Silicate appended ionic liquid modified electrodes

Similar documents
SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

Electrochemically-assisted self-assembly of mesoporous silica thin films SUPPLEMENTARY INFORMATION A. WALCARIUS, E. SIBOTTIER, M. ETIENNE, J.

Lecture 4. Conductance sensors. ChemFET. Electrochemical Impedance Spectroscopy. py Practical consideration for electrochemical biosensors.

Organic-Inorganic (O-I) Interfaces. Materials

High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors

NIH Public Access Author Manuscript J Electrochem Soc. Author manuscript; available in PMC 2008 October 23.

Julien Schmitt, postdoc in the Physical Chemistry department. Internship 2010: Study of the SAXS scattering pattern of mesoporous materials

Lecture 12: Electroanalytical Chemistry (I)

Chapter 25. Voltammetry

Supporting information. Graphene supported pyrene functionalized amino-carbon nanotube: a

Ionic Liquids: A New Class of Sensing Materials. Linlin Zhao Bioanalytical Chem, Spring 2007, UConn

General conclusions and the scope of future work. Chapter -10

Joanna Niedziółka. Preparation and properties o f the electrodes modified with hydrophobic silicate film and redox liquid

Carbon nanoparticle surface functionalisation: converting

State of São Paulo. Brasil. Localization. Santo André

Surface texture modification of spin-coated SiO 2 xerogel thin films by TMCS silylation

Südliche Stadtmauerstr. 15a Tel: D Erlangen Fax:

Metallurgical and Materials Engineering Department MME 2509 Materials Processing Laboratory SOL-GEL DIP COATING

PolyCerNet. 1. U. of Trento Italy 2. U. Pierre et Marie Curie Paris France 3. Max Plank Inst. Germany 4. Poly. Univ.

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Cell Compounds, Bonds, Reactions - 1

Electrochemical Characterization of the Influence of Scanning Number on the Self-assembled Monolayer Formed by Schiff Base

Synthesis and Characterization of Porous Carbon-MoS 2 Nanohybrid Materials: Electrocatalytic Performance Towards Selected Biomolecules

Simplest Prussian-blue deposition from ferric ferricyanide solution by a reducing Ag spot put onto an ITO substrate

Chapter 14 Chemically Modified Electrodes

The Basics of General, Organic, and Biological Chemistry

Membrane Electrodes. Several types

Topic 1: Stoichiometric relationships Introduction to the particulate nature of matter and chemical change. Topic 2: Atomic structure 6

UNIAQ Department of Physics

Polymers 2017; doi: 1. Structural Characterisation of the Prepared Iniferters, BDC and SBDC

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Chapter 9 Generation of (Nano)Particles by Growth

Electrostatic modulation of superconductivity in few-nm Bi 2.1 Sr 1.9 CaCu 2 O 8+x films

Canadian Advanced Senior High

Lecture 3. Electrochemical Sensing.

Previous Faraday Discussions

Self Assembled Monolayers

Chapter - 8. Summary and Conclusion

Scanning Flow Cell SFC SFC-OLEMS Summary CO2 reduction on Cu-Co thin films Summary

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

SUMMER RESEARCH INTERNSHIP PROGRAM JUNE AND JULY 2014

Proton-Conducting Nanocomposites and Hybrid Polymers

Electrochemistry. in situ in situ. in situ. Key Words. electrochemical surface science. flame annealing and quenching method.

Curriculum Correlation

Nanowires and nanorods

ILs interfaces: diffusion and kinetics

Demystifying Transmission Lines: What are They? Why are They Useful?

BACKGROUNDS (1) Figure 1 Active site of CcO

Stuff to Know for the Final Exam I

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

17.1 Redox Chemistry Revisited

The first three categories are considered a bottom-up approach while lithography is a topdown

Grade 12 Chemistry, University I

Nanotechnology Fabrication Methods.

768 Lecture #11 of 18

Report on Preparation of Nanotemplates for mab Crystallization

Supporting Information

Chemistry 12 - Learning Outcomes

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics

3D: Nanocrystals, nanocomposites, 11-1

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell

Practice Test Redox. Page 1

Chemistry 12 August 2002 Provincial Examination

3.5 Production and modification of nanoparticles

Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors

DICP Course - Dalian, 2012 Preparation of solid catalysts Part 5 Supported by the Chinese Academy of Sciences

Supporting Information

Layer-by-Layer (LBL) Self-Assembly

Reference electrode. Calomel electrode Hg in contact with Hg(I) chloride Ag/AgCl 15-2

Appendix A. Assessments Points 4 Mode of Assessments. New Course Code and Title Course Coordinator. MS741M Nanomaterials

Electrochemistry and Umpolung Reactions: Solving Synthetic Challenges of Structure and Location

Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography,

Light-activated gating and permselectivity in interfacial architectures combining caged polymer brushes and mesoporous thin films

Electronic Supplementary Information. for. Discrimination of dopamine from ascorbic acid and uric acid on thioglycolic. acid modified gold electrode

Shape of catalytic curve affected by catalytic rate constant k cat and effective concentrations of catalyst and substrate.

Review Article Recent Developments of Nanostructured Electrodes for Bioelectrocatalysis of Dioxygen Reduction

Chemistry of Carbon. Building Blocks of Life

CHEM465/865 Electrochemistry

Block Copolymer Based Hybrid Nanostructured Materials As Key Elements In Green Nanotechnology

Electrochemical Properties of Materials for Electrical Energy Storage Applications

Enduring Understandings & Essential Knowledge for AP Chemistry

CHAPTER ONE INTRODUCTION

Electropolymerization of Methylene Blue on Carbon Ionic Liquid Electrode and Its Electrocatalysis to 3,4-Dihydroxybenzoic Acid

Porous silicon as base material of MEMS-compatible fuel cell components

Supporting Information. One-Pot Synthesis of Reduced Graphene

Ionic Liquids and Ion Gels -A New Class of Liquids and Polymer Gels-

Principles of Electrochemistry Second Edition

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Wanzhen Li, Longhua Ding, Qiaohong Wang and Bin Su*

P.O. Box 6079, Station Centre-Ville, Montreal, QC H3C 3A7, Canada.

Keywords: Noble metal Nanocomposites, nanoelectrocatalyst, phosphonium ionic liquid, MWCNTs

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory

Adsorptive Stripping Voltammetric Detection of Single-Stranded DNA at Electrochemically Modified Glassy Carbon Electrode

Solutions for Assignment-6

How Silica Aerogels Are Made

4.1.1 A simple model of the atom, symbols, relative atomic mass, electronic charge and isotopes. Unit 1 Unit 2 Unit 3. C2.1.1a Structure and bonding

Biocatalysis at multiscale carbon electrodes. Scott Calabrese Barton Chemical Engineering & Materials Science, Michigan State University

Dynamiczna kontrola separacji ładunków elektrostatycznych w układach miękkiej materii

Fundamental molecular electrochemistry - potential sweep voltammetry

Transcription:

Silicate appended ionic liquid modified electrodes A. Lesniewski a, K. Szot a, J. Niedziolka-Jonsson a, M. Jonsson-Niedziolka a, C. Rizzi b, L. Gaillon b, M. Opallo a a/ Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland b/ Université Pierre et Marie Curie -Paris6, Paris, France mopallo@ichf.edu.pl

Outline Introduction (ionic liquid modified electrodes) Electrode modified with silicate appended ionic liquid Ionic liquid sol-gel precursor for layer by layer electrode film formation Conclusions

Introduction (ionic liquid modified electrodes)

Introduction time J. Wadhavan et al. J. Electroanal. Chem. 493 (2000) 75.

Introduction Electrodes Electrodes modified with IL drop, droplets or film Carbon paste electrodes with IL as a binder Electrodes modified with IL-CNT gel Multicomponent films or bulk materials with IL as one of the components Electrodes modified with thiol appended IL Electrodes modified with IL covalently bonded to polymer film Processes Spontaneous ion transfer Ion transfer generated by electrochemical redox reaction within IL phase Preconcentration of ions or neutral species in IL phase Electrochemical reactions of enzymes immobilised in IL phase Electrocatalysis with catalyst present in IL film. Biological systems Electrochemical formation of nanoparticles, polymers or inorganic films Over 60 papers published until September 2008!!! (90% in 2006-2008)

Introduction Ru(NH 3 ) 6 3+ Fe(CN) 6 3- Fe(CN) 6 3- Y. S. Chi et al. Langmuir 21 (2005) 4269. Y. Shen et al. Green Chem. 9 (2007) 2046.

Electrode modified with silicate appended ionic liquid

Sol-gel process OCH 3 Hydrolysis H 3 CO Si OCH 3 H + + 4H 2 O HO Si + 4CH 3 OCH 3 tetramethoxysilane (TMOS) hydrophilic silicate 2 HO Si Condensation HO Si O Si + H 2 O O Si

Sol-gel process substituted silicate OCH 3 Hydrolysis H 3 CO Si R H + + 3H 2 O HO Si R + 3CH 3 OCH 3 2 HO Si R Condensation HO Si O Si R + H 2 O R O Si R substituted silicate

Electrode modified with silicate appended ionic liquid film R HCO - catalyst OCH 3 H 3 CO Si OCH 3 1 : 9 OCH 3 Si-O-Si N + N + N + N N N Si-O-C O Si O Si O Si O Si O Si O Si * * n ITO IL appended sol-gel film Silicate confined ionic liquid A. Lesniewski et.al. Electrochem. Commun. 9 (2007) 2580

Electrode modified with silicate appended ionic liquid film Profilometry A. Lesniewski et.al. Electroanalysis submitted

Electrode modified with silicate appended ionic liquid film Permeability by voltammetry 1 mm Fc(CH 2 ) 2 0.1 mm Ru(NH 3 ) 6 3+ Fc(CH 2 ) 2 e Fc(CH 2 ) 2 + A. Lesniewski et.al. Electroanalysis submitted

Electrode modified with silicate appended ionic liquid film Accumulation by voltammetry 0.1 mm Fe(CN) 6 4-0.0001 mm Fe(CN) 6 4- A. Lesniewski et.al. Electroanalysis submitted

Electrode modified with silicate appended ionic liquid film Accumulation by voltammetry 0.1 mm redox probe solution A. Lesniewski et.al. Electroanalysis submitted

Comparison with the electrode modified with ionic liquid precursor Accumulation by voltammetry 0.1 mm Fe(CN) 6 4- A. Lesniewski et.al. Electroanalysis submitted

Electrode modified with silicate appended ionic liquid submicroparticles CTAB modified Stober method d 200 nm Pore Volume (cm 3 g -1 nm -1 ) 0.3 0.2 0.1 0.0 d avrg = 2.3 nm 1 2 3 4 5 Equivalent Pore Width (nm)

Electrode modified with silicate appended ionic liquid submicroparticles Fe(CN) 6 3- accumulation in CPE modified with submicroparticles 600 1 mm Fe(CN) 6 4-400 j / µa cm -2 200 0-200 -400-600 CPE (hexadecabe) CPE (ILprecursor) CPE (hexadecane + ILappended submicroparticles) CPE (hexadecane + TMOSbased submicroparticles) -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Hexadecane + carbon microparticles + IL appended submicroparticles E / V vs. Ag AgCl

Ionic liquid sol gel precusor for layer by layer electrode film formation

The use of ionic liquid sol gel precusor for layer by layer electrode film formation SO 3 K. Szot et.al. J. Electroanal. Chem. In press

The use of ionic liquid sol gel precusor in layer by layer electrode film formation maximum 10 layers the electrostatic self assembly is followed by the formation of an inorganic polymer network!!! K. Szot et.al. J. Electroanal. Chem. In press

The use of ionic liquid sol gel precusor in layer by layer electrode film formation (i) ITO 210 Ω (ii) ITO + 3L 250 nm 230 Ω (iii) ITO + 5L 690 nm 240 Ω (iv) ITO + 10L 1060 nm 210 Ω capacitive current H 2 O 2 electroreduction K. Szot et.al. J. Electroanal. Chem. In press

The use of ionic liquid sol gel precusor in layer by layer electrode film formation (i) ITO (ii) ITO + 3L (iii) ITO + 5L (iv) ITO + 10L Fc(CH 2 ) 2 e Fc(CH 2 ) 2 + K. Szot et.al. J. Electroanal. Chem. In press

The use of ionic liquid sol gel precusor in layer by layer electrode film formation (i) ITO (ii) ITO + 3L (iii) ITO + 5L (iv) ITO + 10L redox liquid (tbufc) oxidation-reduction K. Szot et.al. J. Electroanal. Chem. In press

The use of ionic liquid sol gel precusor in layer by layer electrode film formation (i) ITO (ii) ITO + 3L (iii) ITO + 5L (iv) ITO + 10L Fe(CN) 6 3- accumulation reversible K. Szot et.al. J. Electroanal. Chem. In press

The use of ionic liquid sol gel precusor in layer by layer electrode film formation (i) ITO (ii) ITO + 10L, 0 min (iii) ITO + 10L, 20 min (iv) ITO + 10L, pure electrolyte 0.01 V s -1 0.001 V s -1 ABTS 2- accumulation irreversible O 2 reduction catalysis with laccase in solution K. Szot et.al. J. Electroanal. Chem. In press

Acknowledgements Dr. J. Sirieix-Plenet, dr. C. Rizzi, dr. L. Gaillon (Pierre et Marie Curie Univ, Paris, France) CNRS-PAS, Polonium Dr. F. Marken (Bath, UK) Dr. J. Mrowiec-Bialon (Gliwice, Poland) Chalmers University of Technology (Goteborg, Sweden) Ministry of Science and Higher Education (Poland) project NN204 3687 33 Electrodes modified with ionic liquids