Relaxing planarity for topological graphs

Similar documents
Final Exam : Solutions

Ma/CS 6a Class 15: Flows and Bipartite Graphs

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Poisson process Markov process

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

1 Finite Automata and Regular Expressions

Elementary Differential Equations and Boundary Value Problems

Chapter 12 Introduction To The Laplace Transform

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

LaPlace Transform in Circuit Analysis

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Transfer function and the Laplace transformation

Network Design with Weighted Players

Midterm exam 2, April 7, 2009 (solutions)

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

Network Design with Weighted Players (SPAA 2006 Full Paper Submission)

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Institute of Actuaries of India

Discussion 06 Solutions

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

2. The Laplace Transform

CSE 245: Computer Aided Circuit Simulation and Verification

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Lecture 26: Leapers and Creepers

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Network Flow. Data Structures and Algorithms Andrei Bulatov

Algorithmic Discrete Mathematics 6. Exercise Sheet

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

On spanning trees and cycles of multicolored point sets with few intersections

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard.

Introduction to SLE Lecture Notes

1 Motivation and Basic Definitions

Microscopic Flow Characteristics Time Headway - Distribution

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Partial Fraction Expansion

cycle that does not cross any edges (including its own), then it has at least

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

3(8 ) (8 x x ) 3x x (8 )

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Randomized Perfect Bipartite Matching

Basic Polyhedral theory

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

PWM-Scheme and Current ripple of Switching Power Amplifiers

Wave Equation (2 Week)

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

(1) Then we could wave our hands over this and it would become:

Week 3: Connected Subgraphs

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

18 Extensions of Maximum Flow

Geographic Routing with Constant Stretch in Large Scale Sensor Networks with Holes

Chap.3 Laplace Transform

Deift/Zhou Steepest descent, Part I

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

4/12/12. Applications of the Maxflow Problem 7.5 Bipartite Matching. Bipartite Matching. Bipartite Matching. Bipartite matching: the flow network

Square of Hamilton cycle in a random graph

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

where: u: input y: output x: state vector A, B, C, D are const matrices

Math 266, Practice Midterm Exam 2

Network Flows: Introduction & Maximum Flow

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

XV Exponential and Logarithmic Functions

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

What is maximum Likelihood? History Features of ML method Tools used Advantages Disadvantages Evolutionary models

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

1973 AP Calculus BC: Section I

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

Circuit Transients time

On the Speed of Heat Wave. Mihály Makai

EXERCISE - 01 CHECK YOUR GRASP

6.8 Laplace Transform: General Formulas

Heat flow in composite rods an old problem reconsidered

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Network Congestion Games

Logistic equation of Human population growth (generalization to the case of reactive environment).

First Lecture of Machine Learning. Hung-yi Lee

Shortest Path With Negative Weights

Graphs III - Network Flow

arxiv: v1 [cs.cg] 21 Mar 2013

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

The Equitable Dominating Graph

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

Transcription:

Rlaing planariy for opological graph Jáno Pach 1, Radoš Radoičić 2, and Géza Tóh 3 1 Ciy Collg, CUNY and Couran Iniu of Mahmaical Scinc, Nw York Univriy, Nw York, NY 10012, USA pach@cim.nyu.du 2 Dparmn of Mahmaic, Maachu Iniu of Tchnology, Cambridg, MA 02139, USA rado@mah.mi.du 3 Rényi Iniu of h Hungarian Acadmy of Scinc, H-1364 Budap, P.O.B. 127, Hungary gza@rnyi.hu Abrac. According o Eulr formula, vry planar graph wih n vric ha a mo O(n) dg. How much can w rla h condiion of planariy wihou violaing h concluion? Afr urvying om claical and rcn rul of hi kind, w prov ha vry graph of n vric, which can b drawn in h plan wihou hr pairwi croing dg, ha a mo O(n) dg. For raigh-lin drawing, hi amn ha bn ablihd by Agarwal al., uing a mor complicad argumn, bu for h gnral ca prviouly no bound br han O(n 3/2 ) wa known. 1 Inroducion A gomric graph i a graph drawn in h plan o ha i vric ar rprnd by poin in gnral poiion (i.., no hr ar collinar) and i dg by raigh-lin gmn conncing h corrponding poin. Topological graph ar dfind imilarly, cp ha now ach dg can b rprnd by any impl (non-lfinrcing) Jordan arc paing hrough no vric ohr han i ndpoin. Throughou hi papr, w aum ha if wo dg of a opological graph G har an inrior poin, hn a hi poin hy proprly cro. W alo aum, for impliciy, ha no hr dg cro a h am poin and ha any wo dg cro only a fini numbr of im. If any wo dg of G hav a mo on poin in common (including hir ndpoin), hn G i aid o b a impl opological graph. Clarly, vry gomric graph i impl. L V (G) and E(G) dno h vr and dg of G, rpcivly. W will mak no noaional diincion bwn h vric (dg) of h undrlying abrac graph, and h poin (arc) rprning hm in h plan. I follow from Eulr Polyhdral Formula ha vry impl planar graph wih n vric ha a mo 3n 6 dg. Equivalnly, vry opological graph wih n vric and mor han 3n 6 dg ha a pair of croing dg. Wha happn if, inad of a croing pair of dg, w wan o guaran h inc of om largr configuraion involving vral croing? Wha kind of unavoidabl ubrucur mu occur in vry gomric (or opological) graph G having n vric and mor han Cn dg, for an appropria larg conan C > 0? In h n four cion, w approach hi quion from four diffrn dircion, ach lading o diffrn anwr. In h la cion, w prov ha any opological graph wih n vric and no hr pairwi croing dg ha a mo O(n) dg. For impl opological graph, hi rul wa fir ablihd by Agarwal-Aronov-Pach-Pollack-Sharir [AAPPS97], uing a mor complicad argumn. Jáno Pach ha bn uppord by NSF Gran CCR-00-98245, by PSC-CUNY Rarch Award 63352-0036, and by OTKA T-032458. Géza Tóh ha bn uppord by OTKA-T-038397 and by an award from h Nw York Univriy Rarch Challng Fund.

2 Jáno Pach, Radoš Radoičić, and Géza Tóh 2 Ordinary and opological minor A graph H i aid o b a minor of anohr graph G if H can b obaind from a ubgraph of G by a ri of dg conracion. If a ubgraph of G can b obaind from H by rplacing i dg wih indpndn pah bwn hir ndpoin, hn H i calld a opological minor of G. Clarly, a opological minor of G i alo i (ordinary) minor. If a graph G wih n vric ha no minor iomorphic o K 5 or o K 3,3, hn by Kuraowki horm i i planar and i numbr of dg canno cd 3n 6. I follow from an old rul of Wagnr ha h am concluion hold undr h wakr aumpion ha G ha no K 5 minor. A fw yar ago Madr [M98] provd h following famou conjcur of Dirac: Thorm 2.1. (Madr) Evry graph of n vric wih no opological K 5 minor ha a mo 3n 6 dg. If w only aum ha G ha no opological K r minor for om r > 5, w can ill conclud ha G i par, i.., i numbr of dg i a mo linar in n. Thorm 2.2. (Komló-Szmrédi [KSz96], Bollobá-Thomaon [BT98]) For any poiiv ingr r, vry graph of n vric wih no opological K r minor ha a mo cr 2 n dg. Morovr, Komló and Szmrédi howd ha h abov amn i ru wih any poiiv conan c > 1/4, providd ha r i larg nough. Apar from h valu of h conan, hi horm i harp, a i hown by h union of pairwi dijoin copi of a compl bipari graph of iz roughly r 2. W hav a br bound on h numbr of dg, undr h rongr aumpion ha G ha no K r minor. Thorm 2.3. (Koochka [K84], Thomaon [T84]) For any poiiv ingr r, vry graph of n vric wih no K r minor ha a mo cr log rn dg. Th b valu of h conan c for which h horm hold wa aympoically drmind in [T01]. Th horm i harp up o h conan. (Warning! Th lr c and C ud in vral amn will dno unrlad poiiv conan.) Rvring Thorm 2.3, w obain ha vry graph wih n vric and mor han cr log rn dg ha a K r minor. Thi immdialy impli ha if h chromaic numbr χ(g) of G i a la 2cr log r + 1, hn G ha a K r minor. According o Hadwigr nooriou conjcur, for h am concluion i i nough o aum ha χ(g) r. Thi i known o b ru for r 6 ( [RST93]). 3 Quai-planar graph A graph i planar if and only if i can b drawn a a opological graph wih no croing dg. Wha happn if w rla hi condiion and w allow r croing pr dg, for om fid r 0? Thorm 3.1. [PT97] L r b a naural numbr and l G b a impl opological graph of n vric, in which vry dg cro a mo r ohr. Thn, for any r 4, w hav E(G) (r + 3)(n 2). Th ca r = 0 i Eulr horm, which i harp. In h ca r = 1, udid in [PT97] and indpndnly by Gärnr, Thil, and Ziglr (pronal communicaion), h abov bound can b aaind for all n 12. Th rul i alo harp for r = 2, providd ha n 5 (mod 15) i ufficinly larg ( Figur 1).

Rlaing planariy for opological graph 3 Figur 1. Howvr, for r = 3, w hav rcnly provd ha E(G) 5.5(n 2), and hi bound i b poibl up o an addiiv conan [PRTT02]. For vry larg valu of r, a much br uppr bound can b dducd from h following horm of Ajai-Chváal-Nwborn-Szmrédi [ACNS82] and Lighon [L84]: any opological graph wih n vric and > 4n dg ha a la conan im 3 /n 2 croing. Corollary 3.2. [PRTT02] Any opological graph wih n vric, who ach dg cro a mo r ohr, ha a mo 4 rn dg. On can alo obain a linar uppr bound for h numbr of dg of a opological graph undr h wakr aumpion ha no dg can cro mor han r ohr dg incidn o h am vr. Thi can b furhr gnralizd, a follow. Thorm 3.3. [PPST02] L G b a opological graph wih n vric which conain no r + dg uch ha h fir r ar incidn o h am vr and ach of hm cro h ohr dg. Thn w hav E(G) C rn, whr C i a conan dpnding only on. In paricular, i follow ha if a opological graph conain no larg gridlik croing parn (wo larg of dg uch ha vry lmn of h fir cro all lmn of h cond), i numbr of dg i a mo linar in n. I i a challnging opn problm o dcid whhr h am arion rmain ru for all opological graph conaining no larg compl croing parn. For any poiiv ingr r, w call a opological graph r-quai-planar if i ha no r pairwi croing dg. A opological graph i -monoon if all of i dg ar -monoon curv, i.., vry vrical lin cro hm a mo onc. Clarly, vry gomric graph i -monoon, bcau i dg ar raigh-lin gmn (ha ar aumd o b non-vrical). If h vric of a gomric graph ar in conv poiion, hn i i aid o b a conv gomric graph. 11 12 13 1 2 r-1 10 3 9 4 8 5 7 Figur 2. Conrucion howing ha Thorm 3.4 i harp (n = 13, r = 4) 6

4 Jáno Pach, Radoš Radoičić, and Géza Tóh Thorm 3.4. [CP92] Th maimum numbr of dg of any r-quai-planar conv gomric graph wih n 2r dg i ( ) 2r 1 2(r 1)n. 2 Thorm 3.5. (Valr [V98]) Evry r-quai-planar -monoon opological graph wih n vric ha a mo C r n log n dg, for a uiabl conan C r dpnding on r. Thorm 3.6. [PSS96] For any r 4, vry r-quai-planar impl opological graph G wih n vric ha a mo C r n(log n) 2(r 3) dg, for a uiabl conan C r dpnding only on r. In Scion 6, w will poin ou ha Thorm 3.6 rmain ru vn if w drop h aumpion ha G i impl, i.., wo dg may cro mor han onc. For 3-quai-planar opological graph w hav a linar uppr bound. Thorm 3.7. [AAPPS97] Evry 3-quai-planar impl opological graph G wih n vric ha a mo Cn dg, for a uiabl conan C. In Scion 7, w giv a hor nw proof of h la horm, howing ha hr, oo, on can drop h aumpion ha no wo dg cro mor han onc (i.., ha G i impl). In hi ca, prviouly no bound br han O(n 3/2 ) wa known. Thorm 3.7 can alo b ndd in anohr dircion: i rmain ru for vry opological graph G wih no r + 2 dg uch ha ach of h fir r dg cro h la wo and h la wo dg cro ach ohr. Of cour, h conan C in h horm now dpnd on r [PRT02]. All horm in hi cion provid (uually linar) uppr bound on h numbr of dg of opological graph aifying crain condiion. In ach ca, on may ak whhr a rongr amn i ru. I i poibl ha h graph in quion can b dcompod ino a mall numbr planar graph? For inanc, h following rongr form of Thorm 3.7 may hold: Conjcur 3.8. Thr i a conan k uch ha h dg of vry 3-quai-planar opological graph G can b colord by k color o ha no wo dg of h am color cro ach ohr. McGuinn [Mc00] provd ha Conjcur 3.8 i ru for impl opological graph, providd ha hr i a clod Jordan curv croing vry dg of G prcily onc. Th amn i alo ru for r-quai-planar conv gomric graph, for any fid r ( [K88], [KK97]). 4 Gnralizd hrackl and hir rlaiv Two dg ar aid o b adjacn if hy har an ndpoin. W ay ha a graph drawn in h plan i a gnralizd hrackl if any wo dg m an odd numbr of im, couning hir common ndpoin, if hy hav any. Tha i, a graph i a gnralizd hrackl if and only if i ha no wo adjacn dg ha cro an odd numbr of im and no wo non-adjacn dg ha cro an vn numbr of im. In paricular, a gnralizd hrackl canno hav wo non-adjacn dg ha ar dijoin. Alhough a fir glanc hi propry may appar o b h ac oppoi of planariy, urpriingly, h wo noion ar no ha diffrn. In paricular, for bipari graph, hy ar quivaln. Thorm 4.1. [LPS97] A bipari graph can b drawn in h plan a a gnralizd hrackl if and only if i i planar. Uing h fac ha vry graph G ha a bipari ubgraph wih a la E(G) /2 dg, w obain ha if a graph G of n vric can b drawn a a gnralizd hrackl, hn E(G) = O(n).

Rlaing planariy for opological graph 5 Thorm 4.2. (Cairn-Nikolayvky [CN00]) Evry gnralizd hrackl wih n vric ha a mo 2n 2 dg. Thi bound i harp. Figur 3. A gnralizd hrackl wih n vric and 2n 2 dg A gomric graph G i a gnralizd hrackl if and only if i ha no wo dijoin dg. (Th dg ar uppod o b clod, o ha wo dijoin dg ar ncarily non-adjacn.) On can rla hi condiion by auming ha G ha no r pairwi dijoin dg, for om fid r 2. For r = 2, i wa provd by Hopf-Pannwiz [HP34] ha vry graph aifying hi propry ha a mo n dg, and ha hi bound i harp. For r = 3, h fir linar bound on h numbr of dg of uch graph wa ablihd by Alon-Erdő [AE89], which wa lar improvd o 3n by Goddard- Kachalki-Kliman [GKK96]. For gnral r, h fir linar bound wa ablihd in [PT94]. Th b currnly known ima i h following: Thorm 4.3. (Tóh [T00]) Evry gomric graph wih n vric and no r pairwi dijoin dg ha a mo 2 9 (r 1) 2 n dg. I i likly ha h dpndnc of hi bound on r can b furhr improvd o linar. If w wan o prov h analogu of Thorm 4.3 for opological graph, w hav o mak om addiional aumpion on h rucur of G, ohrwi i i poibl ha any wo dg of G cro ach ohr. Conjcur 4.4. (Conway Thrackl Conjcur) L G b a impl opological graph of n vric. If G ha no wo dijoin dg, hn E(G) n. For many rlad rul, conul [LPS97], [CN00], [W71]. Th n inring opn quion i o dcid whhr h maimum numbr of dg of a impl opological graph wih n vric and no hr pairwi dijoin dg i O(n). 5 Locally planar graph For any r 3, a opological graph G i calld r-locally planar if G ha no lfinrcing pah of lngh a mo r. Roughly paking, hi man ha h mbdding of h graph i planar in a nighborhood of radiu r/2 around any vr. In [PPTT02], w howd ha hr i 3-locally planar gomric graph wih n vric and wih a la conan im n log n dg. Somwha

6 Jáno Pach, Radoš Radoičić, and Géza Tóh urpriingly (o u), Tardo [T02] managd o nd hi rul o any fid r 3. H conrucd a qunc of r-locally planar gomric graph wih n vric and a uprlinar numbr of dg (approimaly n im h r/2 im irad logarihm of n). Morovr, h graph ar bipari and all of hir dg can b abbd by h am lin. Th following poiiv rul i probably vry far from bing harp. Thorm 5.1. [PPTT02] Th maimum numbr of dg of a 3-locally planar opological graph wih n vric i O(n 3/2 ). For gomric graph, much rongr rul ar known. Thorm 5.2. [PPTT02] Th maimum numbr of dg of a 3-locally planar -monoon opological graph wih n vric i O(n log n). Thi bound i aympoically harp. For 5-locally planar -monoon opological graph, w hav a lighly br uppr bound on h numbr of dg: O(n log n/ log log n). Thi bound can b furhr improvd undr h addiional aumpion ha all dg of h graph cro h y-ai. Thorm 5.3. [PPTT02] L G b an -monoon r-locally planar opological graph of n vric all of who dg cro h y-ai. Thn, w hav E(G) cn(log n) 1/ r/2 for a uiabl conan c. 6 Srnghning Thorm 3.6 In hi cion, w oulin h proof of Thorm 6.1. Evry r-quai-planar opological graph wih n vric ha a mo f r (n) := C r n(log n) 4(r 3) dg, whr r 2 and C r i a uiabl poiiv conan dpnding on r. L G b a graph wih vr V (G) and dg E(G). Th bicion widh b(g) of G i dfind a h minimum numbr of dg, who rmoval pli h graph ino wo roughly qual ubgraph. Mor prcily, b(g) i h minimum numbr of dg running bwn V 1 and V 2, ovr all pariion of h vr of G ino wo dijoin par V 1 V 2 uch ha V 1, V 2 V (G) /3. Th pair-croing numbr pair-cr(g) of a graph G i h minimum numbr of croing pair of dg in any drawing of G. W nd a rcn rul of Maoušk [M02], who analogu for ordinary croing numbr wa provd in [PSS96] and [SV94]. Lmma 6.2. (Maoušk) L G b a graph of n vric wih dgr d 1, d 2,..., d n. Thn w hav ) n b 2 (G) c(log n) (pair-cr(g) 2 +, whr c i a uiabl conan. W follow h ida of h original proof of Thorm 3.6. W ablih Thorm 6.1 by doubl inducion on r and n. By Thorm 7.1 (in h n cion), h amn i ru for r = 3 and for all n. I i alo ru for any r > 2 and n n r, providd ha C r i ufficinly larg in rm of n r, bcau hn h ad bound cd ( n 2). (Th ingr nr can b pcifid lar o a o aify crain impl chnical condiion.) i=1 d 2 i

Rlaing planariy for opological graph 7 Aum ha w hav alrady provd Thorm 6.1 for om r 3 and all n. L n n r+1, and uppo ha h horm hold for r + 1 and for all opological graph having fwr han n vric. L G b an (r + 1)-quai-planar opological graph of n vric. For impliciy, w u h am lr G o dno h undrlying abrac graph. For any dg E(G), l G G dno h opological graph coniing of all dg of G ha cro. Clarly, G i r-quai-planar. Thu, by h inducion hypohi, w hav pair-cr(g) 1 2 E(G) E(G ) 1 2 E(G) f r(n). Uing h fac ha n i=1 d2 i 2 E(G) n hold for vry graph G wih dgr d 1, d 2,..., d n, Lmma 6.2 impli ha b(g) ( c(log n) 2 E(G) f r (n) ) 1/2. Conidr a pariion of V (G) ino wo par of iz n 1, n 2 2n/3 uch ha h numbr of dg running bwn hm i b(g). Obviouly, boh ubgraph inducd by h par ar (r + 1)-quaiplanar. Thu, w can apply h inducion hypohi o obain E(G) f r+1 (n 1 ) + f r+1 (n 2 ) + b(g). Comparing h la wo inqualii, h rul follow by om rouin calculaion. 7 Srnghning Thorm 3.7 Th aim of hi cion i o prov h following rongr vrion of Thorm 3.7. Thorm 7.1. Evry 3-quai-planar opological graph wih n vric ha a mo Cn dg, for a uiabl conan C. L G b a 3-quai-planar opological graph wih n vric. Rdraw G, if ncary, wihou craing 3 pairwi croing dg o ha h numbr of croing in h ruling opological graph G i a mall a poibl. Obviouly, no dg of G cro ilf, ohrwi w could rduc h numbr of croing by rmoving h loop. Suppo ha G ha wo diinc dg ha cro a la wic. A rgion nclod by wo pic of h paricipaing dg i calld a ln. Suppo hr i a ln l ha conain no vr of G. Conidr a minimal ln l l, by conainmn. Noic ha by wapping h wo id of l, w could rduc h numbr of croing wihou craing any nw pair of croing dg. In paricular, G rmain 3-quai-planar. Thrfor, w can conclud ha Claim 1. Each ln of G conain a vr. W may aum wihou lo of gnraliy ha h undrlying abrac graph of G i conncd, bcau ohrwi w can prov Thorm 7.1 by inducion on h numbr of vric. L 1, 2,..., n 1 E(G) b a qunc of dg uch ha 1, 2,..., i form a r T i G for vry 1 i n 1. In paricular, 1, 2,..., n 1 form a panning r of G. Fir, w conruc a qunc of croing-fr opological graph (r), T1, T 2,..., T n 1. L T 1 b dfind a a opological graph of wo vric, coniing of h ingl dg 1 (a wa drawn in G). Suppo ha T i ha alrady bn dfind for om i 1, and l v dno h ndpoin of i+1 ha do no blong o T i. Now add o T i h pic of i+1 bwn v and i fir croing wih T i. Mor prcily, follow h dg i+1 from v up o h poin v whr i hi T i for h fir im, and dno hi pic of i+1 by ẽ i+1. If v i a vr of T i, hn add v and ẽ i+1 o T i and l T i+1 b h ruling opological graph. If v i in h inrior of an dg of T i, hn inroduc a nw vr a v. I divid ino wo dg, and. Add boh of hm o T i, and dl. Alo add v and ẽ i+1, and l T i+1 b h ruling opological graph.

8 Jáno Pach, Radoš Radoičić, and Géza Tóh Afr n 2 p, w obain a opological r T := T n 1, which (1) i croing-fr, (2) ha fwr han 2n vric, (3) conain ach vr of G, and (4) ha h propry ha ach of i dg i ihr a full dg, or a pic of an dg of G. 7 7 4 4 6 6 8 8 5 5 1 2 10 3 9 1 2 10 3 9 T T Figur 4. Conrucing T from T L D dno h opn rgion obaind by rmoving from h plan vry poin blonging o T. Dfin a conv gomric graph H, a follow. Travling around h boundary of D in clockwi dircion, w ncounr wo kind of diffrn faur : vric and dg of T. Rprn ach uch faur by a diffrn vr i of H, in clockwi ordr in conv poiion. No ha h am faur will b rprnd by vral i : vry dg will b rprnd wic, bcau w vii boh of i id, and vry vr will b rprnd a many im a i dgr in T. I i no hard o ha h numbr of vric i V (H) do no cd 8n. N, w dfin h dg of H. L E b h of dg of G \ T. Evry dg E may cro T a vral poin. Th croing poin divid ino vral pic, calld gmn. L S dno h of all gmn of all dg E. Wih h cpion of i ndpoin, vry gmn S run in h rgion D. Th ndpoin of blong o wo faur along h boundary of D, rprnd by wo vric i and j of H. Connc i and j by a raigh-lin dg of H. Noic ha H ha no loop, bcau if i = j, hn, uing h fac ha T i conncd, on can aily conclud ha h ln nclod by and by h dg of T corrponding o i ha no vr of G in i inrior. Thi conradic Claim 1. Of cour, vral diffrn gmn may giv ri o h am dg i j E(H). Two uch gmn ar aid o b of h am yp. Obrv ha wo gmn of h am yp canno cro. Indd, a no dg inrc ilf, h wo croing gmn would blong o diinc dg 1, 2 E. Sinc any wo vric of G ar conncd by a mo on dg, a la on of i and j corrpond o an dg (and no o a vr) of T, which oghr wih 1 and 2 would form a pairwi inrcing ripl of dg, conradicing our aumpion ha G i 3-quai-planar. Claim 2. H i a 3-quai-planar conv gomric graph. To ablih hi claim, i i ufficin o obrv ha if wo dg of H cro ach ohr, hn h faur of T corrponding o hir ndpoin alrna in h clockwi ordr around h boundary of D. Thrfor, any hr pairwi croing dg of H would corrpond o hr pairwi croing gmn, which i a conradicion. A gmn i aid o b hildd if hr ar wo ohr gmn, 1 and 2, of h am yp, on on ach id of. Ohrwi, i calld pod. An dg E i aid o b pod if a la on of i gmn i pod. Ohrwi, i calld a hildd dg. In viw of Claim 2, w can apply Thorm 3.4 [CP92] o H. W obain ha E(H) 4 V (H) 10 < 32n, ha i, hr ar fwr han 32n diffrn yp of gmn. Thr ar a mo wo pod gmn of h am yp, o h oal numbr of pod gmn i mallr han 64n, and hi i alo an uppr bound on h numbr of pod dg in E. I rmain o bound h numbr of hildd dg in E.

Rlaing planariy for opological graph 9 Claim 3. Thr ar no hildd dg. Suppo, in ordr o obain a conradicion, ha hr i a hildd dg E. Orin arbirarily, and dno i gmn by 1, 2,..., m S, lid according o hi orinaion. For any 1 i m, l i S b h (uniqu) gmn of h am yp a i, running clo o i on i lf id. Sinc hr i no lf-inrcing dg and mpy ln in G, h gmn i and i+1 blong o h am dg f E, for vry i < m ( Fig. 5). Howvr, hi man ha boh ndpoin of and f coincid, which i impoibl. W can conclud ha E ha fwr han 64n lmn, all of which ar pod. Thu, aking ino accoun h n 1 dg of h panning r T, h oal numbr of dg of G i mallr han 65n. i i+1 i i+1 i i+1 i i+1 i i+1 i i+1 Figur 5. i and i+1 blong o h am dg Rfrnc [AAPPS97] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quai-planar graph hav a linar numbr of dg, Combinaorica 17 (1997), 1 9. [ACNS82] M. Ajai, V. Chváal, M. Nwborn, and E. Szmrédi, Croing-fr ubgraph, in: Thory and Pracic of Combinaoric, Norh-Holland Mah. Sud. 60, Norh-Holland, Amrdam-Nw York, 1982, 9 12. [AE89] N. Alon and P. Erdő, Dijoin dg in gomric graph, Dicr Compu. Gom. 4 (1989), 287 290. [BT98] Bollobá and A. Thomaon, Proof of a conjcur of Madr, Erdő and Hajnal on opological compl ubgraph, Europan J. Combin. 19 (1998), 883 887. [BKV02] P. Braß, G. Károlyi, and P. Valr, A Turán-yp rmal hory for conv gomric graph, in: Dicr and Compuaional Gomry Th Goodman-Pollack Fchrif (B. Aronov al., d.), Springr Vrlag, Brlin, 2003, o appar. [CN00] G. Cairn and Y. Nikolayvky, Bound for gnralizd hrackl, Dicr Compu. Gom. 23 (2000), 191 206. [CP92] V. Capoyla and J. Pach, A Turán-yp horm on chord of a conv polygon, Journal of Combinaorial Thory, Sri B 56 (1992), 9 15. [GKK96] W. Goddard, M. Kachalki, and D. J. Kliman, Forcing dijoin gmn in h plan, Europan J. Combin. 17 (1996), 391 395. [HP34] H. Hopf and E. Pannwiz, Aufgab Nr. 167, Jahrbrich dr duchn Mahmaikr-Vrinigung 43 (1934), 114. [KSz96] J. Komló and E. Szmrédi, Topological cliqu in graph II, Combin. Probab. Compu. 5 (1996), 79 90. [K84] A. V. Koochka, Lowr bound of h Hadwigr numbr of graph by hir avrag dgr, Combinaorica 4 (1984), 307 316. [K88] A. V. Koochka, Uppr bound on h chromaic numbr of graph (in Ruian), Trudy In. Ma. (Novoibirk), Modli i Mody Opim., 10 (1988), 204 226. [KK97] A. V. Koochka and J. Kraochvíl, Covring and coloring polygon-circl graph, Dicr Mah. 163 (1997), 299 305. [L84] F. T. Lighon, Nw lowr bound chniqu for VLSI, Mah. Sym Thory 17 (1984), 47 70. [LPS97] L. Lováz, J. Pach, and M. Szgdy, On Conway hrackl conjcur, Dicr and Compuaional Gomry, 18 (1997), 369 376. [M98] W. Madr, 3n 5 dg do forc a ubdiviion of K 5, Combinaorica 18 (1998), 569 595. [M02] J. Maoušk, Lcur a DIMACS Workhop on Gomric Graph Thory, Nw Brunwick, Spmbr 2002.

10 Jáno Pach, Radoš Radoičić, and Géza Tóh [Mc00] S. McGuinn, Colouring arcwi conncd in h plan I, Graph & Combin. 16 (2000), 429 439. [P99] J. Pach, Gomric graph hory, in: Survy in Combinaoric, 1999 (J. D. Lamb and D. A. Prc, d.), London Mahmaical Sociy Lcur No 267, Cambridg Univriy Pr, Cambridg, 1999, 167 200. [PPST02] J. Pach, R. Pinchai, M. Sharir, and G. Tóh, Topological graph wih no larg grid, o appar. [PPTT02] J. Pach, R. Pinchai, G. Tardo, and G. Tóh, Gomric graph wih no lf-inrcing pah of lngh hr, in: Graph Drawing (M. T. Goodrich, S. G. Kobourov, d.), Lcur No in Compur Scinc 2528, Springr-Vrlag, Brlin, 2002, 295 311. [PRT02] J. Pach, R. Radoičić, and G. Tóh, On quai-planar graph, in prparaion. [PRTT02] J. Pach, R. Radoičić, G. Tardo, and G. Tóh, Graph drawn wih a mo 3 croing pr dg, o appar. [PSS96] J. Pach, F. Shahrokhi, and M. Szgdy, Applicaion of h croing numbr, Algorihmica 16 (1996), 111 117. [PT97] J. Pach and G. Tóh, Graph drawn wih fw croing pr dg, Combinaorica 17 (1997), 427 439. [PT94] J. Pach and J. Törőcik, Som gomric applicaion of Dilworh horm, Dicr Compu. Gom. 12 (1994), 1 7. [PR02] R. Pinchai and R. Radoičić, On h numbr of dg in gomric graph wih no lf-inrcing cycl of lngh 4, Proc. 19h Annual Sympoium on Compuaional Gomry, ubmid. [RST93] N. Robron, P. Symour, and R. Thoma, Hadwigr conjcur for K 6-fr graph, Combinaorica 13 (1993), 279 361. [SV94] O. Sýkora and I. Vr o, On VLSI layou of h ar graph and rlad nwork, Ingraion, Th VLSI Journal 17 (1994), 83-93. [T02] G. Tardo, On h numbr of dg in a gomric graph wih no hor lf-inrcing pah, in prparaion. [T84] A. Thomaon, An rmal funcion for conracion of graph, Mah. Proc. Cambridg Philo. Soc. 95 (1984), 261 265. [T00] G. Tóh, No on gomric graph, J. Combin. Thory, Sr. A 89 (2000), 126 132. [T01] A. Thomaon, Th rmal funcion for compl minor, J. Combin. Thory Sr. B 81 (2001), 318 338. [V98] P. Valr, On gomric graph wih no k pairwi paralll dg, Dicr and Compuaional Gomry 19 (1998), 461 469. [W71] D. R. Woodall, Thrackl and dadlock, in: Combinaorial Mahmaic and i Applicaion (Proc. Conf., Oford, 1969), Acadmic Pr, London, 1971, 335 347.