Pattern Formation in Chemotaxis

Similar documents
Volume Effects in Chemotaxis

Exclusion of boundary blowup for 2D chemotaxis system with Dirichlet boundary condition for the Poisson part

Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding

Classical solutions and pattern formation for a volume filling chemotaxis model

GLOBAL EXISTENCE FOR CHEMOTAXIS WITH FINITE SAMPLING RADIUS. (Communicated by Aim Sciences)

Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model

Journal of Differential Equations

Point vortex mean field theories multi-intensities and kinetic model

A positivity-preserving finite element method for chemotaxis problems in 3D

THE SET OF CONCENTRATION FOR SOME HYPERBOLIC MODELS OF CHEMOTAXIS

Singular solutions of partial differential equations modelling chemotactic aggregation

Kinetic models for chemotaxis

Spatio-Temporal Chaos in a Chemotaxis Model

MERGING-EMERGING SYSTEMS CAN DESCRIBE SPATIO-TEMPORAL PATTERNING IN A CHEMOTAXIS MODEL. Thomas Hillen. Jeffrey Zielinski. Kevin J.

Derivation of Hyperbolic Models for Chemosensitive Movement

Mathematical models for cell movement Part I

Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2

A Finite Volume Scheme for the Patlak-Keller-Segel Chemotaxis Model

Free energy estimates for the two-dimensional Keller-Segel model

VOLUME-FILLING AND QUORUM-SENSING IN MODELS FOR CHEMOSENSITIVE MOVEMENT

Blow-up and Pattern Formation in Hyperbolic Models for Chemotaxis in 1-D

Mathematical tools for cell chemotaxis

Blow-up and pattern formation in hyperbolic models for chemotaxis in 1-D

SINGULARITY FORMATION IN CHEMOTAXIS - A CONJECTURE OF NAGAI

Hyperbolic models of cell movements: an introduction

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM

LECTURE OF BCB 570 SPRING 2013 MATHEMATICAL MODELING AND STUDY OF

Interface Motion in the Ostwald Ripening and Chemotaxis Systems

Ecient, accurate and exible Finite Element solvers for Chemotaxis problems

arxiv: v2 [math.ap] 28 Mar 2016

Yoshie Sugiyama (Tsuda university)


arxiv: v1 [math.ap] 24 Jun 2017

Self-similar solutions to a parabolic system modelling chemotaxis

Introduction to Travelling Waves Modeling Examples. Travelling Waves. Dagmar Iber. Computational Biology (CoBI), D-BSSE, ETHZ

Mathematical analysis of tumour invasion model with proliferation and re-establishment

INSTABILITY IN A GENERALIZED KELLER-SEGEL MODEL

Models of Biological Movements: Analysis and Numerical Simulations. Cristiana Di Russo. CNRS, Institut Camille Jordan Université Claude Bernard Lyon 1

Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems

EXISTENCE OF MULTIPLE SOLUTIONS FOR A NONLINEARLY PERTURBED ELLIPTIC PARABOLIC SYSTEM IN R 2

Volume effects in the Keller Segel model: energy estimates preventing blow-up

PATTERN FORMATION IN ROSENZWEIG MACARTHUR MODEL WITH PREY TAXIS

für Mathematik in den Naturwissenschaften Leipzig

Jeans type analysis of chemotactic collapse

An augmented Keller-Segal model for E. coli chemotaxis in fast-varying environments

Traveling Waves and Steady States of S-K-T Competition Model

arxiv: v1 [math.ap] 13 Mar 2015

DYNAMIC TRANSITION AND PATTERN FORMATION FOR CHEMOTACTIC SYSTEMS. Tian Ma. Shouhong Wang. (Communicated by Qing Nie)

5. Bacterial Patterns and Chemotaxis 5.1 Background and Experimental Results

Gradient Flows: Qualitative Properties & Numerical Schemes

Taxis Diffusion Reaction Systems

On the parabolic-elliptic limit of the doubly parabolic Keller Segel system modelling chemotaxis

Physical Mechanisms for Chemotactic Pattern Formation by Bacteria

Conservation and dissipation principles for PDEs

Keller-Segel models for chemotaxis. Jessica Ann Hulzebos. A Creative Component submitted to the graduate faculty

ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES

BOUNDEDNESS IN A THREE-DIMENSIONAL ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE

Mathematical analysis of tumour invasion with proliferation model and simulations

STABILITY OF CONSTANT STATES AND QUALITATIVE BEHAVIOR OF SOLUTIONS TO A ONE DIMENSIONAL HYPERBOLIC MODEL OF CHEMOTAXIS. Francesca Romana Guarguaglini

Solving the Fisher s Equation by Means of Variational Iteration Method

arxiv: v2 [math.ap] 17 Oct 2015

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations

arxiv: v1 [math.ap] 22 Dec 2017

arxiv: v2 [math.ap] 3 Feb 2014

A Chemotactic Model for the Advance and Retreat of the Primitive Streak in Avian Development

Analysis of a herding model in social economics

Wavefront invasion for a chemotaxis model of Multiple Sclerosis. R. Barresi, E. Bilotta, F. Gargano, M. C. Lombardo, P. Pantano & M.

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Theoretical and numerical results for a chemo-repulsion model with quadratic production

Blow-up dynamics for the aggregation equation with degenerate diffusion

arxiv: v1 [math.ap] 9 Dec 2009

Fractional Laplacian

Allen Cahn Equation in Two Spatial Dimension

PARABOLIC SYSTEM OF CHEMOTAXIS: BLOWUP IN A FINITE AND THE INFINITE TIME

Stability and absorbing set of parabolic chemotaxis model of Escherichia coli

arxiv: v1 [math.ap] 21 Sep 2017

A New Interpretation of The Keller-Segel Model Based on Multiphase Modelling

arxiv: v1 [math.ap] 6 Mar 2017

arxiv: v1 [nlin.ao] 22 Jun 2012

Biological self-organisation phenomena on weighted networks

Entropy-dissipation methods I: Fokker-Planck equations

arxiv: v2 [q-bio.qm] 25 Jun 2018

The Helmholtz Equation

Phenomenological model of bacterial aerotaxis with a negative feedback

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

arxiv: v1 [math.ap] 8 Nov 2017

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Pattern formation in prey-taxis systems

A GENERALIZED KELLER-SEGEL MODEL

Continuous Traveling Waves for Prey-Taxis

Boundedness of solutions to a virus infection model with saturated chemotaxis

arxiv: v1 [math.ap] 29 Dec 2008

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Shadow system for adsorbate-induced phase transition model

LOCAL WELLPOSEDNESS AND INSTABILITY OF TRAVELLING WAVES IN A CHEMOTAXIS MODEL

Coupled Keller Segel Stokes model: global existence for small initial data and blow-up delay

GLOBAL ATTRACTIVITY IN A CLASS OF NONMONOTONE REACTION-DIFFUSION EQUATIONS WITH TIME DELAY

A nonlinear cross-diffusion system for contact inhibition of cell growth

Exit times of diffusions with incompressible drift

Group Method. December 16, Oberwolfach workshop Dynamics of Patterns

Transcription:

Pattern Formation in Chemotaxis Thomas Hillen University of Alberta, Edmonton (with K. Painter, Heriot-Watt) Pattern Formation in Chemotaxis p.1/28

Outline (1) The Minimal Model (M1) Pattern Formation in Chemotaxis p.2/28

Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) Pattern Formation in Chemotaxis p.2/28

Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) (3) Regularizations (M2)-(M8) Pattern Formation in Chemotaxis p.2/28

Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) (3) Regularizations (M2)-(M8) (4) Pattern Formation Pattern Formation in Chemotaxis p.2/28

Outline (1) The Minimal Model (M1) (2) The Volume Filling Model (M3a) (3) Regularizations (M2)-(M8) (4) Pattern Formation (5) Open Questions and Conclusions Pattern Formation in Chemotaxis p.2/28

(1) Chemotaxis Equation Patlak 53 Keller and Segel, 7 Minimal model u t = (D u χu v), v t = 2 v + u v. (M1) u(x, t): cell density v(x, t): chemical signal Pattern Formation in Chemotaxis p.3/28

Horstmann s review 3 [D. Horstmann, Jahresberichte DMV, 15, 13-165, 23.] model derivations steady states blow-up general mathematical properties self similar solutions, traveling waves Pattern Formation in Chemotaxis p.4/28

(M1) shows Finite Time Blow Up 2 18 16 14 12 1 8 6 4 2.2.4.6 x.8 1 2 4 1 8 6 time Pattern Formation in Chemotaxis p.5/28

Theorem 1 (1992-27) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) Pattern Formation in Chemotaxis p.6/28

Theorem 1 (1992-27) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx Pattern Formation in Chemotaxis p.6/28

Theorem 1 (1992-27) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx 1-D: Spike formation, no blow-up. Pattern Formation in Chemotaxis p.6/28

Theorem 1 (1992-27) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx 1-D: Spike formation, no blow-up. 2-D: quantized blow-up (Suzuki 5, Hortsmann 3) boundary blow-up takes mass 4π χ interior blow-up takes mass 8π χ. If u I 1 < 4π χ then global existence. Pattern Formation in Chemotaxis p.6/28

Theorem 1 (1992-27) (Childress, Percus, Jäger, Luckhaus, Nagai, Senba, Yoshida, Herrero, Velazquez, Levine, Sleeman, Gajewski, Zacharias, Biler, Post, Horstmann, Suzuki, Yagi, Potapov, Hillen, Perthame, etc ) ū = u (x)dx 1-D: Spike formation, no blow-up. 2-D: quantized blow-up (Suzuki 5, Hortsmann 3) boundary blow-up takes mass 4π χ interior blow-up takes mass 8π χ. If u I 1 < 4π χ then global existence. n-d: There is a threshold in L n/2 (Perthame et al. 5). Pattern Formation in Chemotaxis p.6/28

(2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C Pattern Formation in Chemotaxis p.7/28

(2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C q(u) : probability to find space at a local cell density u Pattern Formation in Chemotaxis p.7/28

(2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C q(u) : probability to find space at a local cell density u Assumption q(u max ) = and q(u) for all u < U max. Pattern Formation in Chemotaxis p.7/28

(2) The Volume Filling Approach (M3a) (w. K. Painter) Increasing chemoattractant concentration A B C q(u) : probability to find space at a local cell density u Assumption q(u max ) = and q(u) for all u < U max. Standard example: U max = 1, q(u) = 1 u. Pattern Formation in Chemotaxis p.7/28

The Volume Filling Model We use a Master equation approach to derive: u t = (D(q(u) q (u)u) u q(u)uχ(v) v) v t = v + u v Pattern Formation in Chemotaxis p.8/28

Pattern Analysis [1]-[7] [1] Hillen + Painter 2: First mention of the volume filling model; proof of global existence for special cases; numerical pattern formation. Pattern Formation in Chemotaxis p.9/28

Pattern Analysis [1]-[7] [1] Hillen + Painter 2: First mention of the volume filling model; proof of global existence for special cases; numerical pattern formation. If the domain is large enough we obtain non trivial steady states. u(x) τ (x) Pattern Formation in Chemotaxis p.9/28

Pattern Formation in 1-D cell density 1.5 9 6 log 1 t 3 2 1 space 3 Pattern Formation in Chemotaxis p.1/28

Pattern Formation in 2-D ū =.5 (top),.25 (middle),.75 (bottom) Pattern Formation in Chemotaxis p.11/28

Pattern Analysis [1]-[7] [1] Hillen + Painter 2: [2] Painter + Hillen 22: Derivation from a random walk description, pattern formation, coarsening. Pattern Formation in Chemotaxis p.12/28

Pattern Analysis [1]-[7] [1] Hillen + Painter 2: [2] Painter + Hillen 22: Derivation from a random walk description, pattern formation, coarsening. [3] D. Wrzosek 23: Existence of a compact global attractor. Pattern Formation in Chemotaxis p.12/28

Pattern Analysis [1]-[7] [1] Hillen + Painter 2: [2] Painter + Hillen 22: Derivation from a random walk description, pattern formation, coarsening. [3] D. Wrzosek 23: Existence of a compact global attractor. [4] D. Wrzosek 24: Lyapunov function. ω-limit sets are steady states. Pattern Formation in Chemotaxis p.12/28

Pattern Analysis [1]-[7] [5] Potapov + Hillen 24: Bifurcation diagram, metastability, numerical estimates of leading eigenvalues, scaling analysis and pattern interaction. Pattern Formation in Chemotaxis p.13/28

Pattern Analysis [1]-[7] [5] Potapov + Hillen 24: Bifurcation diagram, metastability, numerical estimates of leading eigenvalues, scaling analysis and pattern interaction. Bifurcation Diagram 2. 16. 12. 8. 4.. 4. 8. 12. 16. 2. 1.8 1.6 1.4 1.2-1.5-1. -.5..5 1. Pattern Formation in Chemotaxis p.13/28

Pattern Analysis [1]-[7] [6] Dolak + Schmeiser 24: Asymptotic analysis of pattern interaction. Pattern Formation in Chemotaxis p.14/28

Pattern Analysis [1]-[7] [6] Dolak + Schmeiser 24: Asymptotic analysis of pattern interaction. [7] Dolak + Hillen 23: Application to Dictyostelium discoideum and to Salmonella typhimurium. Pattern Formation in Chemotaxis p.14/28

(3) Regularizations Signal dependent sensitivity (M2a), (M2b) Density dependent sensitivity (M3a), (M3b) Non-local gradient (M4) Non-linear diffusion (M5) Non-linear signal kinetics (M6) Non-linear gradient (M7) Cell kinetics (M8) Pattern Formation in Chemotaxis p.15/28

Receptor Model (M2a) u t = Othmer, Stevens 97 ( D u v t = 2 v + u v ) χu (1 + αv) v 2 Segel 76 77, Ford et al 91, Tyson et al 99, Levine and Sleeman 97 Pattern Formation in Chemotaxis p.16/28

Logistic model (M2b) u t = ( D u χu 1 + β ) v + β v v t = 2 v + u v Keller, Segel 71, Dahlquist et al 72, Nanjundiah 73 see review in Horstmann 3 Pattern Formation in Chemotaxis p.17/28

Volume-Filling (M3a) u t = ( ( D u χu 1 u ) ) v γ H, Painter 1 2 v t = 2 v + u v, Wrzosek 4, Dolak, Schmeiser 5 Pattern Formation in Chemotaxis p.18/28

Velazquez model (M3b): Velazquez 4 u t = ( D u χ u ) 1 + ɛu v v t = 2 v + u v, Pattern Formation in Chemotaxis p.19/28

Non-Local Model (M4) u t = ( D u χu ) ρ v v t = 2 v + u v Non-local gradient: ρ v(x, t) = Othmer, H 2 n S n 1 ρ H, Painter, Schmeiser 6 S n 1 σv(x + ρσ, t) dσ, Pattern Formation in Chemotaxis p.2/28

Nonlinear Diffusion (M5) u t = (Du n u χu v) v t = 2 v + u v, Kowalczyk 5 Eberl 1, biofilm Pattern Formation in Chemotaxis p.21/28

Nonlinear Signal Kinetics (M6) u t = (D u χu v) v t = 2 v + u 1 + φu v, Höfer et al 95, Woodward et al 95 Myerscough et al 98, Post 99. Pattern Formation in Chemotaxis p.22/28

Nonlinear Gradient (M7) u t = (D u χuf c ( v)) v t = 2 v + u v, F c ( v) = 1 c ( ( ) ( )) cvx1 cvxn tanh,..., tanh. 1 + c 1 + c Rivero et al 89 Pattern Formation in Chemotaxis p.23/28

Cell Kinetics (M8) u t = (D u χu v) + ru(1 u) v t = 2 v + u v Tyson 99, Woodward 95, Chaplain, Stuart 93 Osaki et al 2, Wrzosek 4, Pattern Formation in Chemotaxis p.24/28

(4) Pattern Formation Pattern Formation in Chemotaxis p.25/28

2-D Aggregations 15 1 5 (M1) t =.93 1.5.5 1 1 (M2a) α =.5 5 1.5.5 1 15 1 5 (M2b) β =. 1.5.5 1 (M3a) γ = 3. 3 2 1 1.5.5 1 (M3b) ε = 1. 2 1 1.5.5 1 (M4) ρ =.25 3 2 1 (M5) n = 1. 2 1 (M6) φ = 1. 2 1 1 (M7) c = 3. 5 (M8) r =.25 4 2 1.5.5 1 1.5.5 1 1.5.5 1 1.5.5 1 1.5.5 1 (M1) (a) Cell density profiles 1 4 1 3 1 2 1 1 (M2b) (M2a) 1 3 1 2 1 1 (M5) (M4) (M3b) 1 2 1 1 (M8) (M7) (M6) 2 4 6 (M3a) 2 4 6 8 1 2 3 4 5 (b) Peak cell density evolution Pattern Formation in Chemotaxis p.26/28

(5) Open Questions Global existence for (M2b) for n-d, n 3 and β > Global existence for (M2b) for β =. Possibly threshold and blow-up? Prove existence of a global attractor for (M2a), (M2b), (M3b), (M4), (M5), (M6), (M7) analysis of merging dynamics (so far only Dolak et al.) analysis of merging-emerging dynamics for (M8) Pattern Formation in Chemotaxis p.27/28

Conclusions List of models not complete Pattern Formation in Chemotaxis p.28/28

Conclusions List of models not complete A combination of effects might be needed for applications Pattern Formation in Chemotaxis p.28/28

Conclusions List of models not complete A combination of effects might be needed for applications All models show coarsening dynamics Pattern Formation in Chemotaxis p.28/28

Conclusions List of models not complete A combination of effects might be needed for applications All models show coarsening dynamics Thanks to K. Painter, and to NSERC Pattern Formation in Chemotaxis p.28/28