Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Similar documents
Correlation between anisotropy, slow relaxation, and spectroscopic behaviour: the Ln(trensal) family

Spin Interactions. Giuseppe Pileio 24/10/2006

Beyond the Giant Spin Approximation: The view from EPR

SUPPLEMENTARY INFORMATION

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

Spins Dynamics in Nanomagnets. Andrew D. Kent

Supplementary Information. for. Magnetic memory of a single-molecule quantum magnet wired to a gold surface

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

SUPPLEMENTARY INFORMATION

Intermolecular interactions (dipolar and exchange)

I. Molecular magnetism and single-molecule magnets

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

ESR spectroscopy of catalytic systems - a primer

A Mn(III) single ion magnet with tridentate Schiff-base ligands

An introduction to Solid State NMR and its Interactions

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

Introduction to Electron Paramagnetic Resonance Spectroscopy

An introduction to magnetism in three parts

Crystal Field Theory

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

First-principles DFT calculations of the magnetic anisotropy in transition metal compounds. Jens Kortus TU Bergakademie Freiberg, Germany

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

Decoherence in molecular magnets: Fe 8 and Mn 12

The First Cobalt Single-Molecule Magnet

ESR spectroscopy of catalytic systems - a primer

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Magnetic Resonance in magnetic materials

6 NMR Interactions: Zeeman and CSA

A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal

Spin electric coupling and coherent quantum control of molecular nanomagnets

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Direct dipolar interaction - utilization

NMR (CHEM8028) Solid-state NMR: Anisotropic interactions and how we use them. Dr Philip Williamson January 2015

EPR and Mössbauer Spectroscopies

Crystal Field Theory

HIGH FREQUENCY ELECTRON PARAMAGNETIC RESONANCE STUDIES OF THE ANISOTROPY OF MOLECULAR MAGNETS AND A SPIN DIMER COMPOUND

Electron Paramagnetic Resonance parameters from Wave Function Theory calculations. Laboratoire de Chimie et de Physique Quantiques Toulouse

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Magnetic ordering, magnetic anisotropy and the mean-field theory

The Quantum Theory of Magnetism

Crystal field effect on atomic states

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003

Highly Anisotropic Exchange Interactions in a Trigonal Bipyramidal Cyanide-Bridged Ni II 3Os III 2 Cluster

Mössbauer Spectroscopy. Carsten Krebs Department of Chemistry Department of Biochemistry and Molecular Biology The Pennsylvania State University

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Chem8028(1314) - Spin Dynamics: Spin Interactions

- 1 - Magnetic molecular wheels and grids - the need for novel concepts in "zerodimensional"

A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior

Spin frustration effects in an odd-member antiferromagnetic ring and the magnetic Möbius strip

Chem 442 Review of Spectroscopy

Quantum chemical modelling of molecular properties - parameters of EPR spectra

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

Berry s phase under the Dzyaloshinskii-Moriya interaction

Tensor Visualization. CSC 7443: Scientific Information Visualization

Electron spins in reduced dimensions: ESR spectroscopy on semiconductor heterostructures and spin chain compounds

Supporting Information

5 Selected samples. 5.1 Organic Radicals in Solution CH 3 H 3 C N O N O. 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) dimethylnitroxyl radical 5-1

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe

Simulations of magnetic molecules

THEORY OF MAGNETIC RESONANCE

arxiv:cond-mat/ Oct 2001

Scaling up Electronic Spin Qubits into a Three-Dimensional Metal-Organic Framework

ELASTICITY (MDM 10203)

NIELINIOWA OPTYKA MOLEKULARNA

Quantum dynamics in Single-Molecule Magnets

Orientational resolution of spin labels in multifrequency studies - High Field ESR makes a difference. Boris Dzikovski ACERT

Magnetism in Condensed Matter

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 29: Weak and Strong Field Approximations

Multiple spin exchange model on the triangular lattice

Degeneracy Breaking in Some Frustrated Magnets

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

7. Basics of Magnetization Switching

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

PHYSICS AND INSTRUMENTATION IN NEUTRON SCATTERING (CRG-CEA/ILL) L.P. Regnault SPSMS-MDN

NMR: Formalism & Techniques

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Magnetic Anisotropy. Chapter Introduction

LOWELL WEEKLY JOURNAL

Luigi Paolasini

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

EPR of photochromic Mo 3+ in SrTiO 3

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Interference: from quantum mechanics to nanotechnology

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Calculation of the zero-field splitting D and g parameters in EPR for d 3 spin systems in strong and moderate axial fields

Transcription:

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department of Chemical and Geological Sciences, University of Modena, Italy Karlsruhe 11 October 2013- Workshop on magnetic anisotropy ECMM2013

Acknowledgments STM P. Totaro, M.E. Boulon, A.-L. Barra, K. C. M. Westrup, G. G. Nunes, A. Barison, J. F. Soares, D. SMM F. Back, M. Jackson, C. Paulsen Dept. of Chemistry U. Schiff, University of Florence, Sesto Fiorentino, Italy LNCMI-CNRS, Grenoble, France Departamento de Química, Universidade Federal do Paraná, Curitiba-PR, Brazil. Departamento de Química, Universidade Federal de Santa Maria, Camobi, RS, Brazil. Institut Néel CNRS & Université J. Fourier, Grenoble, France. 2

Magnetic Exchange in Molecular Materials H= S A. J. S B SMM STM J J J J J J J J J J xx xy xz yx yy yz zx zy zz H= J S A. S B + S A. D AB. S B + d AB. (S A xs B ) Isotropic (Heisenberg) J=1/3Tr(J) Anisotropic (traceless matrix) Antisymmetric (Dzyaloshinsky- Moriya)

Magnetic anisotropy of spin clusters Single Ion Dipolar & Exchange anisotropy

From the single spin to the pair 5

The Giant Spin Hamiltonian Why? Energy J >> k B T E ms Spin projection - m s S E -4 E 4 E -5 E 5 E -6 E 6 E -7 E 7 Hilbert space is (2S+1) 10-20 instead of (2s i +1) 10 4 10 8 Explains the major features of low temperature properties Does not depend on J (in first approximation) "up" E -8 E -9 E -10 E 8 E 9 E 10 "down"

Multispin and Giant Spin Hamiltonian H = Σ i,j J ij s i s j + Σ i s i D i s i + Σ i,j s i D ij s j + μ B Σ i s i g i B When J ij >>D, the total spin S is a good quantum number and the Giant Spin Hamiltonian describe the system properly: H = B S g s B + DS z 2 + E (S x 2 -S y2 )+ B nm O n m O n m = Stevens operators g S = Σ i c i g i D S = Σ i d i D i + Σ i,j d ij D ij Both magnitude and orientation of single ion tensors determine the global anisotropy Higher order terms in the GSH often arise as a consequence of departure from strong exchange limit

Why high order Spin Hamiltonian terms? The tunnel splitting according to perturbation theory Zeeman 2 th order =ħ T 4 th order 6 th order 8

The Giant Spin Hamiltonian What? H = B S g B + DS z 2 + E (S x 2 -S y2 )+ B nm O n m Quantum Properties of the SMM D, B n 0 height of the barrier (to be increased for applications) E, B n m coupling of M levels differing by 2 (E) or m (tunnelling,to be reduced for applications) Importance of understanding the origin of these anisotropy terms and finding a way to control to them Need for simple and easily tunable systems EPR (High Field/High Frequency) plays a key role

The propellers zoo V Cr Fe Ga Ga 4 Ga 3 Fe Ga 3 Cr Fe 4 Fe 3 Cr Fe 3 V

Fe4 Single-Molecule Magnets Antiferromagnetic coupling between central Fe(III) and external Fe(III) : J~15-20 cm -1 ground S=5 spin state D < 0 Exact or idealized C 3 axis Easy functionalization by replacement of methoxy groups with polyalkoxo ones: Fe 4 (CH 3 O) 6 (dpm) 6 + 2H 3 L Fe 4 (L) 2 (dpm) 6 + 6CH 3 OH Fe 4 (OMe) 6 (dpm) 6 Fe(III), S=5/2 C O... and many more J. Am. Chem. Soc. 1999, 121, 5302 Angew. Chem. Int.Ed. 2004, 43, 1136 J. Am. Chem. Soc. 2006, 128, 4742 Chem. Mater. 2008, 20, 2405

A library of functional groups By courtesy of A. Cornia

Magneto-structural correlations for Fe 4 family L. Gregoli et al. Chem. Eur. J. 2009, 15, 6456

Rotation of the anisotropy directions of peripheral Fe(III) y2 y2 y2 In GaFe(OMe) 2 (DBM) 6 D(Fe 2 )=+0.77 cm -1 Hard axis ~ perp to Z Intermediate axis ~ Fe1-Fe2 (Cornia et al. J. Mag. Res. 179, 2006, 29-37 ) X Z Y z2 z2 z2 x2 On reducing, y 2 is tilted away from Z axis D S is less negative only varies 7.6 : D2 rotation has to be larger! JACS 2006 128, 4742-4755

The propellers zoo V Cr Fe Ga Ga 4 Ga 3 Fe Ga 3 Cr Fe 4 Fe 3 Cr Fe 3 V

Mixing metals in the propeller 283 GHz EPR Ga 3 Cr S=3/2 D Cr =0.470 cm -1 easy plane!! In collaboration with Dr. A.L. Barra @ CNRS-GHML, Grenoble

Mixing metals in the propeller 230 GHz 190 GHz Two Fe III sites: D Cr 0.7 cm -1 E/D 0.1: easy plane!! In collaboration with Dr. A.L. Barra @ CNRS-GHML, Grenoble

HF-EPR (230 GHz) of Fe 3 Cr derivative Fe 3 Cr, S=6 g=2 at 8.2 T D=-0.179 cm -1 B 40 =1.6 10-6 cm -1 E=0.018 cm -1 g x =g y =2 ; g z =1.98 calc exp * * * * * * 20 K Fe 4 ; S=5 D=-0.42 cm -1 x x x 10 K 5 K 0 2 4 6 8 10 12 B (T) Fe 3 Cr : Fe 4 = 84:16

SMM behavior from easy plane ions Easy Intermediate Hard Cr III, d 3 S = 6 D = -0.18 cm -1 E 8 K ( E 15 K for Fe 4 ) Easy axis anisotropy results from spin noncollinearity P. Totaro et al. Dalton Trans, 2013, 42, 4416-4426

Fe 3 Cr(dpm) 6 (thme) 2, a trigonal SMM Cristallographically imposed trigonal symmetry: R-3c Pure Fe 3 Cr crystals Well-suited for single crystal EPR study S=6 + Trigonal anisotropy Determination of trigonal anisotropy Evaluate its effect on spin dynamics Evaluate its relation to microscopic parameters

W-band EPR of a single crystal of Fe 3 Cr (R-3c) Field direction Rotation 1 Easy-axis Hard plane 0.8 mm Field direction Rotation 2 Hard plane 0.8 mm Fe 3 Cr single crystals (~ 0.01*0.16*0.18 mm 3 )

Easy axis temperature dependence -1 0-6 -5-5 -4-4 -3-2 -1-3 -2 0 1 1 2 2 3 3 4 4 5 5 6 40 K 20 K 9 K * * * 6 K 1000 2000 3000 4000 5000 6000 B (mt) Clear evidences of excited state population even at 6 K 12 transitions observed for S=6 and 10 transitions observed for S=5 at 40 K Evidence of the S=4 transitions in the 40 K spectrum Broadening of the high M S lines due to D-strain.

B res (mt) Axial anisotropy of ground and first excited states 5000 4000 For S=6: g z =2.007 D= -0.1845, B 40 < 5*10-7 cm -1 For S=5: g z =2.002 D = - 0.155, B 40 <5*10-7 cm -1 3000 2000 1000 Only weak effects due to mixing -6-5 -4-3 -2-1 0 1 2 3 4 5 M s S=6 B res = (g e /g) B 0 + [140*B 40 *M 3 S + 210*B 40 *M S2 +(2D-2330*B2330*B 40 )*M S +(D-855*B 40 )]/g S=5 B res = (g e /g) B 0 + [140*B 40 *M 3 S + 210*B 40 *M S2 +(2D-1660*B 40 )*M S +(D-865*B 40 )]/g

B res (mt) Trigonal anisotropy of Fe 3 Cr Cr III, d 3 S = 6 3600 3400 3200 3000 0 20 40 60 80 100 120 140 160 180 / 1 2 0 1-1 0-2 -1 g = 2.019(1) D = - 0.1855(3) cm -1 B 4 0 = -1.98(2) x 10-7 cm -1 B 6 0 = 2.62(2) x 10-8 cm -1 B 4 3 = 5.0(2) x 10-4 cm -1 B 6 3 = 6.2(2) x 10-5 cm -1 B 6 6 = -6.0(1) x 10-7 cm -1

MSH simulation H MSH = Σ i,j J ij s i s j + Σ i s i D i s i + Σ i,j s i D ij s j + μ B Σ i s i g i B J ij and J ij : known from magnetic measurements g tensors: fixed by LF arguments D Cr : orientation defined by symmetry D Fe lying along C 2 symmetry axis

B res (mt) Fe3Cr hard plane: MSH simulation 3500 3400 3300 3200 3100 3000 0 20 40 60 80 100 120 140 160 180 / 1 2 0 1-1 0-2 -1 3 Fe III and 1 Cr III : Hilbert space: 864x 864 Experimental behaviour reproduced very well Trigonal anisotropy arising from the non- collinearity of the D tensor of the peripheral Fe(III) Euler angles: b= = 85, = = 80

Giant Spin vs. Multi Spins The two models fit the EPR spectra but provide different tunnel splitting and Berry phase

High order transverse terms Ô 3 Ô 6 4 6 Ô 3 6 Tunnel Splitting -6,6 Compensation field Bz(mT)

Increasing the spin of Fe 3 M propellers Fe Fe 4 3 a M robust propellers SMM V Fe III, d 5 S = 5 D = -0.45 cm -1 E 15 K Cr III, d 3 S = 6 D = -0.18 cm -1 E 8 K V III, d 2 S = 13/2 or 17/2 D?

Synthesis of Fe 3 V propeller Two steps synthesis 2 Li 3 (L et ) + [VCl 3 (thf) 3 ] Li 3 V(L Et ) 2 (vanadium core) + 3 LiCl Li 3 V(L Et ) 2 + 1.5 [{Fe(dpm) 2 } 2 (μ-ome) 2 ] [Fe 3 V(L Et ) 2 (dpm) 6 ] + 3 LiOMe :( In contrast to Cr III, V III tends to get out from the propeller Successive recrystallizations yield enrichment of Fe 4 impurities in Fe 3 V.

Adding remnant Fe magnetization HF-EPR by chemical design 4 a robust of SMM Fe 3 V:Fe 4 95 GHz, T=20 K Fe 4, simulated 1d, simulated Fe 3 V, simulated 0 10 20 30 40 50 60 H (KOe) D(Fe 4,S=5) = -0.43 cm -1, g z =2.004 D(Fe 3 V,S=13/2) = -0.31 cm -1, g z =2.043

Barrier (K) SPIN - D Fe Fe Fe 4 3 a M 3 M robust propellers propellers SMM 7 6 5 4 20 15 10 0.4 0.3 0.2 0.1 0.0 r 2 3 4 5 d n n

Adding Magnetization remnant Fe magnetization by chemical design 4 a robust dynamics SMM of Fe 3 V H dc =0 H dc = 1kOe E 21 K E 14 K Reduced tunneling in zero field for S=13/2

M ( B ) Adding remnant magnetization by chemical design Fe 4 a robust SMM Adding remnant magnetization by chemical design 10 H c (Fe 4 ) V 5 0 H c (Fe 3 V) -5-10 -2-1 0 1 2 o H (T) T= 90 mk T= 450 mk T= 900 mk Zero Field Tunneling is less efficient for S=13/2 In collaboration with Dr. Carley Paulsen @ CNRS, Grenoble

Doubling Fe 4 a Trobust B by chemical SMM design Adding remnant magnetization by chemical design T B (Fe 3 V) Fe 3 V:Fe 4 V FC T B (Fe 4 ) ZFC Zero Field Tunneling is less efficient for S=13/2 In collaboration with Dr. Carley Paulsen @ CNRS, Grenoble

Origin of magnetic anisotropy in Fe 3 V Knowing that D S =-0.31 cm -1 and g S =2.043 For V III g z ca. 1.7 and D V =-17cm -1!!! D d ( D D D ) d D 1 2 3 S Fe Fe Fe Fe V V g c ( g g g ) c g 1 2 3 S Fe Fe Fe Fe V V V(III) Cr(III) Fe(III) s 13/2 6 5 d Fe 0.121429 0.138776 0.186813 d M 0.008333 0.028571 0.128205 d Fe,Fe 0.151786 0.173469 0.233517 d Fe,M -0.047222-0.080952-0.181624 c Fe 0.37778 0.40476 0.47222 c M -0.13333-0.21429-0.41667 D dip /cm -1-0.005-0.0132-0.0365

V III : an orbitally degenerate d 2 ion A tribute to late Philip L. W. Tregenna-Piggott Villigen 20-2-2010

V III : an orbitally degenerate d 2 ion D <0 only in rhombic symmetry!!

Origin of magnetic anisotropy in Fe 3 V V D d ( D D D ) d D d D d D S Fe Fe 1 Fe 2 Fe 3 V V Fe i, Fe j Fe i, Fe j Fe i, V Fe i, V j i i 1,3 Knowing the experimental D and d V =0.00833 D V =-17 cm -1 The anisotropic exchange is tentatively given by : 2 ˆk g kk 2 L e J ˆ AB e g H 2 b exc e g b E A gz - ge - (2 ka) E For V III g z ca. 1.7!!!

What about the AS contribution? H AS = d 12 S 1 xs 2 V The polar vector d has to be oriented along the C 2 symmetry axis Fe-V d 12 No contribution to the axial anisotropy!

Concluding remarks Determination of the magnetic anisotropy of internal and external ions in the propeller structure. First spectrscopic determination of the trigonal transverse anisotropy in a model S=6 systems, and its origin Evaluation of its effect on tunnel splitting Exchange anisotropy contribution to the magnetic anisotropy can overcome the single-ion ones