Quantum Monte Carlo calculations of two neutrons in finite volume

Similar documents
Neutron matter from chiral effective field theory interactions

Quantum Monte Carlo calculations with chiral Effective Field Theory Interactions

Local chiral NN potentials and the structure of light nuclei

Nuclear Physics from Lattice Effective Field Theory

Nuclear few- and many-body systems in a discrete variable representation basis

Quantum Monte Carlo calculations of neutron and nuclear matter

Quantum Monte Carlo calculations of medium mass nuclei

Constraints on neutron stars from nuclear forces

Alex Gezerlis. New Ideas in Constraining Nuclear Forces ECT*, Trento, Italy June 5, 2018

Quantum Monte Carlo calculations of the equation of state of neutron matter with chiral EFT interactions

Ab initio alpha-alpha scattering using adiabatic projection method

Ultracold atoms and neutron-rich matter in nuclei and astrophysics

The oxygen anomaly F O

Bound states in a box

Modern Theory of Nuclear Forces

Nuclear Structure and Reactions using Lattice Effective Field Theory

Resonance properties from finite volume energy spectrum

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Lattice Simulations with Chiral Nuclear Forces

Shell evolution and pairing in calcium isotopes with two- and three-body forces

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Fate of the neutron-deuteron virtual state as an Efimov level

Review of lattice EFT methods and connections to lattice QCD

Weakly-Bound Systems in Atomic and Nuclear Physics March 2010

PoS(CD15)117. Scattering cluster wave functions on the lattice using the adiabatic projection method

Effective Field Theory for light nuclear systems

Three-nucleon forces and neutron-rich nuclei

Quantum Monte Carlo with

Neutron Matter: EOS, Spin and Density Response

EFFECTIVE FIELD THEORY FOR LATTICE NUCLEI

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Inelastic scattering on the lattice

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Nuclear physics around the unitarity limit

Overview of low energy NN interaction and few nucleon systems

Pionless EFT for Few-Body Systems

Nuclear Reactions in Lattice EFT

Charming Nuclear Physics

Effective Field Theories in Nuclear and Hadron Physics

Ab Initio Nuclear Structure Theory

Three-particle scattering amplitudes from a finite volume formalism*

Dense Matter and Neutrinos. J. Carlson - LANL

Modern Theory of Nuclear Forces

EFT as the bridge between Lattice QCD and Nuclear Physics

Effective Field Theory for Cold Atoms I

Carbon-12 in Nuclear Lattice EFT

NUCLEAR PHYSICS FROM LATTICE QCD

POWER COUNTING WHAT? WHERE?

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

The EOS of neutron matter and the effect of Λ hyperons to neutron star structure

From neutrons to atoms (in 2D) and back

Three-nucleon potentials in nuclear matter. Alessandro Lovato

Two-body currents in WIMP nucleus scattering

Universality in Halo Systems

Light hypernuclei based on chiral and phenomenological interactions

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

Pion-nucleon scattering around the delta-isobar resonance

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Neutrino processes in supernovae from chiral EFT

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

arxiv:nucl-th/ v1 22 Sep 2000

NUCLEAR STRUCTURE AND REACTIONS FROM LATTICE QCD

EFT Approaches to αα and Nα Systems

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Nuclei as Bound States

RG & EFT for nuclear forces

Recent results in lattice EFT for nuclei

Coupled-cluster theory for nuclei

Bayesian Fitting in Effective Field Theory

arxiv: v1 [nucl-th] 20 Jun 2016

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

Nuclear density functional theory from low energy constants: application to cold atoms and neutron matter. Denis Lacroix. Outline:

Small bits of cold, dense matter

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

Nuclear and Nucleon Matter Constraints on Three-Nucleon Forces

Nucleon-nucleon interaction in covariant chiral effective field theory

A note on SU(6) spin-flavor symmetry.

The nucleon-nucleon system in chiral effective theory

Three-particle dynamics in a finite volume

Jia-Jun Wu. Collaborate: Derek B. Leinweber, Ross D. Young, and James M. Zanotti. The University of Adelaide CSSM

Status report and plans from OSU and MSU

Nuclear structure I: Introduction and nuclear interactions

arxiv: v1 [nucl-th] 8 Nov 2013

RG & EFT for nuclear forces

Ab initio nuclear structure from lattice effective field theory

Universality in Few- and Many-Body Systems

Applications of Renormalization Group Methods in Nuclear Physics 2

Hadronic parity-violation in pionless effective field theory

Nuclear forces and their impact on structure, reactions and astrophysics

Modeling the Atomic Nucleus. Theoretical bag of tricks

Light Nuclei from chiral EFT interactions

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Towards an Understanding of Clustering in Nuclei from First Principles

Renormalization group methods in nuclear few- and many-body problems

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth

Transcription:

Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice QCD INT, Seattle, April 6, 2016 April 6, 2016 Institut für Kernphysik Philipp Klos 1

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 2

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 2

Two neutrons in a box April 6, 2016 Institut für Kernphysik Philipp Klos 3

Motivation Lattice QCD to describe nuclei from QCD www.jicfus.jp April 6, 2016 Institut für Kernphysik Philipp Klos 4

Motivation I Lattice QCD to describe nuclei from QCD www.jicfus.jp I marekich/wikimedia However, constrained to finite volume and very few particles April 6, 2016 Institut für Kernphysik Philipp Klos 4

Motivation I Lattice QCD to describe nuclei from QCD I Strategy: I Lattice QCD calculations for few nucleon systems I Matching of nuclear forces (EFT) in finite volume I EFT calculations of nuclear properties using advanced many-body methods April 6, 2016 Institut für Kernphysik Philipp Klos 4

Motivation Why two neutrons? Comparison to Lüscher formula possible "proof of principle" Low-energy constants (LEC) in chiral EFT are fitted to experimental data Neutron-neutron scattering length cannot be measured directly Why QMC? Exact method to solve Schrödinger equation Very successful for light nuclei Naturally extendable to more particles (3n, 4n,...) April 6, 2016 Institut für Kernphysik Philipp Klos 5

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 6

Two neutrons in finite volume Lüscher formula Consider interaction of nucleons N through contact interactions ( ) L = Ñ i t + 2 Ñ + 2M S-wave scattering amplitude A Now use A = 4π M 1 p cot δ ip. ( ) 4 D µ [C 0 (Ñ Ñ) 2 + C (1) 2 2 (Ñ Ñ) 2 + C (2) 2 [i (Ñ Ñ)] 2 +...] and periodic boundary conditions of the box to obtain energies. April 6, 2016 Institut für Kernphysik Philipp Klos 7

Two neutrons in finite volume Lüscher formula Energy E = p2 of two nucleons in a box predicted by infinite volume phase shift δ(p) m M. Lüscher, Commun. Math. Phys. 105, 153 (1986). p cot δ(p) = 1 πl S S(η) = lim Λ (( ) 2 ) Lp 2π ( Λ Beane et al., PLB 585, 106 (2006). j 1 j 2 η 4πΛ ) pionless EFT Possible to infer scattering length, effective range,..., from finite volume calculations (p cot δ = 1 a + 1 2 r ep 2 +...) Finite volume energies scattering length a, effective range r e,... April 6, 2016 Institut für Kernphysik Philipp Klos 8

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 9

Quantum Monte Carlo QMC in three lines: Ground state: H Ψ 0 = E 0 Ψ 0 Trial state: Ψ T = α i Ψ i i Propagate: lim τ e Hτ Ψ T Ψ 0 QMC in more than three lines: J. Carlson et al., RMP 87, 1067 (2015). April 6, 2016 Institut für Kernphysik Philipp Klos 10

Quantum Monte Carlo Trial wave function The trial wave function written in terms of eigenstates of H Ψ T = α i Ψ i Propagate in imaginary time to project out the ground state Ψ 0 Ψ(τ) = e (H ET )τ Ψ ( T ) = e (E0 ET )τ α 0 Ψ 0 + α i e (Ei E0)τ Ψ i Ψ(τ) τ Ψ 0 i i 0 April 6, 2016 Institut für Kernphysik Philipp Klos 11

Quantum Monte Carlo Example Particle in a{ box 0, 0 < x < L V =, otherwise Trial wave function Ψ T (x) = Mixed estimator c n Ψ n (x) n=1 Ψ n (x) = 2 sin(nπx) E(τ) = Ψ T He (H ET )τ Ψ T Ψ T e (H ET )τ Ψ T c n ψ n (x) E(τ) 0.06 0.04 0.02 0-0.02 n=3-0.04 n=5 n=7-0.06 0 0.2 0.4 0.6 0.8 1 x 5 4.99 4.98 4.97 4.96 4.95 4.94 4.93 0 0.2 0.4 0.6 0.8 1 1.2 1.4 τ [1/E sep. ] E 1 April 6, 2016 Institut für Kernphysik Philipp Klos 12

Quantum Monte Carlo Example Particle in a{ box 0, 0 < x < L V =, otherwise Trial wave function Ψ T (x) = Mixed estimator c n Ψ n (x) n=1 Ψ n (x) = 2 sin(nπx) E(τ) = Ψ T He (H ET )τ Ψ T Ψ T e (H ET )τ Ψ T c n ψ n (x) E(τ) 0.06 0.04 0.02 0-0.02 n=3-0.04 n=5 n=7-0.06 0 0.2 0.4 0.6 0.8 1 x 5 4.99 4.98 4.97 4.96 4.95 4.94 4.93 0 0.2 0.4 0.6 0.8 1 1.2 1.4 τ [1/E sep. ] E 1 April 6, 2016 Institut für Kernphysik Philipp Klos 12

Quantum Monte Carlo Example Particle in a{ box 0, 0 < x < L V =, otherwise Trial wave function Ψ T (x) = Mixed estimator c n Ψ n (x) n=1 Ψ n (x) = 2 sin(nπx) E(τ) = Ψ T He (H ET )τ Ψ T Ψ T e (H ET )τ Ψ T c n ψ n (x) E(τ) 0.06 0.04 0.02 0-0.02 n=3-0.04 n=5 n=7-0.06 0 0.2 0.4 0.6 0.8 1 x 5 4.99 4.98 4.97 4.96 4.95 4.94 4.93 0 0.2 0.4 0.6 0.8 1 1.2 1.4 τ [1/E sep. ] E 1 April 6, 2016 Institut für Kernphysik Philipp Klos 12

Quantum Monte Carlo Trial wave function Trial wave function for N-body system: Ψ T (R, S) = f J (r ij )Ψ SD (R, S) i<j R = (r 1,..., r N ) and S = (s 1,..., s N ) Jastrow function f J (r ij ) Slater determinant Ψ SD (R, S) = det({φ α (r i, s i )}) φ α (r i, s i ) = e ikα ri χ s,ms (s i ) April 6, 2016 Institut für Kernphysik Philipp Klos 13

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 14

Two neutrons in finite volume Contact interaction Comparison: AFDMC vs. Lüscher prediction with contact interaction [ ( r ) ] 4 V (r) = C 0 exp R0-0.05-0.06 ground state pionless EFT -0.07-0.08 E = q 2 4π2 ML 2 q 2-0.09-0.10-0.11 AFDMC, C 0 physical a AFDMC, C 0 a= 101.7 fm Lüscher, physical a Lüscher, a= 101.7 fm -0.12 0 10 20 30 40 50 60 L [fm] April 6, 2016 Institut für Kernphysik Philipp Klos 15

Two neutrons in finite volume Excited state Challenging problem: Excited state has nodal surface ψ(r node ) = 0 QMC requires nodal surface of wave function as input (fixed node approximation, plus small release possible) spherical nodal surface April 6, 2016 Institut für Kernphysik Philipp Klos 16

Two neutrons in finite volume Excited state Introduce node in Jastrow function f J (r 12 ) in Ψ T (R, S) = f J (r 12 )Ψ SD (R, S) f J (r 12 ) 8 7 6 5 4 3 2 1 Ground state jastrow GS 0 0 1 2 3 4 5 6 7 8 9 10 r 12 [fm] f J (r 12 ) 2 0-2 -4-6 -8-10 -12-14 -16 Excited state jastrow EX 0 1 2 3 4 5 6 7 8 9 10 r 12 [fm] April 6, 2016 Institut für Kernphysik Philipp Klos 17

Two neutrons in finite volume Excited state How to determine radius of the nodal surface? For local potential Schrödinger equation Hψ(R) = Eψ(R) yields the same energy E independent of coordinates R 0 r node r max Perform separate simulations in the two pockets until E left = E right April 6, 2016 Institut für Kernphysik Philipp Klos 18

Two neutrons in finite volume Excited state Adjust rnode such that Eleft = Eright 0 rnode rmax 3500 1.8 1.6 3000 1.4 1.2 E [MeV] counts 2500 2000 1500 1 0.8 left pocket right pocket 0.6 1000 0.4 500 0.2 5 10 r [fm] April 6, 2016 Institut für Kernphysik Philipp Klos 19 15 0 0 1 2 3-1 t [MeV ] 4

Two neutrons in finite volume Excited state Comparison: AFDMC vs. Lüscher prediction with contact interaction [ ( r ) ] 4 V (r) = C 0 exp R0 0.70 0.68 1st excited state 0.66 q 2 0.64 0.62 0.60 0.58 AFDMC, C 0, physical a Lüscher, physical a 0 10 20 30 40 50 60 L [fm] April 6, 2016 Institut für Kernphysik Philipp Klos 20

Nodal surface Determine exact nodal surface through diagonalization of H ψ i = E i ψ i. 0.70 1st excited state 0.68 0.66 q 2 0.64 0.62 0.60 0.58 AFDMC, C 0 physical a Diagonalization Lüscher, physical a Lüscher fit, a=-18.9(2) fm 0 10 20 30 40 50 60 L [fm] April 6, 2016 Institut für Kernphysik Philipp Klos 21

Nodal surface Extract nodal surface r node (θ, ϕ) from first excited state ψ ex (r node, θ, ϕ) = 0 Nodal surface not spherical! April 6, 2016 Institut für Kernphysik Philipp Klos 22

Nodal surface April 6, 2016 Institut für Kernphysik Philipp Klos 23

Decomposition in cubic harmonics Nodal surface can be decomposed in spherical harmonics r node (θ, φ) = c lm Y lm (θ, φ) Rotation symmetry group is broken down to the cubic symmetry group O h J. Muggli, Z. Angew. Math. Mech. 23, 311 (1972). cubic harmonics Y c l = l m=0,4,8,... c m Y lm Express nodal surface in terms of cubic harmonics r node (θ, φ) = c l Y c l (θ, φ). l April 6, 2016 Institut für Kernphysik Philipp Klos 24

Decomposition in cubic harmonics Nodal surface decomposed in cubic harmonics r node (θ, φ) = c l Y c l (θ, φ). l cubic harmonics Y c l = c m Y lm m=0,4,8,... We find c l ( r node ) l L Two-body scattering in infinite volume R(r) j l (pr) pr 1 (pr) l c l 1 0.1 0.01 L=10 fm L=20 fm L=30 fm 0.001 0 2 4 6 8 10 12 14 l April 6, 2016 Institut für Kernphysik Philipp Klos 25

Decomposition in cubic harmonics Nodal surface decomposed in cubic harmonics r node (θ, φ) = c l Y c l (θ, φ). l cubic harmonics Y c l = c m Y lm m=0,4,8,... Estimate correction due to l = 4 contribution E = ψ l=0 H ψ l=0 + c 2 4 ψ l=4 H ψ l=4 +... 1 0.1 L=10 fm L=20 fm L=30 fm c l E E (c 4) 2 1% 0.01 in agreement with results 0.001 0 2 4 6 8 10 12 14 l April 6, 2016 Institut für Kernphysik Philipp Klos 25

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 26

Chiral effective field theory Separation of scales: Momentum Q breakdown scale Λ b Most general Lagrangian consistent with QCD symmetries Expansion in powers of Q Λ b Local forces up to N 2 LO by using linearly indep. operators Gezerlis et al., PRL 111, 032501 (2013) [Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Hammer, Kaiser, Meißner,...] April 6, 2016 Institut für Kernphysik Philipp Klos 27

Limitations of Lüscher for pionful theory Chiral leading-order (LO) potential q 2-0.05-0.06-0.07-0.08-0.09-0.10-0.11 ground state AFDMC, LO, R 0 =1.0 fm AFDMC, LO, R 0 =1.2 fm Lüscher, a=-18.9 fm, r=2.01 fm Lüscher, a=-18.9 fm, r=2.15 fm -0.12 0 10 20 30 40 50 60 L [fm] q 2 0.78 0.76 0.74 0.72 0.70 0.68 0.66 0.64 0.62 0.60 1st excited state AFDMC, LO R 0 =1.0 fm Lüscher, a= 18.9 fm, r=2.01 fm 0.58 0 10 20 30 40 50 60 L [fm] Lüscher formula assumes zero-range interaction (pionless EFT, p < m π /2) Not applicable for nuclear interactions at small box sizes L Direct matching of lattice QCD and chiral EFT necessary for small L April 6, 2016 Institut für Kernphysik Philipp Klos 28

Limitations of Lüscher for pionful theory Chiral leading-order (LO) potential q 2 0.78 0.76 0.74 0.72 0.70 0.68 0.66 0.64 0.62 0.60 1st excited state AFDMC, LO R 0 =1.0 fm Lüscher, a= 18.9 fm, r=2.01 fm 0.58 0 10 20 30 40 50 60 L [fm] δ 0 (p) 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 AFDMC, LO R 0 =1.0 fm, excited state δ 0 (p) chiral LO ERE with a= 18.9 fm, r e =2.01 fm 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 p [fm -1 ] Compare directly to phase shift Shows challenges for p > m π /2 p cot δ(p) = 1 (( ) 2 ) Lp πl S 2π April 6, 2016 Institut für Kernphysik Philipp Klos 29

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 30

Extraction of scattering parameters from finite volume results Energy E = p2 of two nucleons in a box predicted by infinite volume phase shift δ(p) m Beane et al., PLB 585, 106 (2006). p cot δ(p) = 1 πl S (( ) 2 ) Lp 2π Effective range expansion: 1 a + 1 2 r ep 2 +... = 1 (( ) 2 ) Lp πl S 2π pionless EFT Finite volume energies scattering length a, effective range r e,... April 6, 2016 Institut für Kernphysik Philipp Klos 31

Fit to AFDMC data Chiral NLO and N 2 LO potentials Fit to ground + excited state results 0.70 0.68 1st excited state 0.78 0.76 0.74 1st excited state 0.66 0.72 q 2 0.64 q 2 0.70 0.68 0.62 0.66 0.60 0.58 AFDMC, C 0 physical a Diagonalization Lüscher, physical a Lüscher fit, a=-18.9(2) fm 0 10 20 30 40 50 60 L [fm] Contact interaction C 0 0.64 0.62 AFDMC, LO R 0 =1.0 fm 0.60 Lüscher, a= 18.9 fm, r=2.01 fm Lüscher fit, a=-18.5(4) fm 0.58 0 10 20 30 40 50 60 L [fm] Chiral LO interaction Fit: a = 18.9(2) fm, r e = 1.10(1) fm Exact: a = 18.9 fm, r e = 1.096 fm Fit: a = 18.5(4) fm, r e = 2.00(7) fm Exact: a = 18.9 fm, r e = 2.01 fm April 6, 2016 Institut für Kernphysik Philipp Klos 32

Motivation Lüscher formula Quantum Monte Carlo Ground and excited states in AFDMC Chiral effective field theory Extraction of scattering parameters from finite volume Summary and outlook April 6, 2016 Institut für Kernphysik Philipp Klos 33

Summary First results for two-neutron finite-volume ground and excited states in AFDMC Approximate construction of excited state vs. exact diagonalization Extraction of scattering parameters from AFDMC simulations yields accurate results QMC techniques can serve to match chiral EFT and lattice results beyond limitations of the Lüscher formula Outlook Generalizable to more particles (3n, 4n,...) where extensions of Lüscher s formula are only partially available Extraction of resonance properties through calculations of excited states arxiv:1604.01387 Thank you! April 6, 2016 Institut für Kernphysik Philipp Klos 34