Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Similar documents
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Introduction to Laplace Transform Techniques in Circuit Analysis

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Question 1 Equivalent Circuits

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

R L R L L sl C L 1 sc

GATE SOLVED PAPER - EC

ECE Linear Circuit Analysis II

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

MAE140 Linear Circuits Fall 2012 Final, December 13th

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

Modeling in the Frequency Domain

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

1. /25 2. /30 3. /25 4. /20 Total /100

S.E. Sem. III [EXTC] Circuits and Transmission Lines

FUNDAMENTALS OF POWER SYSTEMS

Phy 213: General Physics III 6/14/2007 Chapter 30 Worksheet 1

Solving Differential Equations by the Laplace Transform and by Numerical Methods

Analysis of Stability &

ME 375 FINAL EXAM Wednesday, May 6, 2009

Chapter 2 Homework Solution P2.2-1, 2, 5 P2.4-1, 3, 5, 6, 7 P2.5-1, 3, 5 P2.6-2, 5 P2.7-1, 4 P2.8-1 P2.9-1

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

online learning Unit Workbook 4 RLC Transients

Lecture 12 - Non-isolated DC-DC Buck Converter

Function and Impulse Response

Phasors: Impedance and Circuit Anlysis. Phasors

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

55:041 Electronic Circuits

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Properties of Z-transform Transform 1 Linearity a

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S -

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

NOTE: The items d) and e) of Question 4 gave you bonus marks.

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Lecture 6: Resonance II. Announcements

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Digital Control System

1 Routh Array: 15 points

EE292: Fundamentals of ECE

Chapter 10 AC Analysis Using Phasors

ECE-202 Exam 1 January 31, Name: (Please print clearly.) CIRCLE YOUR DIVISION DeCarlo DeCarlo 7:30 MWF 1:30 TTH

BASIC INDUCTION MOTOR CONCEPTS

Problem Set 5 Solutions

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 :

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

Laplace Transformation

Electric Circuits Fall 2015 Solution #5

EE105 - Fall 2005 Microelectronic Devices and Circuits

Assessment Schedule 2017 Scholarship Physics (93103)

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

Equivalent POG block schemes

The Power-Oriented Graphs Modeling Technique

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

GATE PRACTICE BOOKLET

Consider the following generalized simple circuit

: 2 : EE-Conventional Test-10 (Solutions)

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Reference:W:\Lib\MathCAD\Default\defaults.mcd

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

CHAPTER 13 FILTERS AND TUNED AMPLIFIERS

ECE 201 Fall 2009 Final Exam

FE Review 2/2/2011. Electric Charge. Electric Energy ELECTRONICS # 1 FUNDAMENTALS

Designing Circuits Synthesis - Lego

Lecture 5 Introduction to control

Reduction of Multiple Subsystems

Basics of Network Theory (Part-I)

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

Physics 116A Notes Fall 2004

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

Taking the Laplace transform of the both sides and assuming that all initial conditions are zero,

The Measurement of DC Voltage Signal Using the UTI

The Operational Amplifier

Chapter 10: Sinusoids and Phasors

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

ECE Circuit Theory. Final Examination. December 5, 2008

Example: Amplifier Distortion

Design By Emulation (Indirect Method)

ECE 45 Average Power Review

EE292: Fundamentals of ECE

Homework Assignment No. 3 - Solutions

Sinusoidal Steady State Analysis (AC Analysis) Part II

ME 375 EXAM #1 Tuesday February 21, 2006

Figure Circuit for Question 1. Figure Circuit for Question 2

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Transcription:

Serial : LS_N_A_Network Theory_098 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubanewar Kolkata Patna Web: E-mail: info@madeeay.in Ph: 0-4546 CLASS TEST 08-9 NSTRUMENTATON ENGNEERNG Subject : Network Theory Date of tet : /09/08 Anwer Key. (c) 7. (d) 3. (b) 9. (a) 5. (d). (d) 8. (c) 4. (d) 0. (b) 6. (b) 3. (b) 9. (b) 5. (a). (c) 7. (b) 4. (b) 0. (d) 6. (c). (c) 8. (b) 5. (b). (b) 7. (d) 3. (a) 9. (c) 6. (b). (b) 8. (d) 4. (c) 30. (b)

8 ntrumentation Engineering Detailed Explanation. (c) deal voltage ource ha zero internal reitance, Time contant τ RC 0 Hence capacitor will charge intantaneouly.. (d) The time contant τ R eq C eq Here, R eq R R /3 R and C eq C C 3C τ 3 3 R C RC 3. (b) n order to inject the 00 C charge to the 50 ource the current in the loop mut be anticlockwie 30 i 0 Ω 50 Q 00 i.67 A t 60 applying KL in the circuit 0i 50 30 0 (0 i 0) 0.67 0 36.7 4. (b) For power tranfer to be maximum R L R Th Redrawing the circuit R Th OC OC - open circuit voltage SC 60 6 Ω v x Ω vx a Open Circuit b OC v x Applying KL in loop 6 v x 60 0...(i) v x...(ii)

CT-08 N Network Theory 9 Solving thee, 5 A OC v x 5 0 6 Ω a SC SC 60 0 A 6 60 Ω Short circuit R Th 0 R L Ω 0 b 5. (b) The equation of line paing through origin i y m x y y t x x m t T0 m t T the intantaneou power for 0 t T 0 i p(t ) 0 mt T 0 0 t < 0.5T0 R 0 0.5 T t < T 0 0 P avg, oberving that the fundamental period i T 0, we have P avg P avg 0.5T0 4m t dt T 0 0 T0 R m 6R 0.5 T 3 0 m t 3 3 0 R 0 4 T 6. (b) On careful obervation, we find 0 4 3 ; 730 44 3 ; 88 730 3 Uing the ame logic, we try to work out the miing number a 0 3 8 and 8 3 8. To verify the correctne, we check 44 8 3. 7. (d) Z() LC RC 0 for pole to be real (RC) 4LC 0 RC ( R L) C LC ( R L) C R L R L LC RC C R L C

0 ntrumentation Engineering 8. (c) 6 8 8 3 Two Port Network 4 Ω overall Z 0 putting 0 4 8 3 4 8 3 4 Z 0 8 4 3.4 Ω 4 3 9. (b) Under teady tate L 0 5 R R R C L R 0 R R Energy tored in capacitor Energy tored in inductor C c L L 6 0R 3 0 60 0 4 0 R R or R 5 Ω 5A Ω C L 0. (d) Given circuit, Ω Ω 0 i 30 8 Ω 4 A 3 0

CT-08 N Network Theory By applying nodal analyi, 3 0 0 4 3 0...() and 4 0...() Subtituting () in () 3( 4) 0 0 4 0 4 6 Current upplied by dependent ource i 3 0 30 3 6 0 8 4A Power delivered 3 0 i 30 (3 6) (4) 7 W. (b) at reonance, X L X C Current through L i identical to current through C. X π fl L L C where f π LC C π L L π LC A. (b) Conidering one unit /...(i) and ( ) from equation (i) and (ii)...(ii)

ntrumentation Engineering and Two uch unit are connected in cacade 4 3 3 3 3. (b) For t < 0 0 Ω A 0 Ω k k L L 0 6H H 0 0 0 A L 0.5 A 8 At t 0 L 6 0.75 A 8 Applying KL (0 5) 0.5 L L 3.75 olt 5 Ω 0 Ω L 0.5 A 4. (d) Power conumed in 5 Ω reitor 0 W P 0 R 5 A Total power conumed in reitor 5 Ω and 0 Ω ( ) [5 0] 30 W Total power upplied by ource 50 50W Power factor 30 0.6 50 Since it i an R-L circuit, the power factor i lagging. 5. (a) 6 0 4 0 0 0 oc

CT-08 N Network Theory 3 0 Ω 0 Ω 6 0 Ω 0 oc 6. (c) c 0 A 0 0 R Th oc 0 Ω c P max Z ( oc) 0 4R 5 W Th 4 0 0 Redrawing the circuit and open circuiting the port 0 0 5 0 Z 0 Ω 0 0 Ω 0 Ω 0 Ω 0 5 Ω 0 c 7. (d) From the firt circuit 3 6 0 i 3 6 3i...() From the econd circuit, Power acro 0 Ω 90 W. i L 0 90 i L 9 3A. a.5 Ω 5 Ω Ω 0 3 Ω 6 Ω 6 a 5 Ω 0 Ω i i 6 a i L i 6a i L 3 6 A Hence 6 a 6 a From the figure, a i i So, i A From equation () 0 3i 3 3

4 ntrumentation Engineering 8. (d) Redrawing the circuit R Th : x 0 0 g m x R 0 R R R 0 3 R 3 x R g R m x a 0 0 ( m ) ( ) 0 g R 0 R R R 3 0 R b R Th 0 0 R3( R R) ( g R ) R ( R R ) m 3 9. (a) From the given figure. Z Z Z Z Z Z The above equation can be rearranged a (Z Z ) Z ( )... (i) (Z Z ) (Z Z ) Z ( )... (ii) generator equivalent i Z Z Z Z ( ) Z Z Z 0. (b) Redrawing the circuit 50 Ω ( b ) 0 Ω 0 Ω b a 4 b 00 40 Ω (0. a ) A 0. a Applying KL 50 a 40( 0. a ) 00... (i) ( b ) 0 a... (ii) a 0 b 4 b 0... (iii) By equation (i), (ii) and (iii) b 0.96 A.

CT-08 N Network Theory 5. (c) Putting 0 Applying KCL at node A 0 00 300 h x x x 0 0 x x x 00 300 0 300 Ω 0 Ω A 50 Ω 00 Ω x 0 x 0 x 75 0 75 h 85 Ω. (c) 0...(i) 0....(ii) For maximum power tranfer 0 Ω Port Network Z Th 0 0 0. From equation (i), (ii) and (iii), we get R L Z Th 0...(iii) Z Th 7.5 Ω 0 Ω 00 Port Network OC 0 00...(iv) when 0...(v)

6 ntrumentation Engineering OC 5 Maximum power tranferred OC 4Z Th (5) 4 7.5 0.83 W. 3. (a) For t 0 Energy tored at t 0 i 0 A 0 40 i L (0 ) i L (0 ) A 0 0 Ω 0 H 40 Ω 0 0 0 J L i ( ) At t 0 (0 R) L 0 R 40 Ω τ L R eq 0 0.ec (40 40 0) R Ω 0 Ω A 40 Ω i(t) e 0t A At t t 90% energy i diipated remaining energy 0 0 Joule 00 ( ) L i t 5 i (t ) i (t ) 5 0.4 i(t ) 0t e 0.4 t 0.5 ec 5. mec 4. (c) Q(0 ) C(0 ) (0 ) Q(0 ) 90 µ 3 C 30 µ kω 8 kω ( ) (8 8)k 9 8 8 k 8 9 u( t) 8 kω τ t / oltage acro capacitor ( ) (0 ) ( ) e ( ) τ C(k (8 8)k) τ 3 0 4 30 0 ec 3 8 0 75 6 6

CT-08 N Network Theory 7 (t) 75 t e 4 8 5 (0 mec) 75 0 0 3 4 8 5e 3.85 Q(0 mec) 3.85 30 µ 5.5 mc 5. (d) h h h h (i) 0 A, A, 4.5,.5 h h 4.5 3.5 0 0.5 3 (ii) 4 A, 0, 6,.5 h h 0 h 4.5 3 0 h 0.5 h h 6 h 4 3.5 6 h.5 0.375 4 Ω h parameter matrix i 0.375 3 0.5 0.667 6. (b) For t < 0: 6 Ω 60 The equivalent circuit i 6 Ω 40 6 Ω 0 / H 0 i(t) R eq 6 (6 6) v(t) R eq 4 Ω R eq 6 6 4Ω 60 0 i(0) 4 Hence i(0 ) 0 A. (0 ) 40. 0 A 60 / H i(t) 0

8 ntrumentation Engineering For t > 0: 6 Ω 6 Ω 6 Ω i(t) H 0 8 F The equivalent circuit i 4 Ω i(t) H i (t) 40 8 F 0 Applying Laplace tranform to the above circuit 0 8 40 () 4 () () 5 0 4 8 0 () 5 0 8 6 () 0 5 4 Ω () 0 5 8 6 0 0 () 40 8 40 0 () 8 6 (40 0 ) () () 8 6 () 0 ( 4) By applying invere Laplace tranform i(t) 0e 4t A

CT-08 N Network Theory 9 7. (b) 0 Ω 0 Ω A 0 0 Ω 0 Ω 0 Ω 0 Ω B R in Th : R in 0 0 (0 0 0) 0 R in 7.5 Ω 0 A 7.5 0 A 7.5 Th AB 0 0 0 40 7.5 R Th : 0 0 Ω 0 Ω 0 Ω 0 Ω R 0 0 0 3 Ω 0 Ω 0 Ω R Th 0 0 0 0 3 R th 80 0 Ω R 0 Ω R th 0 Ω Maximum power can be tranferred 8. (b) H() Th 0 8.04 mw 4R 4 80 Th Y () X ()

0 ntrumentation Engineering x( t) inωt / Ω Ω Ω yt () Ain( ωt 45 ) Y() () ( Ω) () () Y () X () H() H(jω) H(jω) X () ( ) X( ) () 4 jω j ω j jω ω H(jω) tan ω ω given, H( jω) 45 ω ω tan () tan ω ω j ω ω ω ω ω ω ω ω 0 ω ± 4() ± 9 ± 3 4 ω 4 rad/ec ω i alway poitive. 4

CT-08 N Network Theory 9. (c) For erie reonance X L X C X C X L j Ω j j8 jm X L j0 jk 6 X L j0 j8k j j0 j8k j j8k ( M k LL) k 8 0.5 30. (b) Conidering only DC ource 0 i R () t Ω i R (t) 0 5 A Conidering only AC ource H j Ω / j Ω i R (t) i(t) i(t) j i() t j 5cot A j ( j ) 5cot 5cot A j 4 j( j) 0.5j 0.5j j 4 4 i R () t Ω i 5 cot 5 0 5 0 i(t) A 8( j j) 0.5j j 0.5j 8 5 0 A 0.5j i R (t) 5 0 j 5 0 90 A 0.5 j ( j) (.8) 6.56 45 i R (t) 3.6 8.44 A when both the ource are acting imultaneouly, i R (t) 5 3.6 co (t 8.44 ) A