MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

Similar documents
MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

àoau à^md {H$go H$hVo h?

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

CBSE QUESTION PAPER. MATHEMATICS,(1)1d

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

CBSE QUESTION PAPER CLASS-X

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Chapter 12 Review Vector. MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30

2. (i) Find the equation of the circle which passes through ( 7, 1) and has centre ( 4, 3).

Subject Code H Total No. of Questions : 30 (Printed Pages : 7) Maximum Marks : 80

Time allowed: 3 hours Maximum Marks: 90

ASSIGNMENT-1 M.A. DEGREE EXAMINATION, MAY (Second Year) HINDI Linguistics and History of Hindi Language


J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

Name of Exam. Centre...Exam. Centre No.:... Test Booklet Code :... Test Booklet No.:...

Series HRS H$moS> Z. 31/3 Code No. g H${bV narjm II SUMMATIVE ASSESSMENT II {dkmz SCIENCE

chapter 1 vector geometry solutions V Consider the parallelogram shown alongside. Which of the following statements are true?

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/G. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

Directional Derivative and the Gradient Operator

Q1. If (1, 2) lies on the circle. x 2 + y 2 + 2gx + 2fy + c = 0. which is concentric with the circle x 2 + y 2 +4x + 2y 5 = 0 then c =

Series HRS/2 H$moS> Z. 31/2/2 Code No.

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

SYSTEM OF CIRCLES OBJECTIVES (a) Touch each other internally (b) Touch each other externally

Conic section. Ans: c. Ans: a. Ans: c. Episode:43 Faculty: Prof. A. NAGARAJ. 1. A circle

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

agm`z {dkmz (g ÕmpÝVH$) 56/1/P {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/P {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

Downloaded from SET-1

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

JEE-ADVANCED MATHEMATICS. Paper-1. SECTION 1: (One or More Options Correct Type)

agm`z {dkmz (g ÕmpÝVH$) 56/3 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

PGT Mathematics. 1. The domain of f(x) = is:-

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/MT. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

y mx 25m 25 4 circle. Then the perpendicular distance of tangent from the centre (0, 0) is the radius. Since tangent

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR H$moS> Z. 56/1 Code No.

Department of Mathematics

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/2 Code No.

MATH 16C: MULTIVARIATE CALCULUS

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

Transcription:

MT-03 June - Examination 016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03 Time : 3 Hours ] [ Max. Marks :- 66 Note: The question paper is divided into three sections A, B and C. Write answer as per the given instructions. {ZX}e : h àíz nì "A' "~' Am a "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm Ho$ CÎma Xr{OE& Note: {ZX}e : Section - A 6 1 = 6 (Very Short Answer Questions) Section A contain six (06) Very Short Answer Type Questions. Examinees have to attempt all questions. Each question is of 01 marks and maximum word limit may be thirty words. IÊS> - "A' (A{V bkw CÎmar àíz) IÊS> "E' N> 06 A{V bkwcîmamë H$ àíz h, narjm{w m H$mo g^r àízm H$mo hb H$aZm h & àë oh$ àíz Ho$ 01 A H$ h Am a A{YH$V eãx gr m Vrg eãx h & MT-03 / 1000 / 7 (1) (P.T.O.)

1) (i) Write the condition that conic section ax + hxy + by + gx + fy + c = 0 represent a parabola. em H$d n[aàn>ox ax + hxy + by + gx + fy + c = 0 Ho$ Ûmam nadb àx{e V H$aZo H$s ev {b{ie& (ii) Write centre and radius of sphere 6x + 6y + 6z 4x + z = 0. Jmobo 6x + 6y + 6z 4x + z = 0 H$m H$oÝÐ d {ÌÁ m {b{ie& (iii) Write the definition of cone. e Hw$ H$s n[a^mfm {b{ie& (iv) Define enveloping cylinder. AÝdmbmonr ~obz H$mo n[a^m{fv H$s{OE& (v) In which condition equation Ax + By + Cz = 1 represent a hyperboid of one sheet. g rh$au Ax + By + Cz = 1 {H$g pñw{v EH$ n îr>r A{Vnadb O H$mo àx{e V H$aoJm& (vi) Define Basic Set. AmYma g wàm H$mo n[a^m{fv H$s{OE& Note: Section - B 4 8 = 3 (Short Answer Questions) Section B contain Eight Short Answer Type Questions. Examinees will have to answer any four (04) questions. Each question is of 08 marks. Examinees have to delimit each answer in maximum 00 words. MT-03 / 1000 / 7 () (Contd.)

{ZX}e : 678 (IÊS> - ~) (bkwîmamë H$ àíz) IÊS> "~r' 08 bkw CÎma àh$ma Ho$ àíz h, narjm{w m H$mo H$sÝht ^r Mma 04 gdmbm Ho$ Odm~ XoZm h & àë oh$ àíz 08 A H$ H$m h & narjm{w m H$mo A{YH$V 00 eãxm àë oh$ Odm~ n[agr{ V H$aZo h & ) Find the Locus of centre of a variable sphere which passes through origin and cut co-ordinate axis at A, B and C such that volume of tetrahydron remains constant. EH$ Ma Jmobo Ho$ Ho$ÝÐ H$m {~ÝXþ nw kmv H$s{OE Omo yb {~ÝXþ go hmoh$a JwOaVm h VWm {ZX}er Ajmo H$mo A, B d C na Bg àh$ma { bvm h {H$ MVwî $bh$ OABC H$m Am VZ pñwa ahvm h & 3) Find the conditions that lines x - α y - β z - γ = = x - α' y β' z γ' and = - = - are l m n l' m' n' polar lines to sphere x + y + z = a dh à{v~ Y kmv H$s{OE {Oggo aoime x - α y - β z - γ = = l m n d x - a' l' Jmobo x + y + z = a Ho$ gmnoj Y«wdr aoime± hmo& y β' z γ' = - = - m' n' 4) Find the equation of enveloping cone of sphere x + y + z + x y = having vertex (1, 1, 1). Jmobo x + y + z + x y = Ho$ Cg AÝdmbmonr e Hw$ H$m g rh$au kmv H$s{OE {OgH$m erf (1, 1, 1) h & MT-03 / 1000 / 7 (3) (P.T.O.)

5) If sum of Inverse of intercepts of tangent planes of ellipsoid x y z + + = 1 is 1/k then find locus of perpendicular from a b c origin to tangent planes. y x z yb {~ÝXþ go XrK d ÎmO 1 a + + = Ho$ ñne g Vbm Omo Bg b c àh$ma h {H$ BZHo$ Ûmam Ajmo na H$mQ>o JE AÝV IÊ S>mo Ho$ ì wëh«$ mo H$m moj 1/k h, na S>mbo JE bå~ H$m {~ÝXþnW kmv H$s{OE& x y z 6) If 4 generators of hyperboloid 1 a + - = form a skew b c quadrilateral whose vertices are θ i and φ i (i = 1,, 3, 4) then prove that θ1 + θ3 = θ + θ4 and φ1 + φ3 = φ + φ4 {X A{Vnadb O a x y + z - = 1 Ho$ Mma OZH$ {df Vbr b c MVw^w O ~ZmVo h {OgHo$ erf θ i d φ i (i = 1,, 3, 4) h Vmo {gõ H$s{OE θ + θ = θ + θ φ1 + φ = φ + φ 1 3 4 d 3 4 7) Use graphical method to prove that maximum and minimum value of objective function of following L.P.P. are same. AmboIr {d{y go {gõ H$s{OE {H$ {ZåZ g ñ m Ho$ CÔoí $bz H$m A{YH$V d {ZåZV mz g mz h & Max (Min) z = 5x + 3y x + y 6 x 3 y 3 x + 3y 3 x 0, y 0 MT-03 / 1000 / 7 (4) (Contd.)

8) Write the dual of ({ZåZ g ñ m H$s ÛoVr g ñ m {b{ie) Max z = x 1 + 3x 5x 3 x 1 + x x 3 5 x 1 + 5x 3 6 x 1, x 3 0 & x is unrestricated. 9) Solve the Assignment problem. ({Z VZ g ñ m H$mo hb H$s{OE) I II III IV A 8 6 17 11 B 13 8 4 6 C 38 19 18 15 D 19 6 4 10 Section - C 14 = 8 (Long Answer Questions) Note: Section C contain 4 Long Answer Type Questions. Examinees will have to answer any two (0) questions. Each question is of 14 marks. Examinees have to delimit each answer in maximum 500 words. Use of non-programmable scientific calculator is allowed in this paper. MT-03 / 1000 / 7 (5) (P.T.O.)

(IÊS> - g) (XrK CÎmar àíz) {ZX}e : IÊS> "gr' 04 {Z~ÝYmË H$ àíz h & narjm{w m H$mo H$sÝhr ^r Xmo (0) gdmbm Ho$ Odm~ XoZm h & àë oh$ àíz 14 A H$mo H$m h, narjm{w m H$mo A{YH$V 500 eãxm àë oh$ Odm~ n[agr{ V H$aZo h & Bg àíz nì Zm Z-àmoJ«m o~b gmb {Q>{ $H$ Ho$ëHw$boQ>a Ho$ Cn moj H$s AZw {V h & 10) Compare the optimal solution of primal and dual problem. {ZåZ g ñ m d Û Vr g ñ m H$mo hb H$aHo$ BîQ>V hbm H$s VwbZm H$s{OE Min Z P = 3x 1 +.5x x 1 + 4x 40 3x 1 + x 50 x 1, x 0 11) Prove that convex set of all feasible solutions of system AX = B is a basic feasible solution and it s converse is also true. {gõ H$s{OE {H$ {ZH$m AX = B Ho$ g^r gwg JV hbmo Ho$ Ad wi g wàm H$m àë oh$ gr m V {~ÝXþ EH$ AmYmar gwg JV hb hmovm h VWm BgH$m {dbmo ^r gë h & MT-03 / 1000 / 7 (6) (Contd.)

1) Transform equation 678 x + y + z + yz xz 4xy + x + y = 0 in standard form and prove that it represent and ellipsal parabolaid. Find it s vertex and equation of axis. g rh$au x + y + z + yz xz 4xy + x + y = 0 H$m mzh$ én g mz Z H$aVo hþe {gõ H$s{OE {H$ h EH$ XrK d Îmr nadbno H$mo àx{e V H$aVm h & BgHo$ erf Ho$ {ZX}em H$ d Aj H$s g rh$au ^r kmv H$s{OE& 13) (i) Find the equation of sphere which passes through (1, 1, 0) and touches sphere x + y +z + x 6y + 1 = 0 at point (1,, ). {~ÝXþ (1, 1, 0) go JwOaZodmbo Cg Jmobo H$m g rh$au kmv H$s{OE Omo x + y +z + x 6y + 1 = 0 H$mo {~ÝXþ (1,, ) na ñne H$aVm h & (ii) Find the locus of poles of tangent plane of ax + by + cz = 1 in compare to Ax + By + Cz = 1. emh $do Ax + By + Cz = 1 Ho$ gmnoj, ax + by + cz = 1 Ho$ ñne Vbm Ho$ Y«wdmo H$m {~ÝXþ nw kmv H$s{OE& MT-03 / 1000 / 7 (7)