Toric ideals finitely generated up to symmetry

Similar documents
Noetherianity up to symmetry

SYMMETRIC IDEALS AND NUMERICAL PRIMARY DECOMPOSITION

Properties of ideals in an invariant ascending chain

Toric Ideals, an Introduction

Toric Fiber Products

Total binomial decomposition (TBD) Thomas Kahle Otto-von-Guericke Universität Magdeburg

arxiv: v3 [math.ac] 6 Jan 2010

Commuting birth-and-death processes

EQUIVARIANT GRÖBNER BASES AND THE GAUSSIAN TWO-FACTOR MODEL

arxiv: v2 [math.ag] 4 Nov 2013

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 14 April. Binomial Ideals

Groebner Bases, Toric Ideals and Integer Programming: An Application to Economics. Tan Tran Junior Major-Economics& Mathematics

Linear and Bilinear Algebra (2WF04) Jan Draisma

Toric statistical models: parametric and binomial representations

Tutorial: Gaussian conditional independence and graphical models. Thomas Kahle Otto-von-Guericke Universität Magdeburg

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

On the minimal free resolution of a monomial ideal.

Math 4370 Exam 1. Handed out March 9th 2010 Due March 18th 2010

Markov bases and subbases for bounded contingency tables

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

Commutative algebra 19 May Jan Draisma TU Eindhoven and VU Amsterdam

Pseudo symmetric monomial curves

A new parametrization for binary hidden Markov modes

Lecture 1: Gröbner Bases and Border Bases

From Gauss. to Gröbner Bases. John Perry. The University of Southern Mississippi. From Gauss to Gröbner Bases p.

Abstract Algebra for Polynomial Operations. Maya Mohsin Ahmed

MODEL ANSWERS TO THE FIRST HOMEWORK

An Algorithm to Calculate the Kernel of Certain Polynomial Ring Homomorphisms

Reversely Well-Ordered Valuations on Polynomial Rings in Two Variables

ABSTRACT. Department of Mathematics. interesting results. A graph on n vertices is represented by a polynomial in n

Binomial Ideals from Graphs

T. Hibi Binomial ideals arising from combinatorics

Characterizations of indicator functions of fractional factorial designs

Lecture 15: Algebraic Geometry II

HILBERT BASIS OF THE LIPMAN SEMIGROUP

Hilbert function, Betti numbers. Daniel Gromada

The Graph Isomorphism Problem and the Module Isomorphism Problem. Harm Derksen

Bounded-rank tensors are defined in bounded degree. J. Draisma and J. Kuttler

Groebner Bases and Applications

arxiv: v2 [math.ac] 15 May 2010

arxiv: v4 [math.ac] 31 May 2012

Fundamental theorem of modules over a PID and applications

on Newton polytopes, tropisms, and Puiseux series to solve polynomial systems

Krull Dimension and Going-Down in Fixed Rings

A Saturation Algorithm for Homogeneous Binomial Ideals

Toric Varieties in Statistics

Gröbner bases of nested configurations arxiv: v1 [math.ac] 7 Jan 2008

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

GRÖBNER BASES AND POLYNOMIAL EQUATIONS. 1. Introduction and preliminaries on Gróbner bases

Lecture 4 February 5

MODEL ANSWERS TO HWK #7. 1. Suppose that F is a field and that a and b are in F. Suppose that. Thus a = 0. It follows that F is an integral domain.

The combinatorics of binomial ideals

Polytopes and Algebraic Geometry. Jesús A. De Loera University of California, Davis

Algebraic Models in Different Fields

Explicit Deformation of Lattice Ideals via Chip Firing Games on Directed Graphs

Confluence Algebras and Acyclicity of the Koszul Complex

arxiv:alg-geom/ v1 11 Jan 1994

Lecture 1. (i,j) N 2 kx i y j, and this makes k[x, y]

MIT Algebraic techniques and semidefinite optimization February 16, Lecture 4

2. Intersection Multiplicities

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Markov Bases for Two-way Subtable Sum Problems

On a perturbation method for determining group of invariance of hierarchical models

A tropical approach to secant dimensions

Hypergraphs and Regularity of Square-free Monomial Ideals

B Sc MATHEMATICS ABSTRACT ALGEBRA

1 - Systems of Linear Equations

On intersections of complete intersection ideals

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems

mathematics Smoothness in Binomial Edge Ideals Article Hamid Damadi and Farhad Rahmati *

Abstract Vector Spaces and Concrete Examples

arxiv:math/ v1 [math.ac] 11 Jul 2006

4 Hilbert s Basis Theorem and Gröbner basis

Veronesean almost binomial almost complete intersections

TROPICAL SCHEME THEORY

arxiv: v1 [math.ac] 11 Dec 2013

Polynomials, Ideals, and Gröbner Bases

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 27 January. Gröbner bases

Noetherian property of infinite EI categories

Example: Hardy-Weinberg Equilibrium. Algebraic Statistics Tutorial I. Phylogenetics. Main Point of This Tutorial. Model-Based Phylogenetics

Monomial orderings, rewriting systems, and Gröbner bases for the commutator ideal of a free algebra

Lecture 2 Some Sources of Lie Algebras

Computing toric degenerations of flag varieties

Gröbner Complexes and Tropical Bases

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Computing syzygies with Gröbner bases

Gröbner Bases. eliminating the leading term Buchberger s criterion and algorithm. construct wavelet filters

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

Chapter 2 Linear Transformations

Abstract Algebra II Groups ( )

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z).

Gröbner Bases for Noncommutative Polynomials

Rings. EE 387, Notes 7, Handout #10

Hilbert Polynomials. dimension and counting monomials. a Gröbner basis for I reduces to in > (I)

ALGEBRAIC AND COMBINATORIAL PROPERTIES OF CERTAIN TORIC IDEALS IN THEORY AND APPLICATIONS

Order of Operations. Real numbers

0.2 Vector spaces. J.A.Beachy 1

Computational methods in the study of symplectic quotients

5 The existence of Gröbner basis

Transcription:

Toric ideals finitely generated up to symmetry Anton Leykin Georgia Tech MOCCA, Levico Terme, September 2014 based on [arxiv:1306.0828] Noetherianity for infinite-dimensional toric varieties (with Jan Draisma, Rob H. Eggermont, Robert Krone) and [arxiv:1401.0397] Equivariant lattice generators and Markov bases (with Thomas Kahle, Robert Krone)

Equivariant Gröbner bases (EGBs) Ideals in some -dimensional rings can be represented finitely: K[x 1, x 2,...] with the action of S is Noetherian up to symmetry: every equivariant ideal is generated by orbits of finitely many elements.... still true if S is replaced with the monoid Inc(N) = {monotonous maps N N}. E.g., x 1, x 2,... = x 2014 S = x 1 Inc(N). There is an algorithm to compute an equivariant GB.... or perhaps are represented finitely: K[y ij i, j N] and K[y {i,j} i, j N] with the diagonal action of S are not equivariantly Noetherian. However, if EGB algorithm terminates, then the output is an EGB.

Equivariant Gröbner bases (EGBs) Ideals in some -dimensional rings can be represented finitely: K[x 1, x 2,...] with the action of S is Noetherian up to symmetry: every equivariant ideal is generated by orbits of finitely many elements.... still true if S is replaced with the monoid Inc(N) = {monotonous maps N N}. E.g., x 1, x 2,... = x 2014 S = x 1 Inc(N). There is an algorithm to compute an equivariant GB.... or perhaps are represented finitely: K[y ij i, j N] and K[y {i,j} i, j N] with the diagonal action of S are not equivariantly Noetherian. However, if EGB algorithm terminates, then the output is an EGB.

Equivariant maps General goal: study families with S n symmetry as n. Let K[Y ] and K[X] be polynomial rings with S -actions. A map φ : K[Y ] K[X] is a S -equivariant map if σφ(f) = φ(σf) for all σ S, f K[Y ]. An ideal I K[Y ] is a S -invariant ideal if σi I for all σ S. φ is S -equivariant ker φ is a S -invariant ideal.

Example (Two theorems) [de Loera-Sturmfels-Thomas] Let φ : y {i,j} x i x j for i j N, ker φ = y {1,2} y {3,4} y {1,4} y {3,2} S. [Aoki-Takemura] Let φ : y ij x i x j for i j N, ker φ = y 12 y 34 y 14 y 32, y 12 y 23 y 31 y 21 y 32 y 13 S. Idea of a proof: eliminate (using EGB) in the ring K[x i, y ij i, j N]. Definition: Equivariant Markov basis of φ is a set generating ker φ up to symmetry.

Kernel of φ : y ij x 2 i x j Using EGB for elimination get a Markov basis: y 1,3 y 0,2 y 1,2 y 0,3 y 2,0 y 1,0 y 1,2 y 0,2 y 2,1 y 0,1 y 1,2 y 0,2 y 2,3 y 0,1 y 2,1 y 0,3 y 2,3 y 1,0 y 2,0 y 1,3 y 3,1 y 2,0 y 3,0 y 2,1 y 3,2 y 0,1 y 3,1 y 0,2 y 3,2 y 1,0 y 3,0 y 1,2 y 1,2 y 2 0,1 y2 1,0 y 0,2 y 2,0 y 0,1 2 y 1,0 y2 0,2 y 2,1 y 0,2 2 y2 2,0 y 0,1 y 2,1 y 1,0 y 0,2 y 2,0 y 1,2 y 0,1 y 2,1 y 1,0 2 y2 1,2 y 0,1 y 2 2,1 y 0,2 y2 2,0 y 1,2 y 2 2,1 y 1,0 y 2,0 y2 1,2 y 2,1 y 1,0 y 0,3 y 2,0 y 1,3 y 0,1 y 2 2,1 y 0,3 y2 2,0 y 1,3 y 2,3 y 1,2 y 0,2 y 2 2,0 y 1,3 y 3,0 y 1,2 y 0,2 y 2,0 y 1,3 y 0,3 y 3,0 y 1,2 2 y 2,0 y2 1,3 y 3,0 y 2 2,1 y 2,3 y 2,0 y 1,3 y 3,1 y 2 0,2 y 2,1 y2 0,3 y 3,1 y 1,0 y 0,2 y 3,0 y 1,2 y 0,1 y 3,1 y 1,2 y 0,2 y 2,1 y 1,3 y 0,3 y 3,1 y 2,3 y 0,3 y 2 3,0 y 2,1 y 2 3,1 y 0,2 y2 3,0 y 1,2 y 3,2 y 1,3 y 0,3 y 2 3,0 y 1,2 y 3,2 y 2,0 y 1,3 y 3,0 y 2,3 y 1,2 y 3,2 y 2,0 y 1,4 y 3,0 y 2,4 y 1,2 y 3,2 y 2,1 y 0,3 y 3,1 y 2,3 y 0,2 y 3,2 y 2,1 y 0,4 y 3,1 y 2,4 y 0,2 y 4,0 y 2,3 y 1,3 y 3,0 y 2,4 y 1,4 y 4,1 y 2,3 y 0,3 y 3,1 y 2,4 y 0,4 y 4,2 y 1,3 y 0,3 y 3,2 y 1,4 y 0,4 y 4,2 y 2,0 y 1,3 y 4,0 y 2,3 y 1,2 y 4,2 y 2,1 y 0,3 y 4,1 y 2,3 y 0,2 y 2,1 y 1,2 y 0,3 y 0,2 y 2,0 2 y 1,3 y 0,1 y 3,1 y 2,3 y 1,3 y 0,4 y 3,0 2 y 2,1 y 1,4 y 3,1 y 2,3 2 y 0,4 y2 3,0 y 2,4 y 2,1 y 3,2 y 2,3 y 1,3 y 0,4 y 3,0 2 y 2,4 y 1,2 y 4,1 y 2,3 y 1,4 y 0,4 y 4,0 2 y 2,1 y 1,3 y 4,1 y 3,2 y 1,4 y 0,4 y 4,0 2 y 3,1 y 1,2 y 4,1 y 3,4 y 2,4 y 0,5 y 4,0 2 y 3,1 y 2,5 y 2,1 y 1,2 2 y2 0,3 y2 2,0 y2 1,3 y 0,1 y 2,1 y 1,2 2 y 0,4 y 0,3 y2 2,0 y 1,4 y 1,3 y 0,1 y 3,2 y 2,3 2 y 1,4 y 0,4 y2 3,0 y2 2,4 y 1,2 y 3,2 y 2,3 2 y 1,4 y 0,5 y2 3,0 y 2,5 y 2,4 y 1,2 y 4,1 y 2,3 y 1,4 2 y 0,5 y2 4,0 y 2,1 y 1,5 y 1,3 y 4,1 y 3,2 y 1,4 2 y 0,5 y2 4,0 y 3,1 y 1,5 y 1,2 y 4,3 y 4,0 2 y 3,2 y 3,1 y 4,2 y 4,1 y2 3,4 y 0,3 y 5,1 y 4,2 y 3,5 2 y 0,3 y2 5,0 y 4,3 y 3,2 y 3,1 51 generators, width 6, degree 5. (Computation in 4ti2 by Draisma, EquivariantGB in M2 by Krone)

Questions Does a finite equivariant Markov basis (or lattice generating set) exist? Can we compute one? Can we find small bases? Size: number of generators. Degree: maximum degree of the generators. Width: largest index value used by the generators. Can we answer these for the one-monomial map φ : K[y ij i j N] K[x 1, x 2,...] where a > b are coprime? y ij x a i x b j

Questions Does a finite equivariant Markov basis (or lattice generating set) exist? Can we compute one? Can we find small bases? Size: number of generators. Degree: maximum degree of the generators. Width: largest index value used by the generators. Can we answer these for the one-monomial map φ : K[y ij i j N] K[x 1, x 2,...] where a > b are coprime? y ij x a i x b j

Factor φ as φ : K[Y ] π K [ ] z11, z 12,... ψ K[x z 21, z 22,... 1, x 2,...] π : y ij z 1i z 2j ψ : z 1i x a i ψ : z 2i x b i ker φ = ker π + π 1 (im π ker ψ). ker π = y 12 y 34 y 14 y 32, y 12 y 23 y 31 y 21 y 32 y 13 S. (ker π)k[y ± ] = y 12 y 34 y 14 y 32 S. What does im π ker ψ look like?

Lattice picture A ψ : M 2 N M 1 N [ ] c11 c 12 [ ac c 21 c 22 11 + bc 21 ac 12 + bc 22 ]. A ψ multiplies matrices by [a b] on the left. Any v ker A ψ must have all columns in the span of [ ] b. a Lemma: im π ker ψ is generated by S -orbits of z C1 z C2 such that [ ] b b 0 C 1 C 2 =. a a 0 z b 11z a 22 z b 12z a 21 generates the lattice.

im π ker ψ is generated by S -orbits of z C1 z C2 with the following C 1, C 2 (i) For each 0 n a b, [ ] [ ] b + n n c13 c C 1 = 14 n b + n c13 c, C 0 a c 23 c 24 2 = 14 a 0 c 23 c 24 where j 3 c 1j = a b n and j 3 c 2j = n. (ii) For each 1 n b, [ ] b 0 a b + n 0 C 1 =, C 0 a n 0 2 = (Experiments using 4ti2 and Macaulay2 helped.) [ ] 0 b a b + n 0. a 0 n 0

Markov basis formula [Kahle-Krone-L.] A S -equivariant Markov basis for φ is ( for (a, b) = (2, 1) ) (i) y 12 y 34 y 14 y 32 ; (ii) y 12 y 23 y 31 y 21 y 32 y 13 ; (...) (iii) for each 0 n a b, y b+n 12 j 3 y c1j j2 yc2j yb+n 21 j 3 y c1j j1 yc2j 1j where j 3 c 1j = a b n and j 3 c 2j = n; (iv) for each 1 n b, y b n 12 yn 13y a b+n 32 y b n 21 yn 23y a b+n 31. (...) ( y12 y 32 y 21 y 31, n = 0; y12y 2 23 y21y 2 13, n = 1; ( y13 y 2 32 y 23 y 2 31. ) Size = O((a b) (a b) ), (5) degree = max(a + b, 2a b), (3) width = max(4, a b + 2). (4) )

S -equivariant lattice generating set For width = 2, φ : y ij x a i xb j, [Kahle, Krone, L.] Up to symmetry, the lattice generators are y 12y 34 y 14y 32; y21y b a b 31 y12y b a b 32. Note: Size = 2, degree = a, width = 4. These are small! In general, φ : y (i1,...,i k ) x a1 i 1 x a k i k. [Hillar-delCampo] The lattice (equivariant binomial ideal) can be generated in width 2d 1, where d = i a i. [Kahle-Krone-L.] There is a formula for lattice generators with width k + 2 and (k 2 + k 2)/2 elements or width 2k and k 1 elements, Markov bases seem involved for k 3.

S -equivariant lattice generating set For width = 2, φ : y ij x a i xb j, [Kahle, Krone, L.] Up to symmetry, the lattice generators are y 12y 34 y 14y 32; y21y b a b 31 y12y b a b 32. Note: Size = 2, degree = a, width = 4. These are small! In general, φ : y (i1,...,i k ) x a1 i 1 x a k i k. [Hillar-delCampo] The lattice (equivariant binomial ideal) can be generated in width 2d 1, where d = i a i. [Kahle-Krone-L.] There is a formula for lattice generators with width k + 2 and (k 2 + k 2)/2 elements or width 2k and k 1 elements, Markov bases seem involved for k 3.

Theorem (Draisma, Eggermont, Krone, L.) Any S -equivariant toric map x 11, x 12,... φ : K[Y ] K. x k1, x k2,... where Y has a finite number of S orbits, has a finite S -equivariant Markov basis. There exists an algorithm to construct a Markov basis above... (not implemented!) Implies [de Loera-Sturmfels-Thomas], [Aoki-Takemura], and... [Hillar-Sullivant] Let E be a hypergraph on [k] and let φ E : y (i1,...,i k ) x e,(ij1,...,i js ). e=(j 1,...,j s) E If e has at most one infinite index, a finite equivariant Markov basis.

Factoring the map Main idea: factor the map φ : K[Y ] K[X] as φ = ψ π. Let Y = {y p,j p, J}, where p [N], N is the number of S -orbits; J is a k p-tuple of distinct natural numbers. π : K[Y ] K[Z] is given by ψ... captures the rest. y p,j l [k p] z p,l,jl. Want: show that ker π is finitely generated and im π is Noetherian up to symmetry.

Matching monoid Generate a monoid by π(y p,j ) = z A, where A p [N] N[kp] N is an [N]-tuple of finite-by- matrices A p. 0 1 0 1 2 3 4 5 0 1 [ ] 1 0 1 0 0 0 0 1 0 0 1 0 x p 0 1 2 3 4 5 0 1 φ(y p,(0,1) y p,(2,4) ) 0 1 2 3 4 5 φ(y p,(0,4) y p,(2,1) )

Proposition: For an N-tuple A p [N] N[kp] N,......... z A im π iff p [N] the matrix A p N [kp] N has all row sums equal to a number d p N and all column sums d p. We call such A good. Proposition: The Inc(N) divisibility order on the matching monoid (of good A) is a wpo. This settles the Noetherianness of im π.

Putting things together Proposition: ker π is generated by binomials in y p,j of degree at most 2 max p k p 1. Recall: ker φ = ker π + π 1 (im π ker ψ). Therefore, ker φ is finitely generated. It is possible to generalize Buchberger s algorithm to K[M] for a monoid M with a wpo... if all ingredients are made effective. One can find an equivariant GB for ker π of the same degree as in Proposition above (w.r.t. a certain monomial order). There exists an algorithm to construct a Markov basis for ker φ.

Summary Computing equivariant Markov bases is hard for machines. It is possible to find relatively small bases for some families. [DEKL] main theorem implies Noetherianness up to symmetry for the kernel of a monomial map in a large class of maps with the image in a S -Noetherian ring. What parts of commutative algebra transplant to the -dimensional S -equivariant setting?