QCD at HERA. Hans-Christian Schultz-Coulon Universität Heidelberg CORFU 2005

Similar documents
Structure Functions. From HERA to LHC. Hans-Christian Schultz-Coulon Universität Heidelberg

HERA Collider Physics

3.2 DIS in the quark parton model (QPM)

Results on the proton structure from HERA

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Initial-state splitting

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

Measurements of the Proton F L and F 2 Structure Functions at Low x at HERA

QCD at hadron colliders Lecture 3: Parton Distribution Functions

Measurements of Proton Structure at Low Q 2 at HERA

Opportunities in low x physics at a future Electron-Ion Collider (EIC) facility

Physics at HERA. Contents HERA and ZEUS Electroweak results Structure of the proton. Katsuo Tokushuku (KEK, ZEUS)

Physics at Hadron Colliders Partons and PDFs

Results on the proton structure from HERA

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Particles and Deep Inelastic Scattering

QCD Measurements at HERA

Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa

4th Particle Physcis Workshop. National Center for Physics, Islamabad. Proton Structure and QCD tests at HERA. Jan Olsson, DESY.

HERA Physics. Hans-Christian Schultz-Coulon Universität Dortmund

Measurement of F L at HERA. S. Glazov, DESY, Ringberg 2008

Open Issues in DIS The High Energy Perspective

, 2004 Peter Schleper University of Hamburg Strasbourg, March 12 HC: The decade of Hadron machines L evatron HERA

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs

Proton Structure Functions: Experiments, Models and Uncertainties.

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

HERA. Daniel Pitzl, DESY FH1 WA HERA running Status of the experiments Selected physics results. HERA and LHC

LHC Collider Phenomenology

Novel Measurements of Proton Structure at HERA

Inclusive Cross Sections at HERA and Determinations of F L

ep Collisions with the Zeus Detector at HERA

Proton Structure Function Measurements from HERA

Factorisation in diffractive ep interactions. Alice Valkárová Charles University, Prague

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

2. HEAVY QUARK PRODUCTION

Physics and Physics prospects at HERA

ZEUS 1995 F ZEUS BPC95 ZEUS SVX95 ZEUS94 E665 H1 SVX95 ZEUSREGGE ZEUSQCD

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

EIC meeting, April 6,7, MIT

PoS(Photon 2013)004. Proton structure and PDFs at HERA. Vladimir Chekelian MPI for Physics, Munich

ZEUS Highlights for ICHEP02... a personal selection

Jets and Diffraction Results from HERA

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Spatial and Momentum Tomography of Hadrons and Nuclei INT-17-3 Program (2017) - Seattle

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

QCD Precision Tests in Deeply Inelastic Scattering

Testing QCD at the LHC and the Implications of HERA DIS 2004

Forward Jets with the CAL

Physics Results on the Tagged Structure Functions at HERA

arxiv:hep-ph/ v1 3 Nov 1998

QCD at the Tevatron: The Production of Jets & Photons plus Jets

Hadronic structure, low x physics and diffraction

Partículas Elementares (2015/2016)

Inclusive Deep-Inelastic Scattering at HERA

Physique des Particules Avancées 2

The Large Hadron electron Collider at CERN

QCD Results from HERA

Diffractive Dijets and Gap Survival Probability at HERA

Diffractive rho and phi production in DIS at HERA

Diffractive PDF fits and factorisation tests at HERA

Study of Inclusive Jets Production in ep Interactions at HERA

Zhong-Bo Kang Los Alamos National Laboratory

Lepton-hadron collider for the 2020s, based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa programme?

ZEUS New Results. Wesley H. Smith, University of Wisconsin on behalf of the ZEUS Collaboration DIS 2004, Strbské Pleso, Slovakia, April 14, 2004

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University

Search for BFKL Dynamics in Deep Inelastic Scattering at HERA. Preliminary Examination

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

Color dipoles: from HERA to EIC

Photon diffractive scattering off proton at high t with the H1 detector. Université Libre De Bruxelles Faculté des Sciences

QCD STUDIES IN EP COLLISIONS

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

arxiv: v1 [nucl-ex] 7 Nov 2009

Parton Distribution Functions, Part 1. Daniel Stump. Department of Physics and Astronomy Michigan State University

Imaging the Proton via Hard Exclusive Production in Diffractive pp Scattering

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA

CHAPTER 2 ELECTRON-PROTON COLLISION

Electroweak Physics and Searches for New Physics at HERA

Parton saturation and diffractive processes

PoS(DIFF2006)005. Inclusive diffraction in DIS H1 Results. Paul Laycock

The HERAPDF1.0 PDF set, which was an NLO QCD analysis based on H1 and ZEUS combined

Proton PDFs constraints from measurements using the ATLAS experiment

Measurements with Polarized Hadrons

hep-ex/ Jun 1995

Selected topics in High-energy QCD physics

Study of Charm Fragmentation at H1

Studies of the diffractive photoproduction of isolated photons at HERA

Seeking the Shadowing in ea Processes. M. B. Gay Ducati. V. P. Gonçalves

The H1 Experiment at HERA

Structure Functions at Very High Q 2 From HERA

arxiv: v1 [hep-ex] 16 Aug 2010

Tests of QCD Using Jets at CMS. Salim CERCI Adiyaman University On behalf of the CMS Collaboration IPM /10/2017

Opportunities with diffraction

Collider overview and kinematics

Proton Structure from HERA and the impact for the LHC

Beauty contribution to the proton structure function and charm results

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

X COLLIDER PHYSICS : BASIC CONCEPTS

HERAFitter - an open source QCD Fit platform

Event Generator Physics 2

Transcription:

QCD at HERA Hans-Christian Schultz-Coulon Universität Heidelberg CORFU 25 Corfu Summer Institute on EPP Corfu, September 9 th, 25

... that means... proton structure F 2 quark- & gluon-pdfs ( LHC), Δα s /α s ~ 1% (NNLO) F 2 at small Q 2, non-perturbative QCD F 3, PDFs at large (HERA II!)... heavy quarks universality of proton structure (gluon-pdf!) fragmentation, production mechanisms, c/b-pdfs... diffraction and low- physics QCD dynamics at high parton densities... structure of diffractive interactions, factorization DVCS parton-parton correlations (GPDs) jet physics universality of proton structure (gluon-pdf!) parton dynamics, measurement of α s spectroscopy pentaquarks...

Nobelprize 24 Coloured Quarks D.J.Gross, H.D. Politzer & F. Wilczek Interaction strength QCD Confinement quarks always bound mass of proton! QED Daten von CERN, Cornell, DESY, KEK and SLAC Gluons Asymptotic freedom perturbative QCD quasi-free partons Low energy Large distances High energy Small distances http://nobelprize.org/physics/laureates/24/illpres

We know: QCD is the theory of the strong interactions! Why then QCD at HERA? and elsewhere...? Because:... the strong coupling α s is the least well known of the coupling constants... we do not understand how partons are put together to make hadrons... we need to understand future high energy eperiments at the LHC...

Masses of Bound States Ratio of the mass of the parts to the mass of the whole: Positronium [e + e - ]: 2 511 kev/122 kev = 1 Bottonium [bb]: 2 4.2 GeV/9.5 GeV =.9 Pion [ud]: (3 + 6) MeV/135 MeV =.7 - Proton [uud]: (2 3 + 6) MeV/938 MeV =.1 Proton mass =! E B Understanding mass needs understanding of IA inside proton

Electron HERA: maimum resolution: -18 - h/q ~ 1 m Proton Ideal QCD laboratory

DIS Kinematics Electron (e ± ) k Q 2 : four-momentum transfer Q 2 [spatial resolution ~ 1/Q] : : fractional momentum : of the struck quark! k Electron (e ± ) Q 2 = -q 2 = -(k-k ) 2 P q y = Pq/Pk: inelasticity fractional energy transfer in proton rest frame P q = P X Proton P Q 2 = sy [ s: cms-energy] [ " " 1; " y " 1]

e Electron-Quark scattering (spinless case) q Structure Function F 2 $ e q d! ( eq) -------------- dq 2 = 4"# ----------e 2 2 q 4 q Rutherford scattering on pointlike target d! ( ep) -------------- dq 2 q() 1/3 4"# = ---------- 2 [ 2e2 u + e2 d ] = q 4 Naive QPM p = uud > = 1/3 4"# ---------- 2 q 4 With quark-quark interactions q() d! ( ep) -------------- ddq 2 = 4"# ---------- 2 [ e 2 q 4 u u( ) + e 2 d d( ) + ] = 4"# ---------- 2 F 2 ----------- ( ) q 4 QPM: Structure Function F 2 independent of Q 2 1/3

Electron (e ± ) Electron (e ± ) Cross Section: d! ~ d! eq "F 2 γ q q Proton SF F 2 = # 2 e q q() describes structure of proton probability to find quark with momentum fraction QPM: independent of Q 2. Correct? Proton Remnant

Scaling [SLAC 1972] F 2 Q 2 [GeV 2 ]

Scaling Violations [199++] SLAC 1972

The QCD Picture of Scaling Violation Proton quark dominated: Q 2 F 2 for fied Proton gluon dominated: Q 2 F 2 for fied Q 2 -evolution described by DGLAP equations

QCD Improved Parton Model 1 F 2 ( ) = $ # e 2 q d! q (!)"! = $ e 2 q q( ) q q!p QPM QCD z = /! F 2 ( ) $ e q 2 # = ---- d! q (!) " 1 --! % '!& ( ) ------ s P qq -- 2* % '!& ( Q 2 + log ------ 2 µ 1!P k, k T +, - q. qg +, - q. qg / / µ : cutoff parameter ) ------ s P 2* qq ( z) µ 2 Q 2 # dk T 2 -------- k T 2 ) ------ s P 2* qq ( z) log Q 2 ------- µ 2 q(, Q 2 ) = q( ) q(, µ 2 ) = q( ) + + ) ------ s Q 2 1 log ------- 2* µ 2 # ) ------ s µ 2 1 log ----- 2* µ 2 # dz ----- P z qq z dz ----- P z qq z ( ) q( z) ( ) q( z) (A) (B) Splitting function: Probability to find quark with momentum fraction z of a parent quark having emitted a gluon with momentum (1-z) q(, Q 2 ) = q(, µ 2 ) + ) ------ s Q 2 1 log ------- 2* # µ 2 dz ----- P z qq z ( ) q( z) (A)-(B)

DGLAP Equations DGLAP: Dokshitzer, Gribov, Lipatov, Altarelli, Parisi DGLAP evolution equations arise from requirement that q(,q 2 ) should not depend on the choice of scale µ: & $ s Q 2 1 dz + ------ log ------ ----- P 2% µ 2 z qq ( z) q( z & ) dq(, µ 2 1 ) $ = ------------------------ s d logµ 2 ------ dz ----- P 2% & z qq ( z) q( z) =! q(, Q 2 ) = q(, µ 2 ) dq(, Q 2 ) -------------------------- d logµ 2! " # dq(, µ 2 ) ------------------------ d logµ 2 = $ ------ s 2% & 1 From iteration dz ----- P z qq ( z) q( z, µ 2 ) 4 -- 3 ------------- 1 + z 2 1 z 1 2 --- [ z2 + ( 1 z 2 )] PDFs 4 -- 3 1 + ( 1 z) --------------------------- 2 z 6 z ----------- 1 z 1 z + ----------- + z( 1 z) z

F 2 at Low Bjorken- [Pre-HERA Knowledge] DGLAP: No prediction for the -dependence of F 2 [ecept asymptotic behaviour] A. De Rujula et.al. 1974 Fied Target Measure!!

Q 2 1 4 1 3 1 2 Accessing Lower Bjorken- HERA Eperiments Fied Target Eperiments Q 2 =sy access to highest Q 2 y = 1 [HERA: s ~ 1 5 GeV 2 ] y = 1 [Fied Target: s < 1 3 GeV 2 ] Fied Target: 1 1 accessing lower at fied Q 2 needs higher s s = 2M p E e s = 1 5 GeV! E e = 5 TeV ep-collider: 1-1 access to lowest at very low Q 2 1-6 1-5 1-4 1-3 1-2 1-1 1 s = 4E p E e E e = 3 GeV E p = 9 GeV! s = 1 5 GeV

HERA Tunnel

The HERA Accelerator Comple [27.6 GeV] e Halle Nord H1 e p 36m R=797m [92 GeV] p Halle Ost HERMES NW e p HERA- Halle West N NO Halle West HERA-B HERA Trabrennbahn 36m s Stadion Stellingen = 32 GeV W Kältehalle PETRA Magnet- Testhalle H -Linac DESY II/III e PIA + e -Linac e --linac p O Proton ring: Energy*: 92 GeV Mag. Field: 4.682 T Current: ~ 1 ma * before 1998: 82 GeV ZEUS Halle Süd Electron ring: SW Energy: 27.5 GeV Mag. Field:.164 T Current: ~ 4 ma General: Proton bypass SO Energy in cms: 318 GeV Circumference: 6.3 km BX rate: 1.4 MHz Lumi: 1.5. 1 31 cm -2 s -1

HERA Detectors ZEUS Uranium Calorimeter!(E)/E = 18% E for electrons!(e)/e = 35%/ E for hadrons Central Tracker Resolution!(p t )/p t =.58 p t /GeV ".65 H1 LAr Calorimeter!(E)/E = 12%/ E for electrons!(e)/e = 5%/ E for hadrons Central Tracker Resolution!(p t )/p t =.6 p t /GeV ".2 Central Muon System Forw. Tracking Central Tracking Silicon Detectors [ZEUS Collaboration] e FPS FNC ToF ToF Lumi p Forw. Muon System Toroid Solenoid SpaCal [H1: Schematic View] LAr-Calorimeter

TEST Typical DIS-Event [as seen by the H1 detector] Calorimeter Scattered Quark Backward Electrons Forward! Scattered Electron Q 2 Protons Trackers Q 2 = 4E e E e cos 2 (!/2)

ep Cross Section [low Q 2 approimation] Rutherford Proton Structure + q F 2 (, Q 2 ) = e 2 q q, Q 2 [ ( ) + q(, Q 2 )] ( ) * Evolution according to DGLAP d 2! ------------------- = 4"# 2 -------------- F ddq 2 Q 4 2, Q 2 1 ( ) $ [ 1 + ( 1 y) 2 ] y 2 F L 2 ------------- ( ) * % &' ~ influence small related to gluon density [contribution only @ high y] [LO: F L =] Considering spin e Before spin e Before q q q q After d e After 1 d 11 e M 2 y - J 2 d,,,' pq E ------ p E e ( 1 cos. * ) = = ------------------------------------------ = pk 2E p E e d, = 1 1 1 + cos. d * 1, 1 = ------------------------ 2 ( 1 cos. * ) ---------------------------- 2 M 2-1 + ( 1 y) 2 y-dependence describes helicity structure of interaction

Q 2 (GeV 2 ) Structure Function F 2 [Principle of Measurement] 1 5 1 4 1 3 ZEUS > 25 Events > 65 Events > 1 Events < 1 Events Basic (simplified) Procedure:! $ 4"# --------------F 2 Q 4 2 % &' ( and! F 2 = = In reality much more difficult as acceptances, backgrounds, higher order corrections etc. have to be taken into account. N L N ------ (L N: Number of events L : Luminosity y=1 y=1-1 y=1-2 1 2 Kinematic limit 1 Q 2 =15 GeV 2 1 1-4 1-3 1-2 1-1 1

MRS D,D - : Fit to fied target data only Different assumptions on g(,q 2 ) H1 '92 MRS D - F 2 1.6 Q 2 =15 GeV 2 1.4 1.2 1.8 HERA MRS D.6.4.2 CTEQ5D MRST99 ZEUS 96/97 H1 96/97 NMC, BCDMS, E665 1-4 1-3 1-2 1-1 Fied Target 2-3% Precision

F 2 [!2 i ] 1 6 1 5 1 4 1 3 1 2 1 =.5, i = 21 =.8, i = 2 =.13, i = 19 =.2, i = 18 =.32, i = 17 =.5, i = 16 =.8, i = 15 =.13, i = 14 =.2, i = 13 =.32, i = 12 =.5, i = 11 =.8, i = 1 =.13, i = 9 =.2, i = 8 =.32, i = 7 H1 e + p =.5, i = 6 ZEUS e + p BCDMS NMC =.8, i = 5 =.13, i = 4 =.18, i = 3 =5. 1-3 =.13 =.18 Scaling Violations [HERA & fied target data] Precision: 2-3% [bulk region] For < 1-2 : df 2 dlogq 2 ------------- ~ g(,q 2 )." s (Q 2 ) NLO QCD Fits: 1 1-1 =.25, i = 2 =.4, i = 1 Quark densities Gluon density Strong coupling " s 1-2 1-3 H1 PDF 2 Etrapolation =.65, i = 1 1 1 2 1 3 1 4 1 5 =.65 Q 2 [GeV 2 ]

QCD Fits: Principle Fit Procedure Parametrize parton distribution functions (PDFs) at starting scale Q 2 = Q 2 as function of. Perform QCD evolution using DGLAP equations. [usually NLO, special treatment of heavy quark PDFs] Calculate predictions for eperimental observables. [cross sections, structure functions,...] Determine PDF parameters from! 2 -fit to eperimental data. For p = u v, d v, " ( q + q), g or p = u + d, u d, s: 2 p(, Q ) A p ap ( 1 ) b p = P( ; c p,...) characterizes PDFs at =. [sea: a p <, valence: a p >] characterizes PDFs at = 1. [b p > for all PDFs] weakly -dependent function. [ fine tuning ]

QCD Fits: Inputs Fied target data l p! l p: BCDMS, NMC, E665... Fied target data l p! "p: CCFR, CDHS, BEBC... H1, ZEUS data structure function and cross H1, ZEUS data section measurements Sum rules: # u v ( ) d = 2, # d v ( ) d = 1, ) * # d ' g( ) + $ [ q( ) + q( ) ] ( = 1, % & I # d G ( ) 1 2 = = - + - # d ( u d). 3 3 F 2 lp F 2 ln Other eperimental data: pp! W + X qq! W u, d, u/d "N! µ + µ + X "s! µc s pp, pn! l + l + X qq! l + l d /u hh! + + X qg! q+ g pp! jets ± X gg! gg, qg!... g Valence quarks Momentum sum rule Gottfried sum rule [Eperiment (NMC): I G =.235 ±.26! u > d ]

Comparison H1 vs. ZEUS H1! s fit: H1 PDF fit: ZEUS PDF fit: Dedicated to! s and g(). H1 ep NC data (low Q 2 ) & BCDMS µp data. Parametrization of valence, sea quark and gluon. Starting scale: Q 2 = 4 GeV 2.! s =.115 +.19 -.18 ±.5 Dedicated to PDF-determination. Fit A: H1 data only (NC, CC, low & high Q 2 ). Fit B: H1 data & BCDMS µp data. Parametrization of U, U, D, D and gluon. Starting scale: Q 2 = 4 GeV 2. scale uncertainty ep. & model uncertainty Dedicated to PDF-determination (main goal). Simultaneous fit to strong coupling constant. Data: ZEUS NC data, BCDMS, NMC, E665, CCFR. Starting scale: Q 2 = 7 GeV 2.! s =.1166 +.52 -.52 ±.4 ep. & model uncertainty scale uncertainty

2234!! eperimental uncertainty theoretical uncertainty.1.12.14 5&%,!6 H1: NLO QCD fit [Eur. Phys. J. C 21 (21) 33] ZEUS: NLO QCD fit [Phys. Rev. D 67 (23) 127] S. Bethke: World Average [hep-e/21112] J. Santiago, F.J. Yndurain [hep-ph/12247] α s (M Z )! 7,%,$-"!)-)*/'!.)$+!%-!8$&-"$'-!9%*/-%,')* /"$,)"'(!$&&%&!'-(*1+$:!!!!!22234!(%&&$("'%-!$"',)"$!!!!#';#$&!"<'"!$55$(" "#$%&$"'()*!$&&%& +%,'-)"$+!./!()*$!1-($&")'-"/.16.18 A>BC:!!D!EFGGHH! 2234!9&%,'$!<%&*+!.$)"'-;!! 5&%,!=>?@!!!!!!!!!!!!!! =G:!!D!EFGGJE! $P9F!Q!,%+$* 1-($&")'-"/ I!EFEEJ7 K!EFEEJ7!! I!EFEEGN K!EFEEGO 2%-K'-;*$"!()$:!#$9K9#YEMEUGN7 C'-;*$""!()$:!#$9K9#YEMEMGGG!!!!!!!!!!!!! &$-%&,F!()*$ 1-($&")'-"/ L!EFEEM L!EFEEJ! RS%&*+!)T$&);$:!EFGGOU!L!EFEE7VW CF!8$"#X$:!#$9K9#YE7GGEG7 2%<!)T)'*).*$:! 2234!9*'""'-;!51-("'%- RZ%(#[!\$&,)$&$-[!\%;"W!!!

!"#$%&'()&*+$+)*','-./'/)*12$*!" # $!% f(,q 2 ) 1..8 H1 PDF 2 ZEUS-S PDF Q 2 =1 GeV 2 &'()#*(+ &'()#*(, u V 1..8 H1 PDF 2 ZEUS-S PDF CTEQ6.1 Q 2 =1 GeV 2 u V.6.6 g(.5) g(.5).4 d V.4 d V S(.5) S(.5).2.2 1-4 1-3 1-2 1-1! 1-4 1-3 1-2 1-1!

g 2 1 ZEUS NLO QCD fit Q 2 =1 GeV 2 2.5 GeV 2 tot. error (α s free) tot. error (α s fied) uncorr. error (α s fied) Eample: ZEUS Fit.5 -.5 2 1-4 1-3 1-2 1-1 1 7 GeV 2 1-4 1-3 1-2 1-1 1 2 GeV 2 Low- gluon PDF determined by HERA precision data Fied Target data constrain valence quark distributions 1.5 Uncertainty of gluon PDF: ~ 1% [for Q 2 > 2 GeV 2, 1-4 < < 1-1 ] -.5 1-4 1-3 1-2 1-1 1 1-4 1-3 1-2 1-1 1 Simultaneous etraction of PDFs and as! uncertainties larger. 2 2 GeV 2 2 GeV 2 Important input for LHC... 1.5 -.5 1-4 1-3 1-2 1-1 1 1-4 1-3 1-2 1-1 1

Possible Impact of d -u Asymmetries H1 + BCDMS H1 + BCDMS [a u, a d, b u, b d constrained] [a u, a d, b u, b d unconstrained] P().8 P().8.6.4 U U!!.6.4 U U.2 u v.2 u v.8.8.6 D D!!.6 D D.4.4.2 d v.2 d v 6 4 2 g 1-3 1-2 1-1 1 PDFs at Q 2 = 4 GeV 2 eperimental errors model uncertainties 6 4 2 g 1-3 1-2 1-1 1 PDFs at Q 2 = 4 GeV 2 eperimental errors model uncertainties 1-3 1-2 1-1 1 parton distribution 1-3 1-2 1-1 1 parton distribution Enforce: (d - u " ) a u, a d, b u, b d : free parameters

1 9 LHC parton kinematics 1 8 1,2 = (M/14 TeV) ep( ± y) Q = M M = 1 TeV 1 7 1 6 M = 1 TeV LHC Q 2 (GeV 2 ) 1 5 1 4 M = 1 GeV 1 3 LHC needs: 1 2 y = 6 4 2 2 4 M = 1 GeV 6 knowledge on parton densities 1 1 HERA fied target etrapolation over orders of magnitude 1 1-7 1-6 1-5 1-4 1-3 1-2 1-1 1

The Gluon Density, LHC and the Higgs ~1 GeV ~1 TeV M 2 = 1 2 s =:!s H Gluon-Gluon Luminosity!dL 1 --------- = " g(, Q 2 )g(!, Q 2 ) d d! -----! with Q 2 =!s [gg CMS-Energy]

PDFs Are they universal? g() 12 1 NLO QCD fit µ 2 f = 2 GeV 2 H1 jet data for % s (M z ) =.1184 ±.31 gluon from jets 8 6 4 CTEQ5M1 MRST99 Botje99 g(,q 2 ) 22.5 2 gluon from charm Q 2 =2 GeV 2 µ 2 =25 GeV 2 2 incl. k $ algorithm 1-2 1-1 17.5 15 12.5 1 7.5 5 2.5 H1 prel. ep!" thy D* (DIS) D* (#p) 1-4 1-3 1-2 1-1 1

Using Jet Data in PDF Determination f gluon fractional error Gluon fractional error.6.4.2 -.2 -.4 -.6.6.4.2 -.2 2 2 Q = 1 GeV 2 2 Q = 7 GeV 2 2 Q = 2.5 GeV without jet data with jet data 2 2 Q = 2 GeV -.4 -.6.6 2 2 Q = 2 GeV 2 2 Q = 2 GeV.4.2 New PDFs with improved precision for gluon at medium and high -.2 -.4 -.6 α s =.1183 ±.29 ±.5-4 1-3 1-2 1-1 1 1 1-4 -3 1-2 1-1 1 1

non-perturbative region phenomenological description [e.g. Regge-Theory] Strength of interaction QCD Transition? QED perturbative QCD Small Q 2 Large Q 2

Y3 Small Q 2 small scattering angles lower cms-energy Shifted Verte Backward Calorimeter Special data taking period with shifted verte + ISR QEDC X1 Y1 X2 X3 Y3 Small angle detector [ZEUS BPT]

Eperimental Technics [to Access Low Q 2 ] Shifted Verte e Shifted IP Nominal IP 7 cm BST SpaCal smaller scattering angles p l k smaller cms-energy E e E e - E γ p q QED Compton l' (QEDC) Initial State Radiation (ISR) X smaller scattering angles

pqcd [@ small ] F 2 ~ -λ with λ ~ ln Q 2 [ DLL-Approimation ] For Q 2 ~ F 2 ~ -.8 [ Regge-Theory ]

ALLM97 H1 QCD Fit Q 2 min = 3.5 GeV 2 H1 Collaboration

Determination of λ Result: F 2 ~ -λ for <.1

Q 2 -Dependence of F 2 -Slope What happens at Q 2 ~.5 GeV 2? parton radiation decreases & becomes independent of resolution corresponds to scale of r h/q.3 fm. proton radius: r.8 fm Evidence for non-partonic substructure within proton? λ =.8 [Regge phenomenology]

From hard to soft physics Do we see saturation?

Saturation > c c Unitarity consideration: Rise towards small has to stop somewhere Epectation: At some point number of gluons is so large that recombination becomes important Possible observation: Taming of the rise of F 2 at low

Structure Function F2 2 Q 2 =2.7 GeV 2 3.5 GeV 2 4.5 GeV 2 6.5 GeV 2 1 2 8.5 GeV 2 1 GeV 2 12 GeV 2 15 GeV 2 1 2 18 GeV 2 22 GeV 2 1 1-3 1 1-3 1 ZEUS NLO QCD fit H1 PDF 2 fit H1 96/97 ZEUS 96/97 BCDMS E665 NMC 27 GeV 2 35 GeV 2 2 45 GeV 2 6 GeV 2 7 GeV 2 9 GeV 2 1-3 1 1-3 1 No evidence for saturation 1 2 12 GeV 2 15 GeV 2 1-3 1 1-3 1 1 1-3 1 1-3 1 Bjorken

ep-scattering Alternative Pictures Infinite momentum frame Proton rest frame Electron Q 2 Electron A colour dipole of variable size r T ~ 1/Q interacts with the proton at high CM energy s γp = W 2 = Q 2 / [ low = high energy scattering! ] Proton γ* ~.1 L 5 fm proton r T ~ 1/Q (dipole size) r T Electron interacts with quark of proton Parton content described by F 2 L ~ 1/ Q 2 ~ 1 GeV 2 r T.2 fm F 2 (,Q 2 ) = F 2 (W 2,Q 2 ) 4πα 2 Q 2 σ γ*p (s γ p,q 2 )

The Saturation Model Dipole model γ*p cross section [for small ] σ γ p T,L (, Q2 ) = Saturation model à la GBW: dipole proton -section d 2 r dz ψ T,L(Q, r, z) ˆσ(, r) ψ T,L (Q, r, z), ˆσ(, r) = σ {1 ep { ( dipole wave function ( )} r 2 /4R() 2 Saturation model including gluon evolution: R () average gluon distance at which saturation sets in DGLAP [for small r]: [ R 2 () = 1 GeV 2 ( ) λ ˆσ(, r) π2 3 r2 α s g(, µ 2 ) ] ˆσ(, r) = σ {1 ep ( π2 r 2 α s (µ 2 ) g(, µ 2 ) 3 σ )}

! (mb) 25 2 constant [ saturation ] 15 = 1-7 1 5 ~ r 2 = 1-2 1-1 1 1 r (GeV -1 )

Parton Saturation ln 1/ saturation region Saturation scale Q s () Number of gluons at specific 1/ perturbative region Resolved spot size non-perturbative region ln Q

F 2.2.1 Q 2 =.45 Q 2 =.65 Q 2 =.85 H1 & ZEUS Data Saturation model Saturation model w/ DGLAP.3.2.1.4 Q 2 =.11 Q 2 =.15 Q 2 =.2 Q 2 =.25 Q 2 =.3 Q 2 =.4 Three parameters fit [σ,, λ].2 Five parameters fit [σ, g() parameterization].6 Q 2 =.5 Q 2 =.65 1-6 1-5 1-4 1-3.4.2 1-6 1-5 1-4 1-3 1-6 1-5 1-4 1-3

F 2.2.1 Q 2 =.45 Q 2 =.65 Q 2 =.85 H1 & ZEUS Data Saturation model Saturation model w/ DGLAP.3.2.1.4 Q 2 =.11 Q 2 =.15 Q 2 =.2 Q 2 =2.7 Q 2 =3.5 Q 2 =4.5 Q 2 =6.5 1 Q 2 =.25 Q 2 Q 2 =8.5 Q 2 =1 =.3 Q 2 Q 2 =12 Q 2 =15 =.4 1.2.6.4.2 Q 2 =.5 1 Q 2 =.65 1-6 1-5 1-4 1-3 1-6 1-5 1-4 1-3 1 Q 2 =18 Q 2 =22 Q 2 =27 Q 2 =35 1-6 1-5 1-4 1-3 Q 2 =45 Q 2 =6 Q 2 =7 Q 2 =9 1-4 1-2 1-4 1-2 1-4 1-2 1-4 1-2

!.45.4 H1 ZEUS.35.3.25.2.15.1.5 saturation model with DGLAP evolution saturation model 1-1 1 1 1 2 Q 2 (GeV 2 ) Transition to soft physics described!

Do we see saturation? Electron Electron diff / tot.6.4 Q 2 = 8 GeV 2 Q 2 = 27 GeV 2 Q 2 = 14 GeV 2 Q 2 = 6 GeV 2 M X 3 GeV Dipole saturation model successfully describes... Colourless echange HFS Signature: rapidity gap.2 describes F 2 in DIS also at small and low Q2 (Fit!) Proton.6.4 3 M X 7.5 GeV predicts details of diffractive processes predicts diffractive DIS/DIS = constant....2.6 Satur. Mod. with evol 7.5 M X 15 GeV.4.2 4 6 8 1 12 14 16 18 2 22 W(GeV) No proof of saturation, but... several independent effects described very appealing also very much discussed also within Heavy Ion community (Color Glass Condensate) more theoretical work needed...

Concluding Remarks HERA provides the decisive information about parton distributions, especially the gluon content of the proton HERA has delivered data which guide theory to describe low energy QCD, e.g. the transition from hard to soft physics However, despite of large theoretical progress regarding saturation, dynamic QCD evolution, understanding of diffraction...... low energy QCD is still not understood More work is needed in order to maybe on day get an understanding of what confinement really is