( ) A f w

Convecive hea ansfe f vämeledande kopp hea condcing bod w () Q! α( f w) A flid (,)! 0, v, w 0 hea condcion in he flid Inodcion of hea ansfe coeficien: λ & (6 3) f Q/ A 0 α w f w f

Convecive hea ansfe Objecive (of chape 6-11): Deemine α and he paamees inflencing i fo pescibed w () o q w () Q/A

Ode of magnide fo α Medim α W/m²K Ai (1ba); naal convecion -0 Ai (1ba); foced convecion 10-00 Ai (50 ba); foced convecion 00-1000 Wae foced convecion 500-5000 Oganic liqids; foced convecion 100-1000 Condensaion (wae) 000-50000 Condensaion (oganic vapos) 500-10000 Evapoaion, boiling, (wae) 000-100000 Evapoaion, boiling (oganic liqids) 500-50000

How o do i? (o descibe convecive HT) Wha ae he ools? Flid moion: Mass consevaion eqaion (Conini eqn) Momenm eqaions (Newon s second law) Eneg balance in he flid Fis law of hemodnamics fo an open ssem

Conini eq. Epesses ha mass is consan and no desoable ρ τ ( ρ) ( ρv) ( ρw) z 0 (6 4) Especiall fo sead sae, incompessible flow, wo-dimensional case v 0 (6 5)

Resling momenm eqaions dim. : ˆ p F v µ ρ τ ρ : ˆ v v p F v v v v µ ρ τ ρ Inpossible o solveb hand, need o be simplified (chape 6, 7 and 8)

Tempeae Eqaion z c z w v p ρ λ Unpossible o solve b hand, need o be simplified (chape 6, 7 and 8)

Bonda lae appoimaions (lamina case) U (,) δ () Wh diffeen fields fo empeae and veloci??? (,) w δ T

Bonda lae heo developed b Pandl >> v If he bonda lae hickness is ve small If D >>, v, v >>

Bonda lae appoimaions Pandl s heo p() p d dp F v µ ρ ρ c v p ρ λ Fom Navie-Sokes eqn in he -diecion i is fond ha he pesse is independen of Then Navie Sokes in he -diecion is simplified o: Also he empeae field is simplified

Bonda lae appoimaions Pandl s heo p 1 ρu konsan Benollis eqn descibes he flow oside he bonda lae dp d ρu du d P ν ρc p µ c p λ λ The dimensionless Pandl nmbe is inodced

Bonda lae eqaions 0 v d du U v ρ µ P v ρ µ Mass consevaion Momenm consevaion Eneg consevaion

Bonda laes c U U fll blen lae bffe lae viscos sblae lamina bonda lae ansiion blen bonda lae 5 5 10 Re c U c /ν N f (Re,P) 7

Conini eq. (epesses ha mass is consan and no desoable)! m 1 ρ ddz : & m& & ρddz ( ρ) dddz 1 m m d 1 z d d dz Ne mass flow o in -diecion Δ! m ( ρ)d ddz Analogos in - and z-diecions Δ m! ( ρv) d d dz Δm! z ( ρw) dz d d z Neo sömma, ne flow o : Δm! Δm! Δm! z Ne mass flow o Redcion in mass wihin volme elemen

Con. conini eq.! Redcion pe ime ni: ρ τ ρ τ ( ρ) d ddz ( ρv) z ( ρw) Conside a mass balance fo he volme elemen a he pevios page ρ τ ( ρ) ( ρv) ( ρw) z 0 (6 4) Especiall fo sead sae, incompessible flow, wo-dimensional case v 0 (6 5)

Navie Sokes ekvaione (eqs.) Deived fom Newon s second law!! m a F m ρ d d dz a! d dτ, dv dτ, dw dτ b (,, z, τ), v v(,, z, τ), w w(,, z, τ)

Foces F! The sface foces ac on he bonda sfaces of he flid elemen and ae acing as eihe nomal foces o shea foces a. volme foces (F, F, Fz) ae callaed pe ni mass, N/kg b. sesses σ ij N/m

Foces The sface foces ae callaed pe ni aea and ae called sesses F! a. volme foces (F, F, F z ) ae callaed pe ni mass, N/kg b. sesses σ ij N/m σ ij σ σ σ z σ σ σ z σ σ σ z z zz!!! "" "" "z" Sesses fo an elemen dddz

Signs fo he sesses d σ σ σ σ σ σ

. Signs fo he sesses d σ σ σ σ σ σ Resling sesses σ σ ( σ )d σ σ ( σ )d ( σ )d σ σ σ σ ( σ )d

Ne foce in -diecion (fo he 3D case) ( σ )dddz ( σ )dddz ( σ z z )dzdd j ( σ ji )dddz

Eamples of sesses σ p µ e p µ σ σ µ e µ v v σ p µ e p µ

Resling momenm eqaions : ˆ p F v µ ρ τ ρ : ˆ v v p F v v v v µ ρ τ ρ 6.0 6.1

Eneg eq. (Fis law of hemodnamics of an open ssem), Tempeae field eq. d dz z d d Q! dh Neglecing kineic and poenial eneg Ne hea o elemen Change of enhalp flow

. Hea condcion in he flid (callaing he hea flow as in chape 1) Q d! )dddz ( ddz d Q Q Q ddz A Q d λ λ λ λ!!!! )dddz ( Q Q Q d λ Δ!!! 6.4

. Analogos in - and z-diecions (6-7) )dz d d z ( z Q )dd dz ( Q z λ Δ λ Δ!! { } z Q Q Q Q d!!!! Δ Δ Δ Q d! sign convenion fo hea d ddz ) z ( z ) ( ) ( dq λ λ λ!! 6.5 6.6

Enhalp flows and changes Flow of enhalph in he -diecion H! m! h ρ d dz h h dh ρ h d d dz ρ! 6.8 d d dz

Enhalp changes - and z-diecions v h dh! ρ h d d dz ρv w h dh! z ρh d d dz ρw z z d d dz d d dz 6.9 6.30

Toal change in enhalp dh& dh& dh& dh& z v w ρh d d dz z h h h ρ v w d d dz z

Enhalp vs empeae h ( p ) h, dh h p dp h p d 6.33

Enhalp vs empeae c p h p B definiion Fo ideal gases he enhalp is independen of pesse, i.e., ( h / p) 0.Fo liqids, one commonl assmes ha he deivaive ( h / p) is small and/o ha he pesse vaiaion dp is small compaed o he change in empeae. Then geneall one saes dh c p d i.e., enhalph is copled o empeae via he hea capaci

Tempeae Eqaion z c z w v p ρ λ 6.36 Rewiing eqn 6.3 as a fcion of T insead of h

. Chape 8 - Convecive Dc Flow

. Chape 8 - Convecive Dc Flow U 0 gänsskik, bonda lae käna, coe fll bildad sömning, fll developed flow b m! ρa m Re D md ν ma 1 b Paallel plae dc m 1 R Cicla pipe, be lamina if pipe o be Re D < 300

Chape 8 Convecive Dc Flow. U 0 gänsskik, bonda lae käna, coe fll bildad sömning, fll developed flow b L D i 0.0575Re D - gänsskik, bonda lae käna, coe Tpical enance egion flow pofile gänsskik, bonda lae

Con. dc flow If Re D > 300 omslag, ansiion U 0 fll bildad blen sömning Fll developed blen flow laminä gänsskik blen gänsskik Lamina bonda lae Tblen bonda lae

. Pesse dop fll developed flow Δp f L D h ρ m f C Re Re m D h ν D h hdalic diamee 4 väsnisaean 4 coss secion aea mediebeöd omkes peimee m m! ρ A

. Pesse dop - enance egion (cicla pipe) 0.1 /D h Re Dh 0.01 0.001 1E-4 0 1 3 4 5 6 Δp ρ / m Fige 8.4

Convecive hea ansfe fo an isohemal be d d w konsan; consan

Convecive hea ansfe fo an isohemal be d d w konsan; consan Veloci field fll developed m 1 R Hea balance fo an elemen ddπ Hea condcion in adial diecion Enhalp anspo in -diecion

Remembe he fige fom pevios page Eneg eqn fo sead sae ρ c p λ 1 "(8 1)" Bonda condiions: 0 : 0 Commonl called Gaez poblem R : w 0 : 0 (Smme)

Inodce Inodce m (1 - ʹ) o p w, c a R, R, ρ λ ϑ ʹ ʹ ʹ ϑ ʹ ʹ ʹ ʹ ϑ R R R R 1 R 1 a ʹ ϑ ʹ ʹ ʹ ʹ ʹ ϑ ) (1 1 a R m 0) (8 ) (1 1 P Re D ʹ ϑ ʹ ʹ ʹ ʹ ʹ ϑ Nssel appoach sill valid Copling beween velociand aveage veloci

0) (8 ) (1 1 P Re D ʹ ϑ ʹ ʹ ʹ ʹ ʹ ϑ τ 1 a 1 a compaed wih nsead hea condcion: Sead hea condcion

Inspiaion fo one of he eoeical home assignmens Assme ϑ F(ʹ) G(ʹ). Afe some (8.4-8.8) calclaions one finds ϑ i 0 C i G i (ʹ)e β ʹ i / ReD P (8 9) β 0 < β 1 < β < β 3 < β 4

. Tempeae pofile in he hemal enace egion fo a cicla pipe wih nifom wall empeae and fll developed lamina flow β 0.705 β 1 6.667 β 10.67

Blkemp. B m d he enhalp flow of he mie: m! c p B he enhalp flow can be wien R ρ 0 πd cp %"$"#! " Δm" & "h"! B m! 1 ρπ m! R 0 R 0 ρπd d πd ρ 4 m B R 0 R 0 d d (8 34)

Local Nssel nmbe 100 50 N D konsan vämeflöde, nifom hea fl Hasighesfäl ej fll bilda; veloci field no fll developed 10 konsan vämeflöde, nifom hea fl 5 konsan empea, consan wall empeae 4.364 3.656 1 0.001 0.01 0.1 1 Re /D D P

Aveage Hea Tansfe Coefficien 1. 0 w kons If he veloci field is fll developed N D αd λ 0.0668Re 3.656 1 0.04 D D P D / [ Re P D / ] / 3 µ B µ w 0.14 N.B.! Highe vales if veloci field no fll develped. Eq. (8-38) gives he aveage vale. 1/ 3 0.14 αd Re P N 1.86 D µ B D (8 38) λ L / D µ w L / D Re P D < 0.1 w consan

... 0.... q w kons. consan Fll developed flow and empeae fields N D 4.364 (8-50) q w α ( w B ) kons $!#!" kons! w B kons. If B inceases, w ms incease as mch Aveagevale inclding effecs of he hemal enance lengh N D αd λ 1/ 3 1 1.953 / D ReD P 0.07 4.364 ReD P / D / D om < 0.03 Re P / D om > 0.03 Re P D D

.... 0.... q w kons. consan Fll developed flow and empeae fields N D 4.364 (8-50) q w α ( w B ) cons cons $!!! #!!! " w B kons. If B inceases, w ms incease as mch w highes a he ei!