Transistors. Lesson #10 Chapter 4. BME 372 Electronics I J.Schesser

Similar documents
T-model: - + v o. v i. i o. v e. R i

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

(8) Gain Stage and Simple Output Stage

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Design of Analog Integrated Circuits

Lecture 2 Feedback Amplifier

Unit 3: Transistor at Low Frequencies

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

6. Cascode Amplifiers and Cascode Current Mirrors

Introduction to Electronic circuits.

EEE2146 Microelectronics Circuit Analysis and Design. MIC2: Investigation of Amplifier Parameters of a Common-Collector Amplifier

Microelectronics Circuit Analysis and Design. ac Equivalent Circuit for Common Emitter. Common Emitter with Time-Varying Input

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

55:041 Electronic Circuits

Physics Exam II Chapters 25-29

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

Week 11: Differential Amplifiers

BASIC ELECTRICAL CIRCUITS AND ANALYSIS. Ref: Horowitz, P, & W. Hill, The Art of Electronics, 2nd. ed., Cambridge (1989).

VI. Transistor Amplifiers

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Amplifier Constant Gain and Noise

1.4 Small-signal models of BJT

Copyright 2004 by Oxford University Press, Inc.

Feedback Principle :-

ANALYSIS OF TRANSISTOR FEEDBACK AMPLIFIERS

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

Sensors and Actuators Introduction to sensors

Exercises for Differential Amplifiers. ECE 102, Fall 2012, F. Najmabadi

High Frequency Third Cumulant of Quantum Noise

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Why working at higher frequencies?

( ) = ( ) + ( 0) ) ( )

55:141 Advanced Circuit Techniques Two-Port Theory

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Chapter 3 Applications of resistive circuits

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

Unifying Principle for Active Devices: Charge Control Principle

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

55:041 Electronic Circuits

CHAPTER 6 : LITERATURE REVIEW

P E R E N C O - C H R I S T M A S P A R T Y

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Electrical Circuits II (ECE233b)

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

OPERATIONAL AMPLIFIERS

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Faculty of Engineering

Copyright Paul Tobin 63

Microelectronics Circuit Analysis and Design. NMOS Common-Source Circuit. NMOS Common-Source Circuit 10/15/2013. In this chapter, we will:

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Celso José Faria de Araújo, M.Sc.

I 2 V V. = 0 write 1 loop equation for each loop with a voltage not in the current set of equations. or I using Ohm s Law V 1 5.

ECE 2100 Circuit Analysis

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

FYSE400 ANALOG ELECTRONICS

Electrical Circuits 2.1 INTRODUCTION CHAPTER

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)

CHAPTER 13. Solutions for Exercises

FEEDBACK AMPLIFIERS. β f

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Bipolar-Junction (BJT) transistors

55:041 Electronic Circuits

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

EE 221 Practice Problems for the Final Exam

55:141 Advanced Circuit Techniques Two-Port Theory

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

Chapter 13 - Universal Gravitation

Linear Amplifiers and OpAmps

55:041 Electronic Circuits

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

FEEDBACK AMPLIFIERS. v i or v s v 0

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Lesson 5. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

Ch. 9 Common Emitter Amplifier

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

6.012 Electronic Devices and Circuits Formula Sheet for Final Exam, Fall q = 1.6x10 19 Coul III IV V = x10 14 o. = 3.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2

III. Operational Amplifiers

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

element k Using FEM to Solve Truss Problems

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Optimization Frequency Design of Eddy Current Testing

III. Electromechanical Energy Conversion

Electric and magnetic field sensor and integrator equations

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

Circuits II EE221. Instructor: Kevin D. Donohue. Instantaneous, Average, RMS, and Apparent Power, and, Maximum Power Transfer, and Power Factors

Transcription:

Tanssts essn #10 Chapte 4 BM 372 lectncs 154

Hmewk Ps. 4.40, 4.42, 4.43, 4.45, 4.46, 4.51, 4.53, 4.54, 4.56 BM 372 lectncs 155

Hmewk Answes #20 Ps. 4.40 See fgue 4.33 BM 372 lectncs 156

Ps. 4.42 Hmewk Answes #22 g m βv T CQ β V CQ T CQ g m 1.0003 2.6003 1.0004 2.6004 1.0006 2.6006 3.8502 3.8503 3.8505 BM 372 lectncs 157

Hmewk Answes #23 Ps. 4.43 Cuplng capacts ae ften used n dscete amplfes s that suce and lad d nt hae dc cuents flwng thugh them and s the as pnts n the amplfe ae ndependent f the suces and the lad. We must nt use cuplng capacts f t s necessay t amplfy dc sgnals ecause the cuplng capacts act as pen ccuts f dc. BM 372 lectncs 158

Hmewk Answes #24 Ps. 4.45 Fst DC analyss, then AC analyss V BQ 0.7V β 100 V CC 15V 1 10k C S 100 4.7k 2 n 0.001snωt BM 372 lectncs 159

Ps. 4.45 DC Analyss Hmewk Answes #25 β 100 V CC 15V V BQ 0.7V 1 10k C S 100 4.7k 2 Theenns equalent at the ase: 4.7 VBth 15 4.8 14.7 4.7 k 10k 3.2k Bth The ase ccut: V V V (1 β ) Bth BQ Bth BQ Q BQ Bth BQ BQ BQ CQ VBth VBQ 4.8 0.7 0.0393mA (1 β ) 3.2 k (301)1 k Bth β 3.93mA BQ V V 15 3.93 3.94 7.12 C CC CQ C Q N ACTV GON βvt 661Ω CQ BM 372 lectncs 160

Ps. 4.45 AC Analyss S β 100 1 10k Hmewk Answes #26 C β 100 4.7k 2 S Z 661 k ut C 1 β 100 2 1 10k 4.7k C A Z A n β C B A Z β β β n 0.5k 548 75.6; A 41.4; G β Z A A n 3132 β A Z n C 151 n 0.001snωt BM 372 lectncs 161

Hmewk Answes #27 P 4.46 Hgh mpedance w mpedance cq 3.9309305 0.003930926 p 66142 661 A 76 76 A 151 151 Zn 54805 548 A 41 41 G 3132 3132 Z 100000 1000 BM 372 lectncs 162

Hmewk Answes #28 Ps. 4.51 Fst DC analyss, then AC analyss V BQ 0.7 V β 100 V CC 15V 1 10k S n 10k 2 500 BM 372 lectncs 163

V TH n S Hmewk Answes #29 V CC 15V 1 10k V BQ 0.7 V β 100 10k 2 500 è TH V CC 15V β B èv TH V B TH V CC 15V eme the ccut elements whch ae nt affects y the DC ltages Openng the cuplng capacts edaw the ccut and eplace the ase ccut wth ts Thenen s equalent 5k V Next, use the DC equalent ccut f the acte egn and then wte KV f the ase ccut V V TH BQ CQ CQ BQ β V V BM 372 lectncs T TH TH V (1 β ) CC TH BQ TH 1 2 2 2 V 6.42mA; V Q BQ BQ Q 1 8.5V ; 100k CC (1 β ) 7.5V 7.5 0.7 5k (1 100) Q BQ V T BQ TH BQ V BQ 64.2µ A 6.48mA (1 β ) 26m 405 64.2µ 164 BQ

Hmewk Answes #30 n S V BQ 0.7 V β 100 1 10k 10k 2 β 500 The next step s t pefm the AC analyss y Shtng any DC ltage suces Openng any DC cuent suces Shtng the capacts Cnnectng the suce, suce esstance, and lad esstance eplace the tansst wth ts small sgnal equalent ccut. And edaw t smplfy BM 372 lectncs 165

Hmewk Answes #31 n n S 1 2 10k 10k S B Z n 5k e (1β) β β e (1β) 333 O 500 BM 372 lectncs A A Z Z A B t 1 2 (1 100) 333.988 (1 100) 333 405 G A B Z A 5k (1 β ) 4.36k ; 8.51 333 (1 β ) (1 β ) (1 β ) A t (1 β ) A Z Z 8.62 34. 166

BM 372 lectncs 167 Hmewk Answes #32 12.1 1 ) ( ) (1 1 1 β β Z S S B S 50k β e (1β) Z O x x S ) ) ( ) (1 1 1 ( ) (1 ) ( 833 ) (1 β β β Z S x x S x x x S x B S S x e x x x x

Hmewk Answes #33 P 4.53 V CC 15V β 100 V BQ 0.7V B 270k C S s 100 BM 372 lectncs 168

Hmewk Answes #34 s P 4.53 S β 100 C β 100 B 270k 100 β Z [ n C ( ( [ c β β (1 β ) ) ) (1 β ) ] (1 β ) ] B BM 372 lectncs 169

Hmewk Answes #35 P 4.54 V CC 15V β 100 V BQ 0.7V B 270k C S s 100 BM 372 lectncs 170

Hmewk Answes #36 β 100 P 4.54 DC analyss s V BQ 0.7V S B 270k C V CC 15V 100 Base Ccut V V ( ) CC BQ B BQ BQ CQ V ( β ) BQ CQ BQ B BQ BQ BQ BQ V B β VT CC BQ (1 β ) BQ V Cllect Ccut V V CC C CQ B Q V V ( ) C CC CQ B Q BM 372 lectncs 171

s Hmewk Answes #37 P 4.54 AC Analyss S β 100 C β 100 B 270k 100 β Z [ n C ( ( [ c β β (1 β ) ) ) (1 β ) ] (1 β ) ] B BM 372 lectncs 172

P. 4.54 Hmewk Answes #38 esults 100 0 BQ 5.1105 5.3005 CQ 0.005105 0.005296 Q 5.1603 5.3503 VCQ 9.3800 9.7000 p 5.0902 4.9102 AV 4.71286 101.852 Zt 1.0604 4.9102 Zn 1.0204 4.9002 V/VS 9.9001 8.3101 AVS 4.66714 84.5894 BM 372 lectncs 173

Hmewk Answes #39 P 4.56 V CC B 1 e (1β) n C 1 B 2 C 2 n β 2 1 BM 372 lectncs 174

Hmewk Answes #40 P 4.56 B f B e (1β) n e (1β) n β 2 1 n β BM 372 lectncs 175

n n P 4.56 f B e (1β) β Hmewk Answes #41 mtte nde f e n B nput Mesh (1 β) n ; n n (1 β) n B B (1 β) (1 β) n n Zn n n B B [ 1 1 1 B / (1 β) ] [ 1 n / (1 β) 1 ] B B A n 1 / (1 β) 1 B 1 1 B 1 / (1 β) [ B / (1 β)] B / (1 β) / (1 β) B Base nde n n n n f n f A ; n 1 A B / (1 β) B / (1 β) B / (1 β) / (1 β) B n B n B / (1 β) n(1 A ) B ; f n B B n BM 372 lectncs 176