Divergent Series: why = 1/12. Bryden Cais

Similar documents
Mathematics 324 Riemann Zeta Function August 5, 2005

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

Math 229: Introduction to Analytic Number Theory The product formula for ξ(s) and ζ(s); vertical distribution of zeros

Summation Methods on Divergent Series. Nick Saal Santa Rosa Junior College April 23, 2016

Bernoulli Numbers and their Applications

1 Euler s idea: revisiting the infinitude of primes

CHAPTER 4. Series. 1. What is a Series?

Notes on the Riemann Zeta Function

Prime Number Theory and the Riemann Zeta-Function

Taylor Series and Asymptotic Expansions

4 Uniform convergence

Functional Limits and Continuity

Primes in arithmetic progressions

Synopsis of Complex Analysis. Ryan D. Reece

From Calculus II: An infinite series is an expression of the form

Math Absolute Convergence, Ratio Test, Root Test

Problem Set 5 Solution Set

Math 259: Introduction to Analytic Number Theory More about the Gamma function

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS

0 Real Analysis - MATH20111

PRIME NUMBERS YANKI LEKILI

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

MATH 152 Problem set 6 solutions

5.4 Continuity: Preliminary Notions

Math 141: Lecture 19

Complex Analysis Homework 9: Solutions

Metric spaces and metrizability

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

1 The functional equation for ζ

Series Solutions. 8.1 Taylor Polynomials

Fourth Week: Lectures 10-12

Topic 7 Notes Jeremy Orloff

x s 1 e x dx, for σ > 1. If we replace x by nx in the integral then we obtain x s 1 e nx dx. x s 1

Chapter 11 - Sequences and Series

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Last Update: March 1 2, 201 0

Part II. Number Theory. Year

The Continuing Story of Zeta

* 8 Groups, with Appendix containing Rings and Fields.

Dirichlet s Theorem. Calvin Lin Zhiwei. August 18, 2007

Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras. Lecture - 13 Conditional Convergence

Week 2: Sequences and Series

Some Fun with Divergent Series

1 Continued Fractions

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

Some Interesting Properties of the Riemann Zeta Function

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Classnotes - MA Series and Matrices

The Prime Number Theorem

32 Divisibility Theory in Integral Domains

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Notes on uniform convergence

3 The language of proof

Introduction to Basic Proof Techniques Mathew A. Johnson

The Riemann Zeta Function

Standard forms for writing numbers

DR.RUPNATHJI( DR.RUPAK NATH )

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

CHAPTER 8: EXPLORING R

3.4 Introduction to power series

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). let π(x) denote the number of primes x. Then x as x. log x.

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

NOTES ON RIEMANN S ZETA FUNCTION. Γ(z) = t z 1 e t dt

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

Math Real Analysis

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS

A Curious Connection Between Fermat Numbers and Finite Groups

A Note on the 2 F 1 Hypergeometric Function

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Research Article Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications

Section 11.1: Sequences

February 13, Option 9 Overview. Mind Map

The Dirichlet Problem for Infinite Networks

RIEMANN HYPOTHESIS: A NUMERICAL TREATMENT OF THE RIESZ AND HARDY-LITTLEWOOD WAVE

On the Bilateral Laplace Transform of the positive even functions and proof of the Riemann Hypothesis. Seong Won Cha Ph.D.

Step 1. Analytic Properties of the Riemann zeta function [2 lectures]

Math 259: Introduction to Analytic Number Theory How small can disc(k) be for a number field K of degree n = r 1 + 2r 2?

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

1 Introduction. or equivalently f(z) =

( ε > 0) ( N N) ( n N) : n > N a n A < ε.

MORE CONSEQUENCES OF CAUCHY S THEOREM

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Mathematical Induction

Solutions Final Exam May. 14, 2014

MATH10040: Chapter 0 Mathematics, Logic and Reasoning

Infinite series, improper integrals, and Taylor series

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

Pointwise and Uniform Convergence

Math 229: Introduction to Analytic Number Theory Čebyšev (and von Mangoldt and Stirling)

Review of Power Series

Riemann Zeta Function and Prime Number Distribution

arxiv: v22 [math.gm] 20 Sep 2018

NEUTRIX CALCULUS I NEUTRICES AND DISTRIBUTIONS 1) J. G. VAN DER CORPUT. (Communicated at the meeting of January 30, 1960)

Transcription:

Divergent Series: why + + 3 + = /. Bryden Cais Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.. H. Abel. Introduction The notion of convergence of a series is a simple one: we say that the series n=0 a n converges if lim exists and is finite. So for example the series a n n=0 + + 4 + 8 + 6 + + 3 4 + 5 both converge to and log, respectively. If a series a n does not converge, it is said to diverge. Two prototypical examples of divergent series are + + 3 + 4 + 5 + + +, where the first series diverges because the partial sums tend to + and the second series diverges because the partial sums s do not tend to any limit even though lim s = 0 and lim s =. One might think that not much can be said for divergent series. The goal of this these notes is to show that this is not the case, and that divergent series are in fact an interesting object of study. Historically, divergent series occur in the work of Euler, Poisson, Fourier, and Ramanjuan among many others, and although it was not until Cauchy that the definitions of convergence were formally stated, these masters knew well enough when a series converged and when it did not. Part of the reason that divergent series were so abhorred by mathematicians after Cauchy is because no one formally defined what the sum of a divergent series should be. Rather, mathematicians sought for some intrinsic meaning and rapidly found themselves in rather difficult terrain. We will begin by highlighting some of the problems that arise when one tries to make sense of a divergent series without clear definitions, and this will lead naturally to two generalizations of the notion of sum, both of which can be used to assign meaning to divergent series.. Problems with summing divergent series Abel s 88 remark that divergent series are the invention of the devil was not unfounded. Let us illustrate this with two examples. First, consider the series s = + +. There are two essentially different ways in which we can make sense of this series. The first is by simple manipulations: s = + + = + + = s, so that s = or s = /. Observe that we have used only linear properties, and have not rearranged any terms other than the first. We might also observe that + + x + x =. This is reassuring. Intuitively, the value of s should be / as this is the average value of the partial sums, which alternate between 0 and.

Problems arise, however, as soon as one tries to rearrange any terms. For example, we might try to argue that s = + + = + + + = 0 + 0 + 0 + = 0, but such arguments can be dismissed on the grounds that even for convergent series rearranging terms can spell disaster. Thus, for example, one can rearrange terms of the series + 3 4 + 5 to obtain any real number as the sum! As for the second argument, one might object as Callet did that for m < n we have x m x n = xm + x n x m+n + x n, so that by l hopital s rule x m + + x x n = m n. But here again, it is not so difficult to see what is happening: the limit as x of x m + x n x m+n + is not the series + +, but rather the series + 0 + 0 + + 0 + 0 + 0 + + 0 + +, }{{}}{{} m zeroes n m zeroes and there is no reason why these two series should have the same value. For a different kind of problem, consider the series s = + + 3 + 4 + 5 +. What should be the value of s? Laying aside for the moment our reservations, we have we conclude that 6s = /, that is 3s = 4s = + + 3 + 4 + 5 + + 4 + 6 + = + 3 4 + 5 = 3 + 4 5 + = + 3 4 + 5 + + = + 3s /, + + 3 + 4 + 5 + =. Such a statement obviously presents philosophical difficulties. amely, one is forced to ask how the sum of a divergent series of entirely positive terms can be negative. Yet the manipulations involved in our determination of s are no more outlandish than those used in determining + + = /. We will see later that in a very precise sense, / is the correct value of + + 3 + 4 +. 3. Definitions: Cesaro and Abel summability Based on our manipulations of series above, two things are clear: Any useful definition of the sum of a divergent series will allow linear operations on the series without altering its value. One cannot hope for the rearrangement of terms in a divergent series to be an innocent operation, as this is already not the case for conditionally convergent series. Moreover, any definition of the sum of a divergent series should be a generalization of the sum of a convergent series, so that when one tries to sum convergent series using these definitions, one obtains the same results as before. Let us first make precise what we mean by linear. Let a n, b n be two sequences and suppose we have assigned the values s = a n and t = b n. Then we want the following to hold:

3 a n + b n = s + t. For any real number α, we require αa n = αs. These notions can be formulated in a precise way. Let V denote the infinite-dimensional real vector space consisting of sequences of real numbers a n, and let W V be the subspace of convergent sequences. Then we can think of : W R as the linear operator defined by a n := n= a n. In seeking to generalize the idea of sum to divergent series, we wish to extend the linear operator to subspaces V V strictly containing W. We might hope to be able to extend to all of V, but as we shall see, this is a somewhat ambitious goal. Our generalizations are classical, and motivated by the calculations of the preceding section. 3.. Cesaro summability. Cesaro summation formalizes our claim that + + should be / as this is the average value of the partial sums. Concretely, let a n be any sequence of real numbers and put s = a + a + + a. Let V c, be the subset of V for which s + s + + s lim exists and define the map C : V c, R by s + s + + s C a n. It is easy to see that V c, is actually a subspace of V, and not just a subset. Moreover, suppose that a + a + converges, say to L, so that for any ɛ > 0 there exists > 0 such that L s M < ɛ for all M >. Then we have s + s + + s C a n k + k k s + + + s +k. + k But since s M L < ɛ for all M >, we have the bounds kl ɛ L ɛ k + k lim s + + + s +k k + k + s + + + s +k + k kl + ɛ lim k + k = L + ɛ, and since ɛ > 0 was arbitrary, this shows that C a n = n a n when this sum converges. Thus, V c, W and C W =. It is clear that C is a linear map. We can say more, though. Indeed, suppose that C a, a, a 3,... = s. Then we claim that for any finite j > 0 we have j C a j, a j+,... = s a n. Indeed, let s denote the th partial sum of the sequence a, a,... and t the th partial sum of a j, a j+,.... Then t = s j+ and t + t + + t lim n= s j+ + s j+ + + s j+ + j s + s + + s j+ + j s + s + + s, s + s +... s j which proves our claim. We see almost immediately that the containment V c, W is strict, for the sequence,,,,... has partial sums { if is odd s = 0 if is even

4 so that s + s + + s = + /, from which it follows that C,,,,... =. Of course, we already rigorously determined this, as our manipulations above used only those properties of the operator C that we have proved namely linearity and the property. Observe, however, that the linear map C does not extend to all of V. Indeed, the sequence,, 3, 4,... has partial sums s = + / so that C,, 3, 4,... + + /, which is not finite. However, if we are to extend C any further, there is only one value we can assign to the sum + + 3 + 4 +. This follows by our argument above and linearity. We would like to generalize the linear map C to maps C k for all k. We proceed as follows: let a n be any sequence and let s be the th partial sum. Define H k = { i= s i if k = i= Hk i otherwise. Thus we have C a, a,... H when this limit exists. We define the subset V c,k V to be the set of all sequences for which the limit lim H k exists and for any a, a,... V c,k define Then it is easy to show that C k a, a... : Hk. The subset V c,l V is a subspace. C k : V c,k R is a linear map. 3 Fix an integer l. Then for all k > l we have strict containment V c,l V c,k. 4 Let a n V c,l and k > l. Then C k a n = C l a n. It is not difficult to see that,, 3, 4,... V. Indeed, the partial sums are,,,, 3, 3,... from which it follows that { + H = if is odd, 0 otherwise and hence that H = +/ i= +, i from which we see that lim H = /4, in agreement with our earlier calculation. It can be shown by induction that if a sequence a n is an element of V c,k then lim n a n /n k = 0. Thus, there exist sequences that are not in V c,k for any k one might take, for example,!! + 3! 4! +. 3.. Abel summability. ow we touch briefly on another important method of defining the sum of a divergent series. Let V a V be the subset of all sequences a n such that the corresponding power series n a nx n has radius of convergence, and represents a function fx such that lim x fx exists. We observe right away that we have the containment W V a. We define a map A : V a R by Aa n x fx. It is clear that this is a linear map. Moreover, suppose that a n is convergent. Then fx := a n x n has radius of convergence and by a Theorem of Abel, we have lim x fx = a n, so that the linear operator A, when restricted to W V a agrees with. It is clear from our earlier examples that the containment W V a is strict. For we saw that A,,,,... x + x =. Observe that our definition makes it impossible to claim that the sum of + + could be m/n for any m < n on grounds of the identity x m x n = xm + x n x m+n + x n,

5 because as we have pointed out, this identity does not correspond to the sequence,,,,..., but to the sequence, 0, 0,..., 0,, 0, 0,..., 0,,... }{{}}{{} m zeroes n m zeroes In the next section we will reconstruct Euler s derivation of the functional equation for the Riemann zeta function using the linear operator A. 4. Euler and the functional equation of ζs The Riemann zeta function is a function of the complex variable s defined by ζs = s + s + 3 s + 4 s +. The series expansion we have written down is convergent even absolutely for any s with Rs >. However, like the function / s = + s + s + s 3 +, whose power series expansion converges only for s <, but which nonetheless defines an analytic function on C {}, the Riemann zeta function can be analytically continued to a function of s for all s C {} ζ has a simple pole at s =. Although named for Riemann, the zeta function was studied extensively by Euler, who lived about 00 years before Riemann. In particular, Euler proved that ζs can be written as an infinite product ζs = p s, p with the product being over all primes, and used this to give an analytic proof of the infinitude of primes. This viewpoint ultimately enabled Dirichlet to prove the infinitude of primes in arithmetic progressions. One of the most important properties of the zeta function is that it satisfies a functional equation that relates ζs to ζ s: sπ ζ s = π s cos Γsζs, where Γs is a function of the complex variable s satisfying Γs = s! for integers s. This functional equation which exhibits the symmetry of the ζ-function about the line s = / played a large role in Riemann s formulation of his infamous hypothesis. What is fascinating is that Euler conjectured based on calculations with divergent series over 00 years before Riemann wrote his influential paper on the zeta function. We now reconstruct Euler s arguments. Euler works exclusively with the linear operator A. He begins with the power series e y e y + e 3y e 4y + = e y +, which converges for all y > 0. By differentiating n times, he obtains n e y n e y + 3 n e 3y 4 n e 4y + = n dn dy n e y, + which again converges for any y > 0. ow the function /e y + can be expanded as a Taylor series about y = 0. Specifically, we have 3 e y + = a k y k k=0 for some real numbers a k. Using this information, we find that A n, n, 3 n, 4 n,... y 0+ n e y n e y + 3 n e 3y 4 n e 4y + dn n y 0+ dy n e y + = n n!a n.

6 On the other hand, consider the function π tan πz. This function blows up at each odd integer z = m because the denominator has a zeros there. However, from elementary calculus we know that πz lim z m π tan =. z m This makes the series expansion 4 π tan πz = z m + z + m plausible, and in fact this is correct as can be shown using techniques from complex analysis. Differentiating term-wise as before, we find that d n πz dz n π tan = n+ n! z m n+ + 5 z + m n+ Since we can use 3 to obtain 6 π tan π tan πz = π i e πiz, + πz = π i a k πi k z k. We observe that since tan z is an odd function of z we necessarily have a 0 = / and a k = 0 for all k > 0. Combining 5 and 6 and setting z = 0, we get, for odd values of n 7 m n+ = a n πi n+. But so that n + n+ + 3 n+ + = k=0 ζ + n = a n πi n+ n, which since n is odd we may write as ζ + n = a n π n+ n cos π n + 8. On the other hand, we computed whence n ζ n = A n, n, 3 n, 4 n,... = n n!a n, m n+ = a n πi n+, 9 ζ n = n n!a n n+, from which we can immediatly conclude that ζ k = 0 for k > 0 since we saw above that a k = 0 for k > 0. Thus, combining 8 and 9 we get n!ζn + = π n+ cos or by replacing n with n and rearranging, nπ 0 ζ n = π n cos π n + ζ n, n!ζn.

7 Observe that even though this a priori holds only for even n, we can see that it is also true for odd n 3 as both sides are zero in these cases. ow Euler reasons as follows: if we replace n! with Γn then both sides of 0 make sense for non-integral values of n. He thus conjectures that for all complex s for which both sides make sense, one has sπ ζ s = π s cos Γsζs. He then proceeds to verify this equation for s = / by using the fact that Γ/ = π. References [] Hardy, G.H. Divergent Series. Clarendon Press, Oxford. 949.