II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

Similar documents
MOS Transistor Properties Review

MOSFET: Introduction

The Devices. Devices

Chapter 4 Field-Effect Transistors

MOS Transistor I-V Characteristics and Parasitics

The Devices: MOS Transistors

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

EE 560 MOS TRANSISTOR THEORY

Lecture 3: CMOS Transistor Theory

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Practice 3: Semiconductors

N Channel MOSFET level 3

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

VLSI Design The MOS Transistor

Chapter 2 MOS Transistor theory

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOSFET Physics: The Long Channel Approximation

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

MOS Transistor Theory

FIELD-EFFECT TRANSISTORS

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Integrated Circuits & Systems

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Lecture 5: CMOS Transistor Theory

Lecture 12: MOS Capacitors, transistors. Context

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 4: CMOS Transistor Theory

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

ECE321 Electronics I

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE-305: Fall 2017 MOS Capacitors and Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Gradual Channel Approximation for the MOSFET:

1. The MOS Transistor. Electrical Conduction in Solids

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Microelectronics Part 1: Main CMOS circuits design rules

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Section 12: Intro to Devices

MOS Transistor Theory

The Devices. Jan M. Rabaey

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

MOSFET Capacitance Model

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

2.CMOS Transistor Theory

EE105 - Fall 2006 Microelectronic Devices and Circuits

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

Semiconductor Physics Problems 2015

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Introduction and Background

Lecture 12: MOSFET Devices

6.012 Electronic Devices and Circuits Spring 2005

MOS CAPACITOR AND MOSFET

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Semiconductor Physics fall 2012 problems

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 11: MOS Transistor

ECE 342 Electronic Circuits. 3. MOS Transistors

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Section 12: Intro to Devices

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Capacitors ECE 2204

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Long-channel MOSFET IV Corrections

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Extensive reading materials on reserve, including

VLSI Design and Simulation

EE5311- Digital IC Design

Lecture #27. The Short Channel Effect (SCE)

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

Lecture 04 Review of MOSFET

Device Models (PN Diode, MOSFET )

Chapter 5 MOSFET Theory for Submicron Technology

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Appendix 1: List of symbols

EECS130 Integrated Circuit Devices

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Typical example of the FET: MEtal Semiconductor FET (MESFET)

ECE 497 JS Lecture - 12 Device Technologies

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Device Models (PN Diode, MOSFET )

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

GaN based transistors

Transcription:

II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb...

The Energy Band Structure conduction band E F Fermi Level conductor valence band semiconductor Eg~0.16 aj insulator Eg~1.6 aj Material Electrical conductivity σ Metal σ > 10 5 Ω -1 m -1 Semiconductor 10 5 Ω -1 m -1 > σ > 10-8 Ω -1 m -1 Insulator σ < 10-8 Ω -1 m -1

ontrolling onductivity σ = qnμ

MOS Transistor transfer resistor 1930 J. Lilienfend applied for a patent regarding a fieldeffect device in USA 1935 O. Heil - similar patent in UK 1960 Practical manufacturing of a field-effect transistor

MOS Transistor Metal Oxide Semiconductor Various names: MOSFET, MIS, IGFET Polysilicon gate Dielectric layer Metal electrode Drain and source islands ρ of the substrate: 0.01-0.1 Ωm n+ concentration: 10 24-10 26 m -3 t ox: : 1-100 nm Semiconductor substrate

The MOS apacitor V G Al Oxide P-type silicon Accumulation Depletion Inversion V G <0 V G >0 V G >>0

nmos ross-section Gate Source Drain Metal Polysilicon Silicon dioxide N-type diffusion P-type substrate

lassification of MOS Transistors N-channel P-channel Depletion mode Enhancement mode

nmos Transistor with Biased Gate V G >0 Gate V S =0 Source Drain V D =0 Metal Polysilicon Silicon Dioxide N-type diffusion P-type substrate hannel

Beginning of The Strong Inversion V G =V T E c q φ s = 2 q φ f qφ f E j E F E f

onducting nmos Transistor V G >0 V S =0 Source Gate Drain V G -V T >V D >0

onducting nmos at The Beginning of Saturation V G >0 V S =0 Źródło Bramka Dren V G -V T =V D >0

Saturated nmos Transistor V G >0 V S =0 Źródło Bramka Dren V D >V G -V T A

MOS Symbols N-type enhancement mode G D B S D B S G D S P-type enhancement mode N-type depletion mode P-type depletion mode

nmos as A Switch + 5V + 5V

pmos as A Switch + 5V + 5V

MOS in Linear Range L=L eff +2L d I DS L eff x x+dx L eff -L d 0 L eff +L d x

I DS = W µ L eff eff ox U DS 0 ( U V V ( x) ) GS T 0 dv I DS = µ W L eff eff ox 2 (( U V ) U 1 U ) GS T 0 DS 2 DS I DS = k p W L eff eff (( ) 1 ) 2 U V U U GS T 0 DS 2 DS Linear I DS = k p 2 W L eff eff ( U V ) 2 GS T 0 Saturation β = µε/t ox (W/L) Transistor gain factor

MOS Output haracteristics I D U GS =5 linear U DS =U GS -V T U GS =4 saturation U GS =3 U GS =2 U GS =1 U DS

MOS Transfer haracteristics I D saturation linear U GS V T

hannel Length Modulation V G >V T0 V S >V DSsat L' eff L L eff

Model LEVEL1 I D U DS =U GS -V T U GS =5 linear U GS =4 saturation U GS =3 U GS =2 U GS =1 U DS

SPIE D Parameters for 1µm MOS Parameter nmos pmos Units Description VTO 0.7 0.7 volt Threshold voltage KP 8*10-5 2.5*10-5 A/V 2 Transconductance coefficient GAMMA 0.4 0.5 V 0.5 Bulk threshold parameter PHI 0.37 0.36 volt Surface potential at strong inversion LAMBDA 0.01 0.01 volt -1 hannel length modulation parameter LD 0.1*10-6 0.1*10-6 meter Lateral diffusion TOX 2*10-8 2*10-8 meter Oxide thickness NSUB 2*10 16 4*10 16 1/cm 3 Substrate doping density

What s new in LEVEL3 Modified threshold voltage model, taking into account the drain induced barrier lowering (DIBL) Longitudinal and transversal electric field dependent mobility model Improved channel length modulation and saturation voltage model Weak inversion (subthreshold) range

Trapezoidal harge Approximation x j X D W c

Subthreshold Range ln(i DS ) U GS V T V on

Temperature Influence on MOS haracteristics I DS 20 O 120 O A U GS

MOS apacitances GATE GSov GS GD GDov SOURE DRAIN BS GB BD

MOS apacitancies P S1 Polysilicon gate Dielectric layer P S2 Source Drain A D P S3

MOS apacitances BD j A = U 1 φ j = GDov D BD M GDO + 1 jsw j M jsw W eff U φ BD j P D = = GSO GDO BS j A = U BS 1 φ j = ox GSov L d S M GSO + 1 jsw j M jsw W eff U φ BS j P S Accumulation Depletion = GB ox W eff L eff GB = 1+ ox W U 4 eff GB L eff U 2 γ FB

MOS apacitances Linear range ( GB = 0) for GS 2 3 1 2 ( U ) ( ) GS UT U GS UT + U GD UT = oxweff Leff 2 2 3 1 2 ( U ) ( ) GD UT U GS UT + U GD UT GD = oxweff Leff 2 UGS U GD Saturation range ( GD = 0) 2 GS = oxweff Leff 3 GS GD 1 2 ox W eff L eff

apacitance-voltage haracteristics 1 / i i = ox L eff W eff G GS GD 0 ut-off Saturation Linear GB U GS

What s Missing in LEVEL3 Hot carrier effect Punch-through Non-uniform substrate doping

MOS - Summary Operation range ut-off Linear, non-saturation, triode Saturation, pentode Sub-threshold, weak inversion Pin voltages U GS <U FB U GS V T i U DS <U Dsat U GS V T i U DS U Dsat U FB U GS <V T N-type enhancement mode I DS U GS I DS U DS I DS U GS I DS P-type enhancement mode U DS N-type depletion mode I DS U GS I DS U DS I DS U GS I DS P-type depletion mode U DS