Supporting Information

Similar documents
Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

PTSA-Catalyzed Green Synthesis of 1,3,5-Triarylbenzene under Solvent-Free Conditions

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

Supporting Information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Supporting Information

Supporting Information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information

Supporting Information

Supporting Information

Supporting Information for

SUPPORTING INFORMATION FOR

Supporting Information. Rhodium(III)-Catalyzed Synthesis of Naphthols via C-H Activation. of Sulfoxonium Ylides. Xingwei Li*, Table of Contents

N-Hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides

Cu-Catalyzed Synthesis of 3-Formyl imidazo[1,2-a]pyridines. and Imidazo[1,2-a]pyrimidines by Employing Ethyl Tertiary

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

[(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Electronic Supplementary Information

Supporting Information. for

Supporting Information

Platinum(II)-Catalyzed Intermolecular Hydroarylation of. Unactivated Alkenes with Indoles

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Supporting Information

Supporting Information

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Trisulfur Radical Anion as the Key Intermediate for the. Synthesis of Thiophene via the Interaction between Elemental.

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

SUPPORTING INFORMATION

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

An improved preparation of isatins from indoles

Supporting Information

Carbene) Catalyzed Alcohol Oxidation Using. Molecular Oxygen

Supporting Information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information - I: Experimental Procedures and Characterization

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

Supporting Information

Supporting Information

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

How to build and race a fast nanocar Synthesis Information

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Facile Synthesis of Flavonoid 7-O-Glycosides

Supporting Information

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Supporting Information

Synthesis, characterization and molecular recognition of bis-platinum terpyridine dimer. Supporting information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Synthesis of Enamides via CuI-Catalyzed Reductive Acylation of. Ketoximes with NaHSO 3

Supplementary Information. Direct difunctionalization of alkynes with sulfinic acids and

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

Photochemical Nickel-Catalyzed C-H Arylation: Synthetic Scope and Mechanistic Investigations

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Electronic Supplementary Information

Supporting Information

SUPPORTING INFORMATION

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Supporting Information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

SUPPORTING INFORMATION

Palladium-Catalyzed Alkylarylation of Acrylamides with

Department of Chemistry, Colorado State University, Fort Collins, Colorado University of Colorado Cancer Center, Aurora, Colorado 80045

Supporting Information. ynamides: a simple access to aminoimidazoles

Electronic Supplementary Information

Supporting Information: Regioselective esterification of vicinal diols on monosaccharide derivatives via

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases

Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supporting Information

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Transcription:

Gold(I) Catalyzed Intra and Intermolecular Alkenylations of β Yne Pyrroles: Facile Formation of Fused Cycloheptapyrroles and Functionalized Pyrroles Bin Pan, Xiaodong Lu, Chunxiang Wang, Yancheng Hu, Fan Wu, and Boshun Wan* Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. E-mail: bswan@dicp.ac.cn Supporting Information 1

Table of Contents 1. General information... 3 2. Experiment Procedures and Characterization Data... 3 2.1 The Preparation of β yne pyrroles... 3 2.2 General Procedure for Gold(I) Catalyzed Intramolecular Alkenylations of β Yne Pyrroles... 5 2.3 General Procedure for Gold(I) Catalyzed Intermolecular Alkenylations of Alkynes with β Yne Pyrroles... 9 2.4 Reference... 11 3. Copy of MR Spectra... 12 4. Copy of X ray of 2n... 39 2

1. General information Gold salt and i(cod) 2 was ordered from Aldrich. 2-Methyleneaziridines 4 1-4 were prepared according to literature procedures. Diynes 5-10 were prepared according to literature procedures. β-yne-pyrroles were prepared according to literature procedures 11. Commercially available reagents were used throughout without further purification. All solvents were purified according to the standard procedures. All reactions were carried out under an atmosphere of argon using standard Schlenk techniques, unless otherwise noted. 1 H MR and 13 C MR spectra were recorded on Bruker DRX 400 or Bruker DRX 500 spectrometers (400 MHz or 500 MHz for 1 H MR, 100 MHz or 126 MHz for 13 C MR, see details of each compound) using CDCl 3, CD 3 COCD 3 or C 6 D 6 as solvent. Tetramethylsilane (δ = 0), CDCl 3 (7.27 ppm), CD 3 COCD 3 (2.05 ppm) or C 6 D 6 (7.16 ppm) serves as the internal standard for 1 H MR and CDCl 3 (77.16 ppm), CD 3 COCD 3 (29.84 ppm) or C 6 D 6 (128.06 ppm) for 13 C MR. Coupling constants (J) are reported in Hz and refer to apparent peak multiplications. hromatography was performed on silica gel (300 400 mesh). TLC analysis was performed using glass-backed plates coated with 0.2 mm silica. 2. Experiment Procedures and Characterization Data 2.1 The Preparation of β yne pyrroles General Method: Under an argon atmosphere, 2-Methyleneaziridines 4 (2 eq.), dyines 5 (1 eq.), i(cod) 2 (10 mol % of dyines) and 1,4-dioxane (0.25M) were added into a Schlenk tube. The reaction mixture was stirred at room temperature and monitored by TLC or GC. When the reaction was over, the solvent was removed under reduced pressure and the residue was purified by a flash column chromatography. Experimental Data for β-yne-pyrroles: 3

Colorless oil 1 H MR (500 MHz, CDCl 3 ) δ 7.31 7.25 (m, 2H), 7.20 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 7.3 Hz, 2H), 6.46 (s, 1H), 5.18 (q, J = 7.0 Hz, 1H), 3.72 (s, 3H), 3.66 (s, 3H), 3.27 3.18 (m, 2H), 2.77 2.65 (m, 2H), 1.93 (d, J = 3.1 Hz, 6H), 1.79 (t, J = 2.5 Hz, 3H), 1.72 (d, J = 7.1 Hz, 3H); 13 C MR (126 MHz, CDCl 3 ) δ 171.1, 144.0, 128.6, 126.9, 125.6, 124.9, 115.1, 114.9, 114.7, 78.8, 74.4, 58.9, 54.7, 52.4, 52.4, 27.6, 22.7, 22.4, 9.9, 9.2, 3.5; HRMS calcd for C 24 H 29 O 4 a [M+a] + 418.1994, found 418.19 Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 6.27 (s, 1H), 4.29 (t, J = 5.3 Hz, 1H), 3.77 (d, J = 5.3 Hz, 2H), 3.68 (s, 6H), 3.27 (s, 6H), 3.14 (s, 2H), 2.64 (d, J = 2.5 Hz, 2H), 2.06 (s, 3H), 1.86 (s, 3H), 1.75 (t, J = 2.5 Hz, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 170.8, 124.4, 118.6, 114.8, 114.5, 104.5, 78.6, 74.8, 58.4, 54.9, 52.2, 49.1, 27.2, 22.5, 9.7, 9.1, 3.3; HRMS calcd for C 20 H 29 O 6 a [M+a] + 402.1893, found 402.1889. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.78 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 6.50 (s, 1H), 4.86 (s, 2H), 4.17 (s, 2H), 3.90 (d, J = 2.3 Hz, 2H), 3.77 (s, 3H), 2.42 (s, 3H), 2.00 (s, 6H), 1.48 (t, J = 2.2 Hz, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 158.8, 142.8, 136.3, 130.4, 128.9, 128.1, 127.5, 125.5, 120.1, 115.1, 114.4, 114.0, 81.1, 72.0, 55.2, 49.9, 41.7, 35.2, 21.4, 9.5, 9.1, 3.1; HRMS calcd for C 26 H 30 2 O 3 a [M+a] + 473.1875, found 473.1874. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.33 7.17 (m, 3H), 6.96 (d, J = 7.1 Hz, 2H), 6.27 (s, 1H), 4.91 (s, 2H), 2.79 (s, 2H), 2.64 (dd, J = 4.7, 2.3 Hz, 2H), 2.42 (q, J = 14.9 Hz, 4H), 1.99 (s, 3H), 1.82 (s, 3H), 1.63 (t, J = 2.4 Hz, 3H), 0.97 (s, 3H), 0.92 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 209.8, 138.4, 128.7, 127.3, 126.3, 125.0, 119.4, 114.9, 76.6, 68.9, 53.43, 50.43, 35.90, 30.74, 30.24, 26.91, 23.13, 9.77, 9.44, 3.41.; HRMS calcd for C 26 H 31 O 2 [M+H] + 389.2355, found 389.2365. 4

Light yellow oil 1 H MR (400 MHz, CDCl 3 ) δ 7.44 7.31 (m, 2H), 7.32 7.22 (m, 3H), 6.85 (dd, J = 22.2, 8.6 Hz, 4H), 6.32 (s, 1H), 4.85 (s, 2H), 3.75 (s, 3H), 3.71 (s, 6H), 3.29 (s, 2H), 2.98 (s, 2H), 1.98 (d, J = 10.9 Hz, 6H); 13 C MR (101 MHz, CDCl 3 ) δ 170.9, 158.9, 131.7, 130.6, 128.2, 127.9, 127.7, 124.7, 123.5, 118.7, 115.2, 114.7, 114.1, 85.6, 83.6, 59.0, 55.3, 52.5, 49.9, 27.8, 23.4, 9.8, 9.4; HRMS calcd for C 29 H 32 O 5 [M+H] + 474.2280, found 474.2298. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 6.85 (q, J = 8.8 Hz, 4H), 6.31 (s, 1H), 4.85 (s, 2H), 3.76 (s, 3H), 3.69 (s, 6H), 3.22 (s, 2H), 2.77 (d, J = 2.6 Hz, 2H), 2.04 (t, J = 2.6 Hz, 1H), 1.98 (s, 3H), 1.92 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 170.7, 158.9, 130.7, 127.6, 124.7, 118.7, 115.1, 114.6, 114.1, 80.0, 71.4, 58.6, 55.3, 52.5, 49.9, 27.6, 22.5, 9.7, 9.4; HRMS calcd for C 23 H 27 O 5 a [M+a] + 420.1787, found 420.1776. 2.2 General Procedure for Gold(I) Catalyzed Intramolecular Alkenylations of β Yne Pyrroles Under an argon atmosphere, a solution of β-yne-pyrrole and [JohnPhosAu(CMe)]SbF 6 (5mol%) in anhydrous toluene (or dichloromethane) was stirred at room temperature. When TLC indicated the disappearance of the starting material, the reaction mixture was concentrated and purified by a flash column chromatography on silica gel to afford the corresponding product. Experimental Data for Products MeO 2a Colorless oil, 1 H MR (500 MHz, Acetone) δ 6.88 6.78 (m, 4H), 5.77 (t, J = 7.0 Hz, 1H), 5.04 (s, 2H), 3.74 (s, 3H), 3.68 (s, 6H), 2.79 (s, 2H), 2.32 (d, J = 7.0 Hz, 2H), 2.02 (s, 3H), 2.00 (s, 3H), 1.90 (s, 3H); 13 C MR (126 MHz, Acetone) δ 172.6, 159.7, 133.8, 5

132.2, 130.9, 127.6, 126.4, 125.1, 120.4, 114.7, 114.5, 71.1, 55.5, 52.6, 48.1, 33.7, 21.9, 10.0, 9.4; HRMS calcd for C 24 H 29 O 5 a [M+a] + 434.1943, found 434.1956. Colorless oil, 1 H MR (400 MHz, CDCl 3 ) δ 7.16 (t, J = 7.9 Hz, 1H), 6.72 (dd, J = 8.1, 2.1 Hz, 1H), 6.50 (d, J = 7.6 Hz, 1H), 6.39 (s, 1H), 5.83 (t, J = 7.1 Hz, 1H), 5.00 (s, 2H), 3.71 (s, 6H), 3.70 (s, 3H), 2.83 (s, 2H), 2.35 (d, J = 7.1 Hz, 2H), 2.04 (s, 3H), 2.02 (s, 3H),1.89 (s, 3H); 13 C MR (126 MHz, Acetone) δ 172.2, 159.8, 140.6, 132.7, 130.3, 129.4, 125.8, 124.6, 119.5, 117.8, 114.1, 112.3, 111.0,70.2, 54.9, 52.2, 48.0, 32.8, 28.7, 21.5, 9.8, 9.0; HRMS calcd for C 24 H 29 O 5 a [M+a] + 434.1943, found 434.1956. Colorless oil, 1 H MR (500 MHz, CDCl 3 ) δ 7.21 7.18 (m, 1H), 6.90 6.76 (m, 2H), 6.42 6.35 (m, 1H), 5.81 (td, J = 7.1, 1.5 Hz, 1H), 5.00 (s, 2H), 3.87 (s, 3H), 3.74 (s, 6H), 2.85 (s, 2H), 2.36 (d, J = 6.9 Hz, 2H), 2.09 (s, 3H), 2.03 (s, 3H), 1.84 1.78 (m, 3H), 1.59 (s, 3H); 13 C MR (126 MHz, CDCl 3 ) δ 172.5, 155.8, 133.0, 130.5, 127.7, 127.3, 126.3, 125.9, 124.4, 120.7, 119.4, 113.9, 109.4, 70.4, 55.2, 52.4, 43.6, 32.9, 28.9, 21.6, 9.7, 9.2; HRMS calcd for C 24 H 29 O 5 a [M+a] + 434.1943, found 434.1937. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ7.31 7.20 (m, 3H), 7.05 (d, J = 7.9 Hz, 2H), 5.93 (dt, J = 7.0, 3.5 Hz, 1H), 5.44 (q, J = 7.2 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 2.93 (d, J = 14.1 Hz, 1H), 2.75 (d, J = 14.1 Hz, 1H), 2.51 2.37 (m, 2H), 1.98 (s, 3H), 1.96 (s, 3H), 1.83 (d, J = 7.2 Hz, 3H), 1.79 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 172.4, 172.3, 142.5, 132.8, 131.4, 128.4, 126.7, 126.0, 125.5, 125.4, 118.6, 115.4, 69.9, 53.6, 52.4, 52.4, 32.9, 28.8, 22.2, 19.4, 11.5, 8.9; HRMS calcd for C 24 H 29 O 4 a [M+a] + 418.1994, found 418.1985. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 5.92 (t, J = 7.1 Hz, 1H), 3.84 (dd, J = 19.6, 7.7 Hz, 1H), 3.71 (s, 6H), 2.77 (s, 2H), 2.35 (d, J = 7.0 Hz, 2H), 2.26 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.96 1.79 (m, 6H), 1.40 1.14 (m, 4H); 13 C MR (101 MHz, 6

CDCl 3 ) δ 172.4 133.1, 130.8, 125.3, 125.0, 118.2, 115.1, 69.8, 57.7, 52.4, 32.8, 32.6, 28.8, 26.7, 25.6, 22.5, 12.4, 9.0; HRMS calcd for C 22 H 31 O 4 a [M+a] + 396.2151, found 396.2159. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 5.86 (t, J = 6.9 Hz, 1H), 4.27 (t, J = 5.2 Hz, 1H), 3.92 (d, J = 5.2 Hz, 2H), 3.69 (s, 6H), 3.23 (s, 6H), 2.78 (s, 2H), 2.32 (d, J = 7.0 Hz, 2H), 2.14 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 172.2, 132.8, 129.9, 126.2, 124.5, 119.8, 113.8, 104.7, 70.2, 55.2, 52.2, 47.7, 32.8, 28.6, 21.4, 10.1, 9.0; HRMS calcd for C 20 H 29 O 6 a [M+a] + 402.1893, found 402.1898. Colorless oil, 1 H MR (400 MHz, CDCl 3 ) δ 7.23 (m, 3H), 6.90 (d, J = 7.3 Hz, 2H), 5.83 (td, J = 7.0, 1.3 Hz, 1H), 5.04 (s, 2H), 3.73 (s, 6H), 2.85 (s, 2H), 2.35 (d, J = 7.1 Hz, 2H), 2.07 (s, 3H), 2.03 (s, 3H), 1.88 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 172.3, 138.8, 132.6, 130.3, 128.4, 126.7, 125.7, 125.5, 124.7, 119.5, 114.0, 70.2, 52.3, 48.0, 32.8, 28.7, 21.6, 9.8, 9.1; HRMS calcd for C 23 H 27 O 4 a [M+a] + 404.1838, found 404.1850. Bn 2h CO 2 Et CO 2 Et Colorless oil 1 H MR (500 MHz, CDCl 3 ) δ 7.30 7.17 (m, 3H), 6.90 (d, J = 7.1 Hz, 2H), 5.83 (td, J = 7.1, 1.4 Hz, 1H), 5.05 (s, 2H), 4.19 (qd, J = 7.1, 1.5 Hz, 4H), 2.85 (s, 2H), 2.35 (d, J = 7.0 Hz, 2H), 2.07 (s, 3H), 2.03 (s, 3H), 1.88 (s, 3H), 1.26 (t, J = 7.1 Hz, 6H); 13 C MR (126 MHz, CDCl 3 ) δ 172.0, 139.0, 132.6, 130.5, 128.5, 126.9, 125. 8, 125.6, 125.0, 119.7, 114.1, 70.5, 61.1, 48.2, 32.9, 28.7, 21.7, 14.1, 10.0, 9.3; HRMS calcd for C 25 H 31 O 4 a [M+a] + 432.2151, found 432.2157. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.36 7.16 (m, 15H), 6.89 (d, J = 7.0 Hz, 2H), 5.80 (td, J = 7.0, 1.4 Hz, 1H), 5.13 (s, 4H), 5.05 (s, 2H), 2.90 (s, 2H), 2.42 (d, J = 7.1 Hz, 2H), 2.03 (s, 3H), 1.98 (s, 3H), 1.89 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 171.5, 138.8, 135.6, 132.7, 130.3, 128.4, 128.3, 127.9, 127.7, 126.7, 125.7, 125.4, 124.5, 119.4, 114.0, 70.5, 66.6, 48.0, 32.8, 28.7, 21.5, 9.8, 9.0; HRMS calcd for C 35 H 35 O 4 a [M+a] + 556.2464, found 556.2469. 7

White solid, m.p.77-78, 1 H MR (400 MHz, C 6 D 6 ) δ 6.74 (d, J = 8.6 Hz, 2H), 6.66 (d, J = 8.7 Hz, 2H), 5.90 (t, J = 7.0 Hz, 1H), 4.76 (s, 2H), 3.24 (s, 3H), 2.52 (t, J = 7.2 Hz, 2H), 2.18 2.10 (m, 2H), 2.09 (s, 3H), 2.07 2.00 (m, 2H), 1.97 1.92 (m, 6H); 13 C MR (101 MHz, C 6 D 6 ) δ 158.8, 131.5, 131.1, 130.2, 128.2, 126.7, 124.9, 123.2, 113.9, 113.0, 54.3, 47.4, 36.5, 26.5, 22.2, 22.0, 9.7, 9.3; HRMS calcd for C 20 H 26 O [M+H] + 296.2014, found 296.2019. White solid, m.p.55-56, 1 H MR (400 MHz, CDCl 3 ) δ 7.69 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.1 Hz, 3H), 6.73 (d, J = 8.7 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 5.50 (td, J = 7.3, 0.8 Hz, 1H), 4.93 (s, 2H), 3.98 (s, 2H), 3.73 (s, 3H), 3.49 (d, J = 7.4 Hz, 2H), 2.39 (s, 3H), 1.99 (s, 3H), 1.92 (s, 3H), 1.83 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 158.7, 142.8, 136.9, 136.0, 131.4, 130.4, 129.4, 127.6, 127.5, 126.5, 121.7, 118.4, 114.0, 113.5, 55.2, 47.6, 44.2, 41.5, 21.5, 21.1, 9.9, 9.2; HRMS calcd for C 26 H 30 2 O 3 as [M+a] + 473.1875, found 473.1884. White solid, m.p.91-92, 1 H MR (400 MHz, Acetone) δ 6.84 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 5.86 (td, J = 7.0, 1.1 Hz, 1H), 5.08 (s, 2H), 4.06 (s, 2H), 3.69 (s, 3H), 3.49 (d, J = 7.0 Hz, 2H), 2.05 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H); 13 C MR (101 MHz, Acetone) δ 163.4, 141.7, 137.1, 135.9, 132.7, 131.8, 130.0, 127.6, 119.2, 117.4, 66.4, 64.3, 60.2, 52.1, 26.1, 15.0, 14.1; HRMS calcd for C 19 H 24 O 2 [M+H] + 298.1807, found 298.1803. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.27 7.16 (m, 3H), 6.86 (d, J = 7.5 Hz, 2H), 5.77 (t, J = 7.1 Hz, 1H), 5.01 (s, 2H), 2.78 (s, 1H), 2.76 (s, 2H), 2.75 (s, 1H), 2.52 (d, J = 14.1 Hz, 2H), 2.24 (d, J = 7.1 Hz, 2H), 1.97 (d, J = 7.3 Hz, 6H), 1.84 (s, 3H), 1.06 (s, 3H), 0.89 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 207.6, 138.8, 131.4, 130.6, 128.4, 126.7, 126.0, 125.6, 125.4, 118.1, 113.6, 83.8, 51.3, 48.0, 30.6, 30.4, 30.0, 29.1, 27.6, 21.4, 9.7, 9.2; HRMS calcd for C 26 H 31 O 2 a [M+a] + 412.2252, found 412.2249. 8

White solid, m.p.158-159, 1 H MR (400 MHz, CDCl 3 ) δ 7.26 7.14 (m, 5H), 6.69 (d, J = 8.6 Hz, 2H), 6.56 (d, J = 8.5 Hz, 2H), 6.15 (t, J = 7.2 Hz, 1H), 4.44 (s, 2H), 3.72 (s, 9H), 2.95 (s, 2H), 2.51 (d, J = 7.2 Hz, 2H), 2.09 (s, 3H), 2.07 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 172.0, 158.3, 140.5, 138.4, 131.0, 128.1, 127.5, 127.3, 127.1, 126.9, 126.2, 125.8, 121.7, 114.1, 113.6, 77.2, 76.8, 76.5, 70.8, 55.0, 52.2, 47.2, 33.3, 28.6, 10.0, 9.0; HRMS calcd for C 29 H 31 O 5 a [M+a] + 496.2100, found 496.2105. White solid, m.p.93-94, 1 H MR (400 MHz, C 6 D 6 ) δ 6.67 (d, J = 8.7 Hz, 2H), 6.59 (d, J = 8.7 Hz, 2H), 4.81 (s, 1H), 4.79 (s, 2H), 4.66 (s, 1H), 3.32 (s, 2H), 3.27 (s, 6H), 3.21 (s, 2H), 3.16 (s, 3H), 1.89 (s, 3H), 1.76 (s, 3H); 13 C MR (101 MHz, C 6 D 6 ) δ 171.1, 158.8, 132.8, 130.3, 128.8, 126.7, 125.1, 119.4, 114.1, 112.8, 103.5, 55.9, 54.3, 51.8, 47.4, 40.7, 29.2, 9.2, 8.9; HRMS calcd for C 23 H 27 O 5 a [M+a] + 420.1787, found 420.1789. 2.3 General Procedure for Gold(I) Catalyzed Intermolecular Alkenylations of Alkynes with β Yne Pyrroles Under an argon atmosphere, a solution of β-yne-pyrrole (1 eq.), alkyne (1 eq.) and [JohnPhosAu(CMe)]SbF 6 (5mol%) in anhydrous toluene was stirred at room temperature. When TLC indicated the disappearance of the starting material, the reaction mixture was concentrated and purified by a flash column chromatography on silica gel to afford the corresponding product. Experimental Data for Products Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.23 7.20 (m, 5H), 6.71 (d, J = 8.7 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 5.74 (d, J = 1.2 Hz, 1H), 5.18 (d, J = 1.1 Hz, 1H), 4.61 (s, 2H), 3.72 (s, 3H), 3.56 (s, 6H), 3.20 (s, 2H), 2.63 (d, J = 2.4 Hz, 2H), 1.95 (s, 3H), 1.94 (s, 3H), 1.60 (t, J = 2.3 Hz, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 171.1, 158.2, 140.4, 139.5, 131.3, 130.2, 127.9, 127.5, 126.8, 9

126.5, 125.2, 118.1, 115.1, 114.5, 113.6, 78.1, 74.8, 58.7, 55.0, 52.0, 47.0, 26.8, 23.3, 10.2, 9.7, 3.3; HRMS calcd for C 32 H 35 O 5 a [M+a] + 536.2413, found 536.2427. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.11 (d, J = 8.7 Hz, 2H), 6.71 6.55 (m, 6H), 5.58 (s, 1H), 5.02 (s, 1H), 4.57 (s, 2H), 3.69 (s, 3H), 3.64 (s, 3H), 3.50 (s, 6H), 3.17 (s, 2H), 2.57 (d, J = 2.1 Hz, 2H), 1.89 (d, 6H), 1.56 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 171.3, 159.3, 158.4, 139.2, 133.3, 131.5, 130.7, 128.0, 127.0, 125.3, 116.3, 115.2, 114.5, 113.8, 113.5, 78.2, 75.1, 59.0, 55.2, 52.2, 47.2, 27.0, 23.5, 10.3, 9.9, 3.5; HRMS calcd for C 33 H 37 O 6 a [M+a] + 566.2519, found 566.2531. Colorless oil 1 H MR (400 MHz, CDCl 3 ) δ 7.17 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 2.7 Hz, 4H), 5.60 (d, J = 1.6 Hz, 1H), 5.09 (d, J = 1.5 Hz, 1H), 4.65 (s, 2H), 3.77 (s, 3H), 3.73 (s, 3H), 2.50 2.39 (m, 2H), 2.10 2.05 (m, 2H), 2.04 (s, 3H), 2.02 (s, 3H), 1.74 (t, J = 2.3 Hz, 3H), 1.68 1.56 (m, 2H); 13 C MR (101 MHz, CDCl 3 ) δ 159.1, 158.1, 139.8, 133.8, 131.5, 129.0, 127.8, 127.0, 124.9, 120.9, 115.7, 113.6, 113.6, 113.4, 79.4, 75.2, 55.1, 55.0, 47.0, 30.9, 24.4, 18.7, 10.0, 9.5, 3.3; HRMS calcd for C 29 H 34 O 2 [M+H] + 428.2590, found 428.2600. Light yellow oil, 1 H MR (400 MHz, CDCl 3 ) δ 6.79 (d, J = 8.6 Hz, 2H), 6.71 (d, J = 8.5 Hz, 2H), 5.56 (s, 1H), 5.06 (s, 1H), 4.91 (s, 2H), 4.10 (s, 2H), 3.75 (s, 3H), 3.67 (s, 6H), 3.29 (s, 2H), 2.69 (d, J = 2.0 Hz, 2H), 1.95 (s, 3H), 1.92 (s, 3H), 1.75 (s, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 171.1, 158.3, 141.3, 131.2, 128.4, 126.4, 125.3, 117.3, 115.0, 113.8, 113.4, 78.5, 75.1, 65.2, 58.7, 55.0, 52.3, 46.7, 27.1, 23.3, 10.0, 9.4, 3.3; HRMS calcd for C 27 H 34 O 6 [M+H] + 468.2386, found 468.2383. White solid, m.p.147-148, 1 H MR (400 MHz, CDCl 3 ) δ 7.61 (d, J = 16.2 Hz, 1H), 6.82 (q, J = 8.8 Hz, 4H), 5.66 (d, J = 16.2 Hz, 1H), 5.14 (s, 2H), 3.78 (s, 3H), 3.66 (s, 9H), 3.40 (s, 2H), 2.65 (d, J = 2.5 Hz, 2H), 2.06 (s, 3H), 2.01 (s, 3H), 1.81 (t, J = 2.4 Hz, 3H); 13 C MR (101 MHz, CDCl 3 ) δ 170.7, 168.6, 158.8, 133.4, 132.0, 129.2, 126.7, 125.9, 123.8, 117.8, 114.4, 109.1, 79.5, 10

77.3, 77.0, 76.7, 74.4, 59.1, 55.3, 52.5, 51.1, 48.0, 26.7, 23.2, 10.3, 10.0, 3.5; HRMS calcd for C 28 H 34 O 7 [M+H] + 496.2329, found 496.2330. 2.4 Reference (1) Bhat, L.; Steinig, A. G.; Appelbe, R.; Meijere, A. Eur. J. Org. Chem. 2001, 1673. (2) Ince, J.; Ross, T. M.; Shipman, M; Slawin, A. M. Z. Tetrahedron. 1996, 52, 7037. (3) Shiers, J. J.; Shipman, M; Hayes, J. F.; Slawin, A. M. Z. J. Am. Chem. Soc. 2004, 126, 6868. (4) Kimpe,. D.; Smaele, D. D.; Sakonyi, Z. J. Org. Chem. 1997, 62, 2448. (5) Tanaka, K.; Takeishi, K.; oguchi, K.; J. Am. Chem. Soc. 2006, 128, 4586. (6) Takimoto, M.; Mizuno, T.; Morib, M.; Sato, Y. Tetrahedron. 2006, 62, 7589. (7) Sperger, C.; Strand, L.H.S.; Fiksdahl, A.; Tetrahedron. 2010, 66, 7749. (8) Ishizaki, M.; Hoshino, O. Tetrahedron. 2000, 56, 8813. (9) Wender, P. A.; Christy, J. P. J. Am. Chem. Soc. 2007, 129, 13402. (10) Wender, P. A.; Christy, J. P.; Lesser, A. B.; Gieseler, M. T. Angew. Chem. Int. Ed. 2009, 48, 7687. (11) Pan, B.; Wang, C. X.; Wang, D. P.; Wu, F.; Wan, B. S. Chem. Commun. 2013, 49, 5073. 11

3. Copy of MR Spectra Ph 1d Ph 1d 12

MeO OMe 1f MeO OMe 1f 13

PMB Ts 1k PMB Ts 1k 14

O Bn O 1m O Bn O 1m 15

PMB Ph 1n PMB Ph 1n 16

PMB H 1p PMB H 1p 17

PMB 2a PMB 2a 18

PMB 2a 19

MeO 2b 172.2 159.8 140.6 132.7 130.3 129.4 125.8 124.6 119.5 117.8 114.1 112.3 111.0 70.2 54.9 52.2 48.0 32.8 28.7 21.5 9.8 9.0 MeO 2b 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 20

OMe 2c OMe 2c 21

2d 2d 22

2e 2e 23

MeO MeO 2f 172.2 132.8 129.9 126.2 124.5 119.8 113.8 104.7 70.2 55.2 52.2 47.7 32.8 28.6 21.4 10.1 9.0 MeO MeO 2f 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 24

Bn 2g Bn 2g 25

26 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 f1 (ppm) 6.11 3.01 3.05 3.05 2.04 2.02 4.08 2.00 1.00 1.97 3.29 1.24 1.26 1.27 1.88 2.03 2.07 2.34 2.36 2.85 4.17 4.17 4.18 4.19 4.20 4.20 4.21 4.21 5.05 5.81 5.81 5.83 5.83 5.84 5.84 6.89 6.90 7.20 7.25 7.25 7.26 7.28 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 80 f1 (ppm) 9.3 10.0 14.1 21.7 28.7 32.9 48.2 61.1 70.5 114.1 119.7 125.0 125.6 125.8 126.9 128.5 130.5 132.6 139.0 172.0 Bn CO 2 Et CO 2 Et 2h Bn CO 2 Et CO 2 Et 2h

Bn CO 2 Bn CO 2 Bn 2i Bn CO 2 Bn CO 2 Bn 2i 27

PMB 2j PMB 2j 28

PMB Ts 2k PMB Ts 2k 29

PMB O 2l PMB O 2l 30

Bn O O 2m Bn O O 2m 31

Ph PMB 2n 172.0 158.3 140.5 138.4 128.1 127.3 127.1 126.9 125.8 114.1 113.6 77.2 76.8 76.5 70.8 55.0 52.2 47.2 33.3 28.6 10.0 9.1 Ph PMB 2n 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 32

PMB 2p PMB 2p 33

PMB Ph X Me X=C() 2 3a PMB Ph X Me X=C() 2 3a 34

PMB PMP X Me X=C() 2 3b 171.3 159.3 158.4 139.2 133.3 131.5 130.7 128.0 127.0 125.3 116.3 115.2 114.5 113.8 113.5 78.2 75.1 59.0 55.2 52.2 47.2 27.0 23.5 10.3 9.9 3.5 PMB PMP X Me X=C() 2 3b 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0 35

PMB PMP Me 3c PMB PMP Me 3c 36

PMB X OH Me X=C() 2 3d PMB X OH Me X=C() 2 3d 37

PMB X Me X=C() 2 3e PMB X Me X=C() 2 3e 38

4. Copy of X-ray of 2n 39