ASRC International Workshop Perspectives in Nuclear Fission

Similar documents
Nuclear Structure of Superheavy Nuclei Investigated at GSI

Nustar Seminar

Gamma spectroscopy in the fermium region at SHIP

Fritz Peter Heßberger

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

Citation EPJ Web of Conferences (2014), provided the original work is prope

Spectroscopy of 252No to Investigate its K-isomer

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Production of Super Heavy Nuclei at FLNR. Present status and future

Correlation between alpha-decay energies of superheavy nuclei

Superheavy elements* Yury Ts. Oganessian. Pure Appl. Chem., Vol. 76, No. 9, pp , IUPAC

Nuclear Structure Studies with Penning Traps

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

The Synthesis of Super Heavy Elements (SHE) requirements for the synthesis of SHE. the basic technical requirement: beam intensity

The new isotopes 240 Es and 236 Bk

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March

Alpha Decay of Superheavy Nuclei

Fission Barriers of Neutron-Deficient Nuclei

Mapping Fission in Terra Incognita in the neutron-deficient lead region

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Superheavy nuclei: Decay and Stability

Mapping Low-Energy Fission with RIBs (in the lead region)

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

What do we know experimentally about the N=149, N=151 and N=153 isotones?

Some new developments in relativistic point-coupling models

Super-Heavy Nuclei: Current Status and Future Developments

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Synthesis of New Elements and New Approaches in SHE Research

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS

The effect of the tensor force on the predicted stability of superheavy

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015

CHEM 312 Lecture 7: Fission

Beta-delayed fission: from neutrondeficient to neutron-rich nuclei

PHL424: Nuclear fusion

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272 Ds

Subbarrier cold fusion reactions leading to superheavy elements( )

On the search for elements beyond Z =118. An outlook based on lessons from the heaviest known elements

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Microscopic Fusion Dynamics Based on TDHF

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy

Nuclear Symmetry Energy and its Density Dependence. Chang Xu Department of Physics, Nanjing University. Wako, Japan

Collective excitations of Λ hypernuclei

Relativistic versus Non Relativistic Mean Field Models in Comparison

HALF-LIVES OF NUCLEI AROUND THE SUPERHEAVY NUCLEUS

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Magic Numbers of Ultraheavy Nuclei

Ciencias Nucleares STUDY OF SUPERHEAVY ELEMENTS

and shape coexistence

Stability of heavy elements against alpha and cluster radioactivity

Striking observations in low-energy fission and what they tell us

K-isomer decay rates. Phil Walker. - introduction - exploring the different degrees of freedom - exotic nuclei

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy

Structure of Atomic Nuclei. Anthony W. Thomas

Collective excitations of Lambda hypernuclei

Laser Spectroscopy on Bunched Radioactive Ion Beams

Observables predicted by HF theory

Early onset of deformation in the neutron-deficient polonium isotopes identified by in-source resonant ionization laser spectroscopy

Density distributions of superheavy nuclei

Composite Nucleus (Activated Complex)

Nuclear and Chemical Studies with Hassium Isotopes

Stability Peninsulas at the Neutron Drip Line

Nuclear shapes. The question of whether nuclei can rotate became an issue already in the very early days of nuclear spectroscopy

α-decay of the new isotope 187 Po: Probing prolate structures beyond the neutron mid-shell at N = 104

SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS

Mass measurements of n-rich nuclei with A~70-150

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

General description of fission observables: The GEF code*

The Search for Heavy Elements

Nuclear Structure from Decay Spectroscopy

The uncertainty quantification in covariant density functional theory.

Fission in covariant DFT: status and open questions.

Entrance-channel potentials in the synthesis of the heaviest nuclei

Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL)

Shell structure of superheavy elements

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs

Chem 481 Lecture Material 1/23/09

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

Thesis and PhD themes

Finding Magic Numbers for Heavy and Superheavy Nuclei. By Roger A. Rydin Associate Professor Emeritus of Nuclear Engineering

Theoretical study of structure & synthesis mechanism of superheavy nuclei

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Systematic Study of Survival Probability of Excited Superheavy Nucleus

Fission and the r-process: experimental achievements and future possibilities

New data on β decay of exotic nuclei close to 100 Sn:

Coefficients and terms of the liquid drop model and mass formula

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

Theoretical Study on Alpha-Decay Chains of

Beyond-mean-field approach to low-lying spectra of Λ hypernuclei

Theoretical description of decay chains of SHN

Microscopic description of fission in the neutron-deficient Pb region

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Alpha decay chains from superheavy nuclei

Nuclear Astrophysics

Transcription:

Fit Fritz Peter Heßberger GSI Helmholtzzentrum für Schwerionenforschung mbh, D-64291 Darmstadt, Germany Helmholtz Institut Mainz, D-55099 Mainz, Germany ASRC International Workshop Perspectives in Nuclear Fission JAEA, Tokai, Japan 14-16 March 2012 Sunrise Tokai Beach, March 13, 5:52 a.m. Version 14. 3. 2012

Outline of the talk Physical Motivation Experimental set-up SHIP at GSI GSI experiments on spontaneous fission investigations spontaneous fission half-lives SF hindrance for odd mass nuclei SF of K isomers EC delayed fission TKE and mass distributions Superheavy elements Conclusions Collaborations

Spontaneous Fission General Considerations 175 25 150 20 125 U Surface energy s Spontaneous 100 fission is 15 an essential decay 75 liquid drop mode of net effect many (x5) nuclides 10 in the + shell effects 50 25 transuranium region. 5 B (LD) B f It was 0 and still is f believed to terminate t liquid the drop 0-25 upper end of the charts of nuclei. E / MeV -50-75 -100-125 -150 E / MeV -5 Coulomb energy -10-15 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1-20 U gs U s = shell effect at saddle point U gs = shell effect at ground state B f (LD) = liquid drop fission barrier B f =B(LD) f + U gs (+ U s ) 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 F.P.Heßberger 29.12.2005 2 spalt2 F.P.Heßberger 29.12.2005 2

Shell Effects in Heaviest Nuclei Prediction of SHE - nuclei Macroscopic Microscopic Calculations 126 126 114 114 82 82 184 184 (164) (164) 126 126 H. Meldner Arkiv fys. 36,593 (1967) Pr roton num ber Proto on number 120 Sobiczewski R. Smolanczuk 118 & Smolanczuk & A. Sobiczewski 1995 116-2 -7 114-5 - 3-4 112-6 - 6 110-7 108-3 106-4 - 5-4 104-3 102 100 120 P. Möller Möller et al. et al. ADNDT 59, 1845 (1995) 118-7 - 8 116-9 114-6 112 110-4 - 6-7 108-5 106 104-1 - 2-3 - 4 102-2 - 3 100-1 - 2-3 140 150 160 170 180 190 Neutron number F.P.Heßberger /konferenzen/danf11/she/she_schaleneffekte 8.9.2011

Shell Effects in Heaviest Nuclei Skyrme-Hartree-Fock (SHF) and Relativistic Mean Field (RMF) Approaches SkP predicts proton shell Z=126, other SHF param. rather Z=120, SkI4 shows also strong shell effects at Z=114; SHF predict neutron shell essentially at N=184, partly strong shell effects at N=172 RMF predict proton shell at Z=120 and strong neutron shell rather at N=172. M. Bender et al. PL B515, 42 (2001)

Velocity separator SHIP SHIP Separation time: 1 2 μs Transmission: 20 50 % Background: 10 50 Hz Det. E. resolution: 18 25 kev Det. Pos. resolution: 150 μm Dead time: 25 μs Mastertitelformat bearbeiten

Spontaneous Fission Activities Investigated at SHIP 120 116 b sf > 0.01 b sf = 0.001-0.01 sf finvestigated t at tship Z = 114 Z = 120 Pr roton nu umber Z 112 N = 152 108 Z = 108 104 N = 184 100 N = 162 140 144 148 152 156 160 164 168 172 176 180 184 188 Neutron number N hess/konferenzen/tokai_0312/region 16.2.2012

26 SF halflife systematics of ee - nuclei 10 26 U N = 152 T sf / s 10 21 10 16 10 11 N = 162 Pu 10 6 Cm 10 1 Cf 10-4 Fm Hs No Rf Sg Features strong enhancement of fission half-lives at the deformed neutron shell N = 152 for No, Fm, Cf, (Cm) enhancement at N = 152 vanishes at Z = 104 (Rf) steep decrease of fission halflives on the neutron deficient side and partly at the neutron rich side rather flat behavior of fission at N = 152 158 for Rf and Sg increase of fission halflives towards the deformed neutron shell indicated for Rf, Sg, Hs, (No) 10-9 136 140 144 148 152 156 160 164 Neutron number SHIP Data (neitron deficient side): J. Khuyagbaater et al. EPJA 37, 177 (2008), EPJA 46, 59 (2010), F.P. Heßberger et al. Z. Phys. A 359 (1997)

SF halflife systematics of ee - nuclei Influence of N = 152 shell on SF halflives disappeared at Z = 104 2nd barrier drops below gs (Oganessian et al. 1975, Randrup et al. 1973); effect ect visible in change of barrier curvature ħω f (Heßberger 1985) Calculations of Smolanczuk et al. (1995) reproduce well SF known in 1995, deviations for SF discovered after ( ) h f / MeV 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 U Pu Cm Cf Fm No Rf Sg T sf /s 10 4 Rutherfordium ( Z=104) 10 0 10-4 10-8 10 4 10 0 10-4 10-8 Seaborgium (Z=106) Hassium (Z=108) 10 4 10 0 10-4 10-8 148 150 152 154 156 158 160 162 Neutron number 0,76 0,78 0,80 0,82 0,84 0,86 0,88 0,90 0,92 Status: 6. 3. 2012 Calculations: R. Smolanczuk et al. PRC 52, 1871(1995) x F.P.Heßberger 30.12.2005 SHIP-Data: tsf_hqomsys85 G.Münzenberg et al. ZPA 332,227 (1985), ZPA 324,489 (1986), F.P. Heßberger, GSI-Report GSI-85-11 (1985) F.P.Heßberger et al. ZPA 359, 417 (1997), S.Hofann et al. EPJA 10, 57 (2001) K.Nishio et al. EPJA 29, 561 (2006), D.Ackermann et al. To be published

SF hindrance of odd-mass nuclei Due to angular momentum conservation fission of nuclei with odd Z, odd cannot follow most energetic favourable path effective enhancement of fission barrier ( specalisation energy ) enhancement of fission life-times J. Randrup et al. NPA 217, 221 (1973) ) T sf / s 1E13 1E8 1000 odd A ee odd A ee odd A ee Fm No Rf High gs spins for 255-259 Fm (7/2+,9/2+) ( ) 0,01 R. Vandenbosch, J.R. Huizenga, Nuclear Fission (1973) 1E-7 140 142 144 146 148 150 152 154 156 158 160 Neutron number 24.6.2008

SF hindrance of odd-mass nuclei Hindrance Factor 261 Db 24 25 25 25 245 Fm 1/2+6[31] 257 Rf 1/2 2+[620] 259 Sg 1/2 2+[620] 261 Sg 3/2 2+[622] 243 Fm 7/ /2+[743] 251 No 7/2 2+[624] 255 Rf 9/2 2-[734] 47m Md 1/2 2-[514] 53m Lr 1/2 2-[521] 57m Db 1/2 2-[521] 53g Lr 7/2- -[514] b 9/2+[734]?, 1/2-[521]? 257 7m Db 1/2 2-[521] Even Z Nuclei Odd Z Nuclei

Spontaneous fission of K - isomers K isomers are multi qp configurations and thus SF is expected to be strongly hindered 254m1 No Assigned as 2qp state with K π = 8 - b sf =(2.0±1.2) x 10-4 T sf 1400 s T sf,calc 1s HF 1400 T sf (iso) / T sf (gs) 0.06 254m2 No Assigned as 4qp state with K π = 16 - or 16 + b 13 sf 1.3 x 10-4 T sf 1.5 15s T sf,calc 0.5 μs HF > 3x10 6 T sf (gs) 24000 s F.P.Heßberger et al. ZPA 43,55 (2010) Previously known: 256m Fm E* = 1425. kev, K π = 7 -, T 1/2 = 70 ns b sf = 2x10-5 T sf = 3.5 s T sf = 10400 s T sf (iso) / T sf (gs) 0.00034

EC delayed fission Decay scheme of 246 Md EC delayed fission in 246 Md Q EC = 6.16 (±0.33) MeV B f ( 246 Fm) = 6.49 MeV (Kowal et al.) B f ( 246 Fm) = 6.13 MeV (Möller et al.) b sf ( 246 Fm) 0.12 (prod. by EC of 246 Md) b sf ( 246 Fm) = 0.068 068 ± 008(di 0.08 (direct prod. by 208 Pb( 40 Ar,2n) 246 Fm (M. Venhart et al. EPJA 47:20 (2011)) Excess EC delayed fission of 246 Md; P ECDF = 0.13 ± 0.03 However: two states in 246 Md T 1/2 ( 246 Fm,sf) 7.6 s (ER-sf corr.) T 1/2 ( 246 Fm,α) 6.2 s (ER-α corr.) EC mainly from 246m2 Md; probably also Small contribution from 246m1 Md P ECDF ( 246m2 Md) > 0.1 S. Antalic et al. EPJA 43, 35 (2010) highest probability for EC delayed SF in transuranium region

Implation Depth of ER < range of SF products p(sf1+sf2) 40 %. Large PHD due to high h ionisationi density Si Detector TKE - Distributions nts Eve 8 6 4 2 0 252 No Experiment Monte-Carlo-Simulation <TKE> = 203 MeV range of sf products ca. 22 m SF1 Even nts 25 20 15 10 256 Rf Experiment Monte-Carlo-Simulation <TKE> = 207 ± 13 MeV Advanced simulations using GEANT 4 started 5 SF2 ER Ev vents 0 12 9 6 258 Rf Experiment Monte-Carlo-Simulation <TKE> = 220 ± 15MeV 3 Impl. Depth ER ca. 6-10 m 0 90 100 110 120 130 140 150 160 170 180 190 200 210 220 F.P. Heßberger PHD GSI-85-11 E kin,sf / MeV

TKE Distributions (preliminary results) Events / 5 MeV 30 sf ( 252 No) (b 25 sf =36%) E = 162 MeV (uncorr.) E = 49 MeV (FWHM) 20 (Ix0.05) 15 10 5 0 sf ( 255 Rf) (b sf =50%) E = 165 MeV (uncorr.) E = 36 MeV (FWHM) 80 100 120 140 160 180 200 220 240 E / MeV (Stop detector) 259 Sg (254 ms), sf(235 ms) ca. 92 (411 ms) 0 (9610, 9035 kev) (9540,... kev) (94 %) 1/2+[620] sf (6 %) 11/2-[725] 16 Event ts / 5 MeV 16 12 8 sf ( 256 Rf) (b sf = 98%) E = 184 MeV (uncorr.) E = 41 MeV (FWHM)) sf ( 260 Sg + 256 Rf) (b sf ( 260 Sg) = 71 %) E = 185 MeV (uncorr.) E = 53 MeV (FWHM) Eve ents / 5 MeV 14 12 10 8 6 4 sf ( 255 Rf) (b sf =50%) E = 165 MeV (uncorrected) E = 36 MeV (FWHM) sf( 259 Sg) (b sf = 6%) E = 180 MeV (uncorr.) E = 13 MeV (FWHM) sf( 258 Sg) (b sf = 100%) E m = 182 MeV (uncorr.) 4 2 0 100 120 140 160 180 200 220 240 E / MeV (Stop detector) 0 105 120 135 150 165 180 195 210 225 240 E / MeV (Stop detector)

TKE - Distributions 215 MeV ( 259 Sg) (preliminary) 243 Fm 198 MeV ( 255 Rf) (preliminary) 241 Fm D.C. Hoffman, M.R. Lane, RCA 70/71, 125 (1995) 244 Fm Published Results: (J. Khuyagbaatar et al. EPJ A 37, 177 (2008)) 244 Fm: 193 ± 12 MeV (194 MeV*) 243 Fm: 198 ± 15 MeV 241 Fm: 196 ± 10 MeV *Literature

Transition from asymmetric to symmetric fission N = 150 ( 252 No) N = 151 ( 255 Rf) N = 152 ( 254 No) N = 152 ( 256 Rf) N = 152 ( 258 Sg)? N = 153 ( 259 Sg) N = 154 ( 256 No) N = 154 ( 258 Rf) N = 154 ( 260 Sg)? D.C. Hoffman, M.R. Lane, RCA 70/71, 125 (1995) No Rf Sg Literature SHIP Data

TKE of Superheavy Elements 279 Ds Estimation of TKE on basis of few events is dangerous!! Nevertheless: data indicate that fission energies of 283,284 Cn and 279 Ds follow the trend 284 Cn of predictions by Schmitt and Mosel and Viola systematics 283 Cn Asymmetric mass split 279 Ds 283 Cn 284 Cn < TKE > / MeV 250 240 230 220 210 200 190 pre-neutron post-neutron Unik Viola Symmetric mass split 180 170 1350 1425 1500 1575 1650 1725 1800 1875 1950 2025 Z 2 /A 1/3 Konferenzen/Tokai0312/UnikViola 2.3.2012 H.W. Schmitt, U. Mosel, NP A186, 1 (1972)

Fission barriers of Superheavy Nuclei Strong Variation of fission barrier values; extremely high values for SLy6 (p-shell at Z = 120; for Z = 120 agreement of Kowal (MM), Smolanczuk (MM), NLZ-2, NL3* within 1 MeV, Möller values typically 1-1.5 MeV higher. 12 B sf / MeV B sf / MeV 10 8 6 4 2 Möller et al. Kowal et al. Bürvenich et al. (NL3) Bürvenich et al. (SkP) Bürvenich et al. (SLy6) Bürvenich et al. (SkI4) Smolanczuk (B f (dyn)) 48 Ca + 248 Cm 0 265 270 275 280 285 290 295 300 305 310 14 12 10 8 6 4 2 0 Möller et al. Kowal et al. Bürvenich et al. (SLy6) Bürvenich et al. (NLZ-2) Smolanczk (B f (dyn)) Abusara et al. (NL3*) A (Z = 116) 50 Ti + 249 Cf 54 Cr + 248 Cm 275 280 285 290 295 300 305 310 315 A (Z = 120) DANF11/SHE/Spaltbarrieren_Z116_Z120B, 12.9.2011

Fission Halflives of SHE No fission observed for 288 114, 290,292 116, 294 118: upper limits <10 3 x T sf (theo) T sf of 286 114, 282,284 Cn 1-2 orders of magnitude lower than T sf (theo) Presently experiments going on at GSI on synthesis of elements 120 by 248 Cm( 54 Cr,xn) 302-x 120 and Predicted (MM) T sf (T α ) for 249 Cf( 50 Ti,xn) 299-x 120 and being prepared for el. 119 Element 120 isotopes: by 249 Bk( 50 Ti,xn) 299 119 and will start on April 26, 2012 298 120: 28 ms (1-10 μs) t sf / s 10 16 calculations: 10 13 R. Smolanczuk et al. PRC 52, 1871 (1995) R. Smolanczuk PRC 56, 812 (1997) 10 10 10 7 10 4 10 1 10-2 10-5 249 Cf( 50 Ti,4n) 295 120 248 Cm( 54 Cr,4n) 298 120 Z=118 Z=120 168 172 176 180 184 Neutron number Z=112 Z=114 Z=116 konferenzen/danf11/she/tsfshe F.P.Heßberger 11.9.2011 295 120: odd-mass nucleus 27 ms(ee) x HF HF 1000 (42 μs) 296 120: 11 ms ( 7 μs) ) Taking differences of expected values and calculations and variances of fission barrier predictions still can be expected: Element 120 isotopes decay by α - emission

Summary and Outlook SF properties of 237,238 Cf confirmed, SF branching of 240 Cf experimentally determined, new sf activities or sf branches ( 241,243 Fm, 251 No, 264 Sg, 266 Hs, 283 Cn) SF of 259 Sg confirmed; spin and parity of fissioning level assigned for the first time; strong evidence of symmetric fission of 259 Sg EC delayed fission of 246m2 Md identified; highest EC delayed fission probability in transuranium region SF branching in K isomers 254m1 No and upper limit for 254m2 No measured; high stability of K isomers against SF demonstrated Investigation of SF properties nuclei Z > 106 (TKE, mass split, ) Spin dependence of hindrance factors SF probabilities of K isomers 250 Fm, 252 No (high gs sf branch), 253 No EC delayed fission shape dependence of fission properties; so far (Z 92) : prolate deformation; approaching spherical shells oblate shapes spherical nuclei approaching spherical shells oblate shapes, spherical nuclei new techniques to overcome disadvantages of implantation methods for TKE and mass distrubtion measurements gas cells, ion traps

TRAPSPEC Experiment in 2011 Reaction: 150 Sm( 50 Ti,5n) 195 Po Study of separation of 195m Po (T 1/2 = 1.9 s) and 195g Po (T 1/2 =4.6s)onthe basis of trapping times L.-L. Andersson GSI Scientific Report 2011

Collaborations GSI, Darmstadt D.Ackermann, M.Block, S.Heinz, F.P.H., S.Hofmann, B.Kindler, I.Kojouharov, J.Khuyagbaatar, B.Lommel, R.Mann, B.Sulignano (former members) Helmholtz Institut Mainz L.-L.Andersson Comenius University Bratislava, Slovakia S. Antalic, Z.Kalininova, S.Saro, M.Venhart, B.Streicher (former members) University y Jyväskylä, y Finland M.Leino, J.Uusitalo JAEA Tokai, Japan K.Nishio FLNR JINR Dubna, Russia A.G.Popeko, A.Yeremin

Jadambaa Khuyagbaatar PHDs * S. Antalic Comenius University Bratislava (2004 * B. Streicher Comenius University Bratislava (2006) * B. Sulignano Joh. Gutenberg Univ. Mainz (2007) * J. Khuyagbaatar, St. Petersburg State University (2009) Barbara Sulignano Stanislav Antalic Branislav Streicher