arxiv: v1 [cs.ds] 20 Feb 2008

Similar documents
Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

0.1. Exercise 1: the distances between four points in a graph

Garnir Polynomial and their Properties

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

1 Introduction to Modulo 7 Arithmetic

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Trees as operads. Lecture A formalism of trees

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Planar Upward Drawings

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Computational Biology, Phylogenetic Trees. Consensus methods

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

12. Traffic engineering

Numbering Boundary Nodes

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Constructive Geometric Constraint Solving

Present state Next state Q + M N

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

QUESTIONS BEGIN HERE!

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

QUESTIONS BEGIN HERE!

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

CS 461, Lecture 17. Today s Outline. Example Run

LEO VAN IERSEL TU DELFT

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Discovering Pairwise Compatibility Graphs

On Contract-and-Refine Transformations Between Phylogenetic Trees

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Quartets and unrooted level-k networks

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

COMP108 Algorithmic Foundations

EE1000 Project 4 Digital Volt Meter

CS September 2018

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Outline. Binary Tree

CS 241 Analysis of Algorithms

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Section 3: Antiderivatives of Formulas

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

Seven-Segment Display Driver

Properties of Hexagonal Tile local and XYZ-local Series

(a) v 1. v a. v i. v s. (b)

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Formal Concept Analysis

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

Chapter 9. Graphs. 9.1 Graphs

Journal of Solid Mechanics and Materials Engineering

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

THE evolutionary history of a set of species is usually

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

arxiv: v1 [math.mg] 5 Oct 2015

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

Graph Contraction and Connectivity

Discovering Frequent Graph Patterns Using Disjoint Paths

Walk Like a Mathematician Learning Task:

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

The University of Sydney MATH 2009

A comparison of routing sets for robust network design

Instructions for Section 1

Designing A Concrete Arch Bridge

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Binomials and Pascal s Triangle

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

Aquauno Video 6 Plus Page 1

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

Tangram Fractions Overview: Students will analyze standard and nonstandard

Can transitive orientation make sandwich problems easier?

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Transcription:

Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES VIET TUNG HOANG 1,2 AND WING-KIN SUNG 1,2 1 Dprtmnt of Computr Sin, Ntionl Univrsity of Singpor E-mil rss: {hongvi2,ksung}@omp.nus.u.sg 2 Gnom Institut of Singpor Astrt. Consir st of lls L n st of trs T = {T (1),T (2),...,T (k) } whr h tr T (i) is istintly lf-ll y som sust of L. On funmntl prolm is to fin th iggst tr (not s suprtr) to rprsnt T whih minimizs th isgrmnts with th trs in T unr rtin ritri. This prolm fins pplitions in phylogntis, ts, n t mining. In this ppr, w fous on two prtiulr suprtr prolms, nmly, th mximum grmnt suprtr prolm (MASP) n th mximum omptil suprtr prolm (MCSP). Ths two prolms r known to NP-hr for k 3. This ppr givs th first polynomil tim lgorithms for oth MASP n MCSP whn oth k n th mximum gr D of th trs r onstnt. 1. Introution Givn st of lls L n st of unorr trs T = {T (1),...,T (k) } whr h tr T (i) is istintly lf-ll y som sust of L. Th suprtr mtho tris to fin tr to rprsnt ll trs in T whih minimizs th possil onflits in th input trs. Th suprtr mtho fins pplitions in phylogntis, ts, n t mining. For instn, in th Tr of Lif projt [10], th suprtr mtho is th si tool to infr th phylognti tr of ll spis. Mny suprtr mthos hv n propos in th litrtur [2, 5, 6, 8]. This ppr fouss on two prtiulr suprtr mthos, nmly th Mximum Agrmnt Suprtr (MASP) [8] n th Mximum Comptil Suprtr (MCSP) [2]. Both mthos try to fin onsnsus tr with th lrgst numr of lvs whih n rprsnt ll th trs in T unr rtin ritri. (Pls r Stion 2 for th forml finition.) MASP n MCSP r known to NP-hr s thy r th gnrliztion of th Mximum Agrmnt Sutr prolm (MAST) [1, 3, 9] n th Mximum Comptil Sutr prolm (MCT) [7, 4] rsptivly. Jnsson t l. [8] prov tht MASP rmins NP-hr vn if vry tr is root triplt, i.., inry tr of 3 lvs. For k = 2, Jnsson t l. [8] n Brry n Niols [2] propos linr tim lgorithm to trnsform MASP n MCSP for 2 input trs to MAST n MCT rsptivly. For k 3, positiv 1998 ACM Sujt Clssifition: Algorithms, Biologil omputing. Ky wors n phrss: mximum grmnt suprtr, mximum omptil suprtr. Hong n Sung CC Crtiv Commons Attriution-NoDrivs Lins

362 HOANG AND SUNG Root Unroot MASP for k trs of mx gr D O((kD) kd+3 (2n) k ) O((kD) kd+3 (4n) k ) MCSP for k trs of mx gr D O(2 2kD n k ) O(2 2kD n k ) O ( k(2n 2 ) ) 3k2 [8] MASP/MCSP for k inry trs O(8 k n k ) [6] O(6 k n k ) Tl 1: Summry of prvious n nw rsults ( stns for nw rsult). rsults for omputing MASP/MCSP r rport only for root inry trs. Jnsson t l. [8] gv n O ( k(2n) 3k2 ) tim solution to this prolm. Rntly, Guillmot n Brry [6] furthr improv th running tim to O(8 k n k ). In gnrl, th trs in T my not inry nor root. Hn, Jnsson t l. [8] post n opn prolm n sk if MASP n solv in polynomil tim whn k n th mximum gr of th trs in T r onstnt. This ppr givs n ffirmtiv nswr to this qustion. W show tht oth MASP n MCSP n solv in polynomil tim whn T ontins onstnt numr of oun gr trs. For th spil s whr th trs in T r root inry trs, w show tht oth MASP n MCSP n solv in O(6 k n k ) tim, whih improvs th prvious st rsult. Tl 1 summrizs th prvious n nw rsults. Th rst of th ppr is orgniz s follows. Stion 2 givs th forml finition of th prolms. Thn, Stions 3 n 4 sri th lgorithms for solving MCSP for oth root n unroot ss. Finlly, Stions 5 n 6 til th lgorithms for solving MASP for oth root n unroot ss. Proofs omitt u to sp limittion will ppr in th full vrsion of this ppr. 2. Prliminry A phylognti tr is fin s n unorr n istintly lf-ll tr. Givn phylognti tr T, th nottion L(T) nots th lf st of T, n th siz of T rfrs to L(T). For ny ll st S, th rstrition of T to S, not T S, is phylognti tr otin from T y rmoving ll lvs in L(T) S n thn supprssing ll intrnl nos of gr two. (S Figur 1 for n xmpl of rstrition.) For two phylognti trs T n T, w sy tht T rfins T, not T T, if T n otin y ontrting som gs of T. (S Figur 1 for n xmpl of rfinmnt.) Mximum Comptil Suprtr Prolm: Consir st of k phylognti trs T = {T (1),...,T (k) }. A omptil suprtr of T is tr Y suh tht Y L(T (i) ) T (i) L(Y) for ll i k. Th Mximum Comptil Suprtr Prolm (MCSP) is to fin omptil suprtr with s mny lvs s possil. Figur 2 shows n xmpl of omptilsuprtry oftworootphylogntitrst (1) nt (2). Ifllinputtrshv th sm lf sts, MCSP is rfrr s Mximum Comptil Sutr Prolm (MCT). Mximum Agrmnt Suprtr Prolm: Consir st of k phylognti trs T = {T (1),...,T (k) }. An grmnt suprtr of T is tr X suh tht X L(T (i) ) = T (i) L(X) for ll i k. Th Mximum Agrmnt Suprtr Prolm (MASP) is to fin n grmnt suprtr with s mny lvs s possil. Figur 2 shows n xmpl of n

FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 363 T T T Figur 1: Thr root trs. A tr T, tr T suh tht T = T {,,}, n tr T suh tht T T. grmnt suprtrx of two rootphylognti trs T (1) nt (2). Ifll inputtrs hv th sm lf sts, MASP is rfrr s Mximum Agrmnt Sutr Prolm (MAST). T (1) T (2) X Y Figur 2: An grmnt suprtr X n omptil suprtr Y of 2 root phylognti trs T (1) n T (2). In th following isussion, for th st of phylognti trs T = {T (1),...,T (k) }, w not n = i=1..k L(T (i) ), n D stns for th mximum gr of th trs in T. W ssum tht non of th trs in T hs n intrnl no of gr two, so tht h tr ontins t most n 1 intrnl nos. (If tr T (i) hs som intrnl nos of gr two, w n rpl it y T (i) L(T (i) ) in linr tim.) 3. Algorithm for MCSP of root trs Lt T st of k root phylognti trs. This stion prsnts ynmi progrmming lgorithm to omput th siz of mximum omptil suprtr of T in O ( 2 2kD n k) tim. Th mximum omptil suprtr n otin in th sm symptoti tim oun y ktrking.

364 HOANG AND SUNG For vry omptil suprtr Y of T, thr xists inry tr tht rfins Y. This inry tr is lso omptil suprtr of T, n is of th sm siz s Y. Hn in this stion, vry omptil suprtr is impliitly ssum to inry. Dfinition 3.1 (Cut-sutr). A ut-sutr of tr T is ithr n mpty tr or tr otin y first slting som sutrs tth to th sm intrnl no in T n thn onnting thos sutrs y ommon root. Dfinition 3.2 (Cut-suforst). Givn st of k root (or unroot) trs T, utsuforst of T is st A = {A (1),...,A (k) }, whr A (i) is ut-sutr of T (i) n t lst on lmnt of A is not n mpty tr. T (1) T (2) A (1) A (2) f f Figur 3: A ut-suforst A of T. For xmpl, in Figur 3, {A (1),A (2) } is ut-suforst of {T (1),T (2) }. Lt O not th st of ll possil ut-suforsts of T. Lmm 3.3. Thr r O ( 2 kd n k) iffrnt ut-suforsts of T. Proof. W lim tht h tr T (i) ontriuts 2 D n or fwr ut-sutrs; thrfor thr r O ( 2 kd n k) ut-suforsts of T. At h intrnl no v of T (i), sin th gr of v os not x D, w hv t most 2 D wys of slting th sutrs tth to v to form ut-sutr. Inluing th mpty tr, th numr of ut-sutrs in T (i) nnot go yon (n 1)2 D +1 < 2 D n. Figur 4 monstrts tht omptil suprtr of som ut-suforst A of T my not omptil suprtr of T. To irumvnt this irrgulrity, w fin m suprtr s follows. Dfinition 3.4 (Em suprtr). For ny ut-suforst A of T, tr Y is ll n m suprtr of A if Y is omptil suprtr of A, n L(Y) L(T (i) ) L(A (i) ) for ll i k. Not tht omptil suprtr of T is lso n m suprtr of T. For h ut-suforst A of T, lt msp(a) not th mximum siz of m suprtrs of A. Our im is to omput msp(t ). Blow, w first fin th rursiv qution for omputing msp(a) for ll ut-suforsts A O. Thn, w sri our ynmi progrmming lgorithm. W prtition th ut-suforsts in O into two lsss. A ut-suforst A of T is trminl if h lmnt A (i) is ithr n mpty tr or lf of T (i) ; it is ll non-trminl, othrwis.

FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 365 T (1) T (2) A (1) Z Y A (2) Figur 4: Consir T = {T (1),T (2) } n its ut-suforst A = {A (1),A (2) }. Although Z is omptil suprtr of A, it is not omptil suprtr of T. Th mximum omptil suprtr of T is Y tht ontins only 2 lvs. For h trminl ut-suforst A, lt Λ(A) = {l } L(A (j) ) l L(T (i) ) L(A (i) ) for i = 1,2,...,k. (3.1) j=1..k For xmpl, with T in Figur 2, if A (1) n A (2) r lvs ll y n rsptivly thn Λ(A) = {}. In Lmm 3.5, w show tht msp(a) = Λ(A). Lmm 3.5. If A is trminl ut-suforst thn msp(a) = Λ(A). Proof. Consir ny m suprtr Y of A. By Dfinition 3.4, vry lf of Y longs to Λ(A). Hn th vlu msp(a) os not x Λ(A). It rmins to giv n xmpl of som m suprtr of A whos lf st is Λ(A). Lt C root trpillr 1 whos lf st is Λ(A). Th finition of Λ(A) implis tht L(C) L(T (i) ) L ( A (i)) for vry i k. Sin h A (i) hs t most on lf, it is strightforwr tht C is omptil suprtr of A. Hn C is th sir xmpl. Dfinition 3.6 (Biprtit). Lt A ut-suforst of T. W sy tht th ut-suforsts A L n A R iprtition A if for vry i k, th trs A (i) L n A(i) R n otin y (1) prtitioning th sutrs tth to th root of A (i) into two sts S (i) L n S(i) R ; n (2) onnting th sutrs in S (i) L (rsp. S(i) R ) y ommon root to form A(i) L (rsp. A(i) R ). Figur 5 shows n xmpl of th pring finition. For h non-trminl utsuforsta, w omputmsp(a) s on th msp vlus of A L n A R for h iprtit (A L,A R ) of A. Mor prisly, w prov tht msp(a) = mx{msp(a L )+msp(a R ) A L n A R iprtition A}. (3.2) Th intity (3.2) is thn stlish y Lmms 3.8 n 3.10. Lmm 3.7. Consir iprtit (A L,A R ) of som ut-suforst A of T. If Y L n Y R r m suprtrs of A L n A R rsptivly thn Y is n m suprtr of A, whr Y is form y onnting Y L n Y R to ommon root. 1 A root trpillr is root, unorr, n istintly lf-ll inry tr whr vry intrnl no hs t lst on hil tht is lf.

366 HOANG AND SUNG A (1) A (2) A L (1) A L (2) A R (2) A R (1) Figur 5: A iprtit (A L,A R ) of ut-suforst A. Th mpty tr is rprsnt y whit irl. Lmm 3.8. Lt A ut-suforst of T. If (A L,A R ) is iprtit of A thn msp(a) msp(a L )+msp(a R ). Proof. Consir n m suprtr Y L of A L suh tht L(Y L ) = msp(a L ). Dfin Y R for A R similrly. Lt Y tr form y onnting Y L n Y R with ommon root. Not tht Y is of siz msp(a L )+msp(a R ). By Lmm 3.7, Y is n m suprtr of A n hn th lmm follows. Lmm 3.9. Givn ut-suforst A of T, lt Y inry m suprtr of A with lft sutr Y L n right sutr Y R. Thr xists iprtit (A L,A R ) of A suh tht ithr (i) Y is n m suprtr of A L ; or (ii) Y L n Y R r m suprtrs of A L n A R rsptivly. Lmm 3.10. For h non-trminl ut-suforst A of T, thr xists iprtit (A L,A R ) of A suh tht msp(a) msp(a L )+msp(a R ). Proof. Lt Y inry m suprtr of A suh tht L(Y) = msp(a). By Lmm 3.9, thr xists iprtit (A L,A R ) of A suh tht ithr (1) Y is n m suprtr of A L ; or (2) Y L n Y R r m suprtrs of A L n A R rsptivly, whr Y L is th lft sutr n Y R is th right sutr of Y. In oth ss, L(Y) msp(a L )+msp(a R ). Thn th lmm follows. Th ov isussion thn ls to Thorm 3.11. Thorm 3.11. For vry ut-suforst A of T, th vlu msp(a) quls to { Λ(A), if A is trminl, mx{msp(a L )+msp(a R ) A L n A R iprtition A}, othrwis. W fin n orring of th ut-suforsts in O s follows. For ny ut-suforsts A 1,A 2 in O, w sy tht A 1 is smllr thn A 2 if A (i) 1 is ut-sutr of A (i) 2 for i = 1,2,...,k. Ourlgorithm numrts A O intopologilly inrsingorrnomputs msp(a) s on Thorm 3.11. Thorm 3.12 stts th omplxity of our lgorithm. Thorm 3.12. A mximum omptil suprtr of k root phylognti trs n otin in O ( 2 2kD n k) tim.

FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 367 Proof. Tsting if ut-suforst is trminl tks O(k) tims, n h trminl utsuforstathn rquirs O(k 2 ) tim for th omputtion of Λ(A). In viw of Lmm 3.3, it suffis to show tht h non-trminl ut-suforst A hs O(2 kd ) iprtits. This rsult follows from th ft tht for h i k, thr r t most 2 D wys to prtition th st of th sutrs tth to th root of A (i). In th spil s whr vry tr T (i) is inry, Thorm 3.13 shows tht our lgorithm tully hs ttr tim omplxity. Not tht th onpts of grmnt suprtr n omptil suprtr will oini for inry trs. Hn, our lgorithm improvs th O ( 8 k n k) -tim lgorithm in [6] for omputing mximum grmnt suprtr of k root inry trs. Thorm 3.13. If vry tr in T is inry, mximum omptil suprtr (or mximum grmnt suprtr) n omput in O ( 6 k n k) tim. Proof. W lim tht th prossing of non-trminl ut-suforsts of T rquirs O ( 6 k n k) tim. Th rgumnt in th proof of Thorm 3.12 tlls tht th rmining omputtion runs within th sm symptoti tim oun. Consir n intgr r {0,1,...,k}. W shll ling with ut-suforst A suh tht thr r xtly r ut-sutrs A (i) whos roots r intrnl nos of T (i) (. Th) ky of this proof is to show tht th numr of thos k ut-suforsts os not x (n 1) r r (n+1) k r, n th running tim for h utsuforst is O ( 4 r 2 k r). Hn, th totl running tim for ll non-trminl ut-suforsts is k ( k r r=0 ) ( (n 1) r (n+1) k r O 4 r 2 k r) ( = O 6 k n k). ( ) n ount th numr of th spifi ut-suforsts A s follows. First thr r k options for r inis i suh tht th roots of ut-sutrs A rw (i) r intrnl nos of T (i). For thos ut-sutrs, w thn ppoint on of th (n 1) or fwr intrnl nos of T (i) to th root no of A (i). Evry othr ut-sutr of A is lf or th mpty tr, n thn n trmin from t most n + 1 ltrntivs. Multiplying thos possiilitis givs us th oun stipult in th pring prgrph. It rmins to stimt th running tim for h spifi ut-suforst A. This tsk rquirs us to oun th numr of iprtits of h ut-suforst. If th root v of A (i) is n intrnl no of T (i) thn A (i) ontriuts 4 or fwr wys of prtitioning th st of th sutrs tth to v. Othrwis, w hv t most 2 wys of prtitioning this st. Hn A owns t most 4 r 2 k r iprtits, n this omplts th proof. 4. Algorithm for MCSP of unroot trs Lt T st of k unroot phylognti trs. This stion xtns th lgorithm in Stion 3 to fin th siz of mximum omptil suprtr of T. Th mximum omptil suprtr n otin y ktrking. Surprisingly, th xtn lgorithm for unroot trs runs within th sm symptoti tim oun s th originl lgorithm for root trs.

368 HOANG AND SUNG W will follow th sm pproh s Stion 3, i.., for h ut-suforst A of T, w fin n m suprtr of A of mximum siz. Dfinitions 3.1, 3.2, n 3.4 for utsuforst n m suprtr in th prvious stion r still vli for unroot trs. Noti tht lthough T is th st of unroot trs, h ut-suforst A of T onsists of root trs. (S Figur 6 for n xmpl of ut-suforst for unroot trs.) Hn w n us th lgorithm in Stion 3 to fin th mximum m suprtr of A. W thn slt th iggst tr T mong thos mximum m suprtrs for ll ut-suforsts of T, n unroot T to otin th mximum omptil suprtr of T. T (1) T (2) A (1) A (2) f f Figur 6: Th st of root trs A = {A (1),A (2) } is ut-suforst of T = {T (1),T (2) }. Thorm 4.1 shows tht th xtn lgorithm hs th sm symptoti tim oun s th lgorithm in Stion 3. Thorm 4.1. W n fin mximum omptil suprtr of k unroot phylognti trs in O ( 2 2kD n k) tim. Proof. Using similr proof s Lmm 3.3, w n prov tht thr r O ( 2 kd n k) utsuforsts of T. As givn in th proof of Thorm 3.12, fining th mximum m suprtrs of h ut-suforst tks O(2 kd ) tim. Hn th xtn lgorithm runs within th spifi tim oun. 5. Algorithm for MASP of root trs Lt T st of k root phylognti trs. This stion prsnts ynmi progrmming lgorithm to omput th siz of mximum grmnt suprtr of T in O ( (kd) kd+3 (2n) k) tim. Th mximum grmnt suprtr n otin in th sm symptoti tim oun y ktrking. Th i hr is similr to tht of Stion 3. Howvr, whil w n ssum tht omptil suprtrs r inry, th mximum gr of grmnt suprtrs n grow up to kd. It is th rson why w hv th ftor O((kD) kd+3 ) in th omplxity. Dfinition 5.1 (Su-forst). Givn st of k root trs T, su-forst of T is st A = {A (1),...,A (k) }, whr h A (i) is ithr n mpty tr or omplt sutr root t som no of T (i), n t lst on lmnt of A is not n mpty tr. Noti tht th finition of su-forst os not oini with th onpt of utsuforst in Dfinition 3.2 of Stion 3. For xmpl, th ut-suforst A in Figur 3 is not su-forst of T, us A (2) is not omplt sutr root t som no of T (2). Lt O not th st of ll possil su-forsts of T. Thn O = O ( (2n) k).

FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 369 Dfinition 5.2 (Enlos suprtr). For ny su-forst A of T, tr X is ll n nlos suprtr of A if X is n grmnt suprtr of A, n L(X) L(T (i) ) L(A (i) ) for ll i k. For h su-forstaof T, ltmsp(a) not th mximum siz of nlos suprtrs of A. W us similr pproh s Stion 3, i.., w omput msp(a) for ll A O, n msp(t ) is th siz of mximum grmnt suprtr of T. W prtition th su-forsts in O to two lsss. A su-forst A is trminl if h A (i) is ithr n mpty tr or lf. Othrwis, A is ll non-trminl. Noti tht for trminl su-forst, th finition of nlos suprtr oinis with th onpt of m suprtr in Dfinition 3.4 of Stion 3. Thn y Lmm 3.5, w hv msp(a) = Λ(A). (Pls rfr to th formul (3.1) in th prgrph pring Lmm 3.5 for th finition of funtion Λ.) Dfinition 5.3 (Domposition). Lt A su-forst of T. W sy tht su-forsts B 1,...,B (with 2) ompos A if for ll i k, ithr (i) Extly on of B (i) 1,...,B(i) is isomorphi to A (i) whil th othrs r mpty trs; or (ii) Thr r t lst 2 nonmpty trs in B (i) 1,...,B(i), n ll thos nonmpty trs r isomorphi to pirwis istint sutrs tth to th root of A (i). A (1) A (2) B 1 (1) B 2 (1) (2) (2) (1) B τ 1 τ 2 τ 3 τ 4 τ 1 B B 1 τ 2 3 2 τ 4 B 3 (2) Figur 7: A omposition (B 1,B 2,B 3 ) of su-forst A. Th mpty trs r rprsnt y whit irls. Figur 7 illustrts th onpt of omposition. For h su-forst A of T, w will prov tht msp(a) = mx{msp(b 1 )+...+msp(b ) B 1,...,B ompos A}. (5.1) Th intity (5.1) is thn stlish y Lmms 5.5 n 5.7. Lmm 5.4. Suppos (B 1,...,B ) is omposition of som su-forst A of T. Lt τ 1,...,τ som nlos suprtrs of B 1,...,B rsptivly, n lt X th tr otin y onnting τ 1,...,τ to ommon root. Thn, X is n nlos suprtr of A. Lmm 5.5. If (B 1,...,B ) is omposition of su-forst A of T thn msp(a) msp(b 1 )+...+msp(b ). Proof. For h B j, lt τ j n nlos suprtr of B j suh tht L(τ j ) = msp(b j ). Lt X th tr otin y onnting τ 1,...,τ to ommon root. By Lmm 5.4, X is n nlos suprtr of A. Hn L(τ 1 ) +...+ L(τ ) = L(X) msp(a).

370 HOANG AND SUNG Lmm 5.6. Lt X n nlos suprtr of som su-forst A of T, n lt τ 1,...,τ ll sutrs tth to th root of X. Thn ithr (i) Thr is omposition (B 1,B 2 ) of A suh tht X is n nlos suprtr of B 1 ; or (ii) Thr is omposition (B 1,...,B ) of A suh tht h τ j is n nlos suprtr of B j. Lmm 5.7. For h non-trminl su-forst A of T, thr is omposition (B 1,...,B ) of A suh tht msp(a) msp(b 1 )+...+msp(b ) Proof. LtX nnlos suprtrof Asuhtht L(X) = msp(a) nlt τ 1,...,τ llsutrstthtothrootofx. ByLmm5.6,ithr(i)Thrxistsomposition (B 1,B 2 ) of A suh tht X is n nlos suprtr of B 1 ; or (ii) Thr is omposition (B 1,...,B ) of A suh tht h τ j is n nlos suprtr of B j. In s (i), w hv L(X) msp(b 1 ) msp(b 1 ) + msp(b 2 ). On th othr hn, in s (ii), w hv L(X) = L(τ 1 ) +...+ L(τ ) msp(b 1 )+...+msp(b ). Th ov isussion thn ls to Thorm 5.8. Thorm 5.8. For vry su-forst A of T, th vlu msp(a) quls to { Λ(A), if A is trminl, mx{msp(b 1 )+...+msp(b ) B 1,...,B ompos A}, othrwis. W fin n orring of th su-forsts in O s follows. For ny su-forsts A 1,A 2 in O, w sy A 1 is smllr thn A 2 if A (i) 1 is ithr n mpty tr or sutr of A (i) 2 for i = 1,2,...,k. Our lgorithm numrts A O in topologilly inrsing orr n omputs msp(a) s on Thorm 5.8. In Lmm 5.9, w oun th numr of ompositions of h su-forst of T. Thorm 5.10 stts th omplxity of th lgorithm. Lmm 5.9. Eh su-forst of T hs O ( (kd) kd+1) ompositions, n gnrting thos ompositions tks O ( k 2 D 2) tim pr omposition. Proof. Lt A su-forst of T. Sin th mximum gr of ny grmnt suprtrof A is oun y kd, w onsir only ompositions tht onsist of t most kd lmnts. Wlimthtforh {2,...,kD}, thsu-forstaownso ( (+2) kd) ompositions (B 1,...,B ). Summing up thos symptoti trms givs us th spifi oun. Th ky of this proof is to prov tht for h s {1,...,k}, th tr A (s) ontriuts t most ( +1) D + < ( +2) D squns B (s) 1,...,B(s), n gnrting thos squns rquirs O() tim pr squn. W hv two ss, h orrspons to typ of th ov squn. Cs 1: On trm in th squn is A (s) ; thrfor th othr trms r mpty trs. Thn, w n gnrt this squn y ssigning A (s) to xtly on trm n stting th rst to mpty trs. This s provis xtly squns n numrts thm in O() tim pr squn. Cs 2: No trm in th ov squn is A (s). Consir n intgr r {0,1,...,} n ssum tht th squn onsists of xtly r trms tht r nonmpty nos. Thn thos r nonmpty trs r isomorphi to pirwis istint sutrs tth to th root of A (s). Lt δ th gr of th root of A (s). W gnrt th squn s follows. First w rw r pirwis istint sutrs tth to th root of A (s). Nxt, w slt r trms

FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 371 in th squn n istriut th ov sutrs to thm. Finlly w st th rmining trms to mpty trs. Hn this s givs t most ( ) δ! D r ( r)! < ( ) D r r = (+1) D r min{δ,} r=0 squns, n gnrts thm in O() tim pr squn. Thorm 5.10. A mximum grmnt suprtr of k root phylognti trs n otin in O ( (kd) kd+3 (2n) k) tim. Proof. Tsting if su-forst is trminl tks O(k) tims, n h trminl su-forst A thn rquirs O(k 2 ) tim for omputing Λ(A). By Lmm 5.9, h non-trminl su-forst rquirs O ( (kd) kd+3) running tim. Summing up thos symptoti trms for O ( (2n) k) su-forsts of T givs us th spifi tim oun. 6. Algorithm for MASP of unroot trs Lt T st of k unroot phylognti trs. This stion xtns th lgorithm in Stion 5 to fin th siz of mximum grmnt suprtr of T in O ( (kd) kd+3 (4n) k) tim. Th mximum grmnt suprtr n otin y ktrking. W sy tht st of k root trs F = {F (1),...,F (k) } is root vrint of T if w n otin h F (i) y rooting T (i) t som intrnl no. On niv pproh is to us th lgorithm in th prvious stion to solv MASP for h root vrint of T. Eh root vrint thn givs us solution, n th mximum of thos solutions is th siz of mximum grmnt suprtr of T. Bus thr r O ( n k) root vrints of T, this pproh s n O ( n k) ftor to th omplxity of th lgorithm for root trs. W now show how to improv th ov niv lgorithm. As mntion in th prvious stion, th omputtion of h root vrint of T onsists of O ( (2n) k) su-prolms whih orrspon to its su-forsts. (Pls rfr to Dfinition 5.1 for th onpt of suforst.) Sin iffrnt root vrints my hv som ommon su-forsts, th totl numr of su-prolmsw hv to runis muh smllr thn O(2 k n 2k ). Mor prisly, w will show tht th totl numr of su-prolms is only O ( (4n) k). A (root or unroot) tr is trivil if it is lf or n mpty tr. A mximl sutr of n unroot tr T is root tr otin y first rooting T t som intrnl no v n thn rmoving t most on nontrivil sutr tth to v. Lt O not th st of su-forsts of ll root vrints of T. Lmm 6.1. Lt A = {A (1),...,A (k) } st of root trs. Thn A O if n only if h A (i) is ithr trivil sutr or mximl sutr of T (i). Proof. Lt F root vrint of T suh tht A is su-forst of F. Fix n inx s {1,...,k} n lt v th root no of A (s). Our lim is strightforwr if ithr A (s) is trivil or v is th root no of F (s). Othrwis, lt u th prnt of v in F (s). Hn A (s) is th mximl sutr of T (s) otin y first rooting T (s) t v n thn rmoving th omplt sutr root t u. Convrsly, w onstrut root vrint F of T suh tht A is su-forst of F s follows. For h i k, if A (i) is trivil or A (i) is tr otin y rooting T (i) t som intrnl nothn onstruting F (i) is strightforwr. OthrwisA (i) is mximl sutr

372 HOANG AND SUNG of T (i) otin y first rooting T (i) t som intrnl no v n thn rmoving xtly on nontrivil sutr τ tth to v. Hn F (i) is th tr otin y rooting T (i) t u, whr u is th root of τ. Thorm 6.2. W n fin mximum grmnt suprtr of k unroot phylognti trs in O ( (kd) kd+3 (4n) k) tim. Proof. Th ky of this proof is to show tht h tr T (i) ontriuts t most (3n 1) mximl sutrs. It follows tht O (4n) k. Th spifi running tim of our lgorithm is thn strightforwr us h suprolm rquirs O ( (kd) kd+3) tim s givn in th proof of Thorm 5.10. Assum tht th tr T (i) hs xtly L lvs, with L n. W now ount th numr of mximl sutrs T of T (i) in two ss. Cs 1: T is otin y rooting T (i) t som intrnl no. Hn this s provis t most L 1 < n mximl sutrs. Cs 2: T is otin y firstrooting T (i) t som intrnl no v n thn rmoving nontrivil sutr τ tth to v. Noti tht thr is on-to-on orrsponn twn th tr T n th irt g (v,u) of T (i), whr u is th root no of τ. Thr r 2L 2 or fwr unirt gs in T (i) ut xtly L of thm r jnt to th lvs. Hn this s givs us t most 2(2L 2 L) < 2n 1 mximl sutrs. Rfrns [1] A. Amir n D. Kslmn. Mximum Agrmnt Sutr in st of Evolutionry Trs: Mtris n Effiint Algorithms. SIAM Journl on Computing, 26(6):1656 1669, 1997. [2] V. Brry n F. Niols. Mximum Agrmnt n Comptil Suprtrs. In Pro. 15 th Symposium on Comintoril Pttrn Mthing (CPM 2004), Lt. Nots in Comp. Sin 3109, pp. 205 219. Springr, 2004. [3] M. Frh, T. Przytyk, n M. Thorup. On th grmnt of mny trs. Informtion Prossing Lttrs, 55:297 301, 1995. [4] G. Gnpthysrvnvn n T. Wrnow. Fining mximum omptil tr for oun numroftrs with oungr is solvl inpolynomil tim. InPro. 1 st Workshop on Algorithms in Bioinformtis (WABI 2001), Lt. Nots in Comp. Sin 2149, pp. 156 163. Springr, 2001. [5] A. G. Goron. Consnsus suprtrs: th synthsis of root trs ontining ovrlpping sts of lll lvs. Journl of Clssifition, 3:335 348, 1986. [6] Sylvin Guillmot n Vinnt Brry. Fix-Prmtr Trtility of th Mximum Agrmnt Suprtr Prolm. InPro. 18 th Symposium on Comintoril Pttrn Mthing (CPM 2007), Lt. Nots in Comp. Sin 4580, pp. 274 285. Springr, 2007. [7] J. Hin, T. Jing, L. Wng, n K. Zhng. On th omplxity of ompring volutionry trs. Disrt Appli Mthmtis, 71:153 169, 1996. [8] Jspr Jnsson, Josph H.-K. Ng, Kunihiko Skn, n Wing-King Sung. Root Mximum Agrmnt Suprtrs. Algorithmi, 43:293 307, 2005. [9] M.-Y. Ko, T.-W. Lm, W.-K. Sung, n H.-F. Ting. An Evn Fstr n Mor Unifying Algorithm for Compring Trs vi Unln Biprtit Mthings. Journl of Algorithms, 40(2):212 233, 2001. [10] Mison, D.R., n K.-S. Shulz (s.). Th Tr of Lif W Projt. http://tolw.org, 1996-2006. This work is lins unr th Crtiv Commons Attriution-NoDrivs Lins. To viw opy of this lins, visit http://rtivommons.org/linss/y-n/3.0/.