Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates

Similar documents
(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Supplementary Figures

Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene

Electronic Structure and Geometry Relaxation at Excited State

Theoretical Photochemistry WiSe 2016/17

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Coherence Vibrations and Electronic Excitation Dynamics in Molecular Aggregates and Photosynthetic Pigment-Proteins

5.74 Introductory Quantum Mechanics II

Quantum Master Equations for the Electron Transfer Problem

Supporting Information

Ultrafast 2D Spectroscopy of Photosynthetic Light-Harvesting Complexes

single-molecule fluorescence resonance energy transfer

Exciton transfer in the optical

Supplementary Materials

The Mechanism of Excimer Formation: An Experimental and Theoretical Study on the Pyrene Dimer: Supplementary Material

Quantum dynamics in complex environments towards biological and nanostructured systems

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Rotation and vibration of Molecules

Ψ t = ih Ψ t t. Time Dependent Wave Equation Quantum Mechanical Description. Hamiltonian Static/Time-dependent. Time-dependent Energy operator

Supplementary Figures:

Supporting Materials

What dictates the rate of radiative or nonradiative excited state decay?

i) impact of interchain interactions

Charge and Energy Transfer Dynamits in Molecular Systems

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Nonadiabatic dynamics simulations of singlet fission in 2,5-bis(fluorene-9-ylidene)-2,5-dihydrothiophene crystals. Supporting Information.

Introduction to DFTB. Marcus Elstner. July 28, 2006

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Investigation of molecular dimers in -PTCDA by ab initio methods: Binding energies, gas-to-crystal shift, and self-trapped excitons

Theoretical Photochemistry WiSe 2017/18

Electronic Structure and Transition Intensities in Rare-Earth Materials

Correlation spectroscopy

Electric properties of molecules

Room temperature phosphorescence vs thermally activated delayed fluorescence in carbazole pyrimidine cored compounds

Bridging Scales Through Wavefunction Analysis

k n (ω 01 ) k 2 (ω 01 ) k 3 (ω 01 ) k 1 (ω 01 )

Phys 622 Problems Chapter 5

Quantum chemistry and vibrational spectra

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Semiconductor quantum dots

-X 2 Σ g + Xianming Liu and Donald Shemansky. Space Environment Technologies. C.P. Malone, P. V. Johnson, J. M. Ajello, and I.

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

and states of CH 2 Non-adiabatic effects in the à 2 B 2 through coupling vibrational modes Journal of Physics: Conference Series Related content

What s the correct classical force on the nuclei

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites

Matthias Lütgens, Frank Friedriszik, and Stefan Lochbrunner* 1 Concentration dependent CARS and Raman spectra of acetic acid in carbon tetrachloride

5.80 Small-Molecule Spectroscopy and Dynamics

Born-Oppenheimer Approximation

Laser Induced Control of Condensed Phase Electron Transfer

5.74 Introductory Quantum Mechanics II

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

Strong Field Quantum Control. CAMOS Spring Meeting 2012 o

Electronic Structure and Transition Intensities in Rare-Earth Materials

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

Models for Time-Dependent Phenomena

5.80 Small-Molecule Spectroscopy and Dynamics

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3

Control of Dissipative Quantum systems By a Non-Markovian Master equation approach. Christoph Meier. LCAR-IRSAMC Université Paul Sabatier, Toulouse

TIME-RESOLVED LUMINESCENCE SPECTRA IN COLORLESS ANATASE TiO 2 SINGLE CRYSTAL

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

Pure and zero-point vibrational corrections to molecular properties

Electronic Structure and Transition Intensities in Rare-Earth Materials

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Appendix A. The Particle in a Box: A Demonstration of Quantum Mechanical Principles for a Simple, One-Dimensional, One-Electron Model System

Quantum Theory of Many-Particle Systems, Phys. 540

SUPPORTING INFORMATION. Photo-induced electron transfer study of an organic dye anchored on the surfaces of TiO 2 nanotubes and nanoparticles

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

Supporting Information: Photochemical Control of Exciton Superradiance in Light Harvesting Nanotubes

Supplementary information for the paper

Molecular orbitals, potential energy surfaces and symmetry

Beyond mean-field study on collective vibrations and beta-decay

Supplementary Information Direct Observation of the Ultrafast Exciton Dissociation in Lead-iodide Perovskite by 2D Electronic Spectroscopy

Chem 442 Review of Spectroscopy

Journal of Theoretical Physics

Heyrovský Sq. 2, Prague 6, Czech Republic. Na Slovance 2, Prague 8, Czech Republic. 1. Introduction

Fluorescence Spectroscopy

Ab initio calculations of f-orbital electron-phonon interaction in laser cooling

Unveiling the role of hot charge-transfer states. in molecular aggregates via nonadiabatic. dynamics

An analytical model for vibrational non-born Oppenheimer induced electron ejection in molecular anions

Renner-Teller Effect in Tetra-Atomic Molecules

Supporting information for Metal-semiconductor. nanoparticle hybrids formed by self-organization: a platform to address exciton-plasmon coupling

SUPPLEMENTARY INFORMATION

Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics

eigenvalues eigenfunctions

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

ICD - THE DECAY WIDTHS I

Transition probabilities and couplings

12.2 MARCUS THEORY 1 (12.22)

Ivan Kondov,, Martin Čížek, Claudia Benesch, Haobin Wang,*, and Michael Thoss*,

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

Understanding Electronic Excitations in Complex Systems

Transcription:

Symposium, Bordeaux Vibronic quantum dynamics of exciton relaxation/trapping in molecular aggregates Alexander Schubert Institute of Physical and Theoretical Chemistry, University of Würzburg November 7, 2012 Alexander Schubert Exciton trapping in aggregates 1 / 17

Perylene Bisimide (PBI) 3,4,9,10-perylene tetracarboxylic bisimide acid PBI 1,2 : n-type semi-conductor intense photoluminescence robust & air-stable functionalizing of up to 12 positions self-aggregating 1 F. Würthner: Chem. Commun., 11 1564, (2004). 2 C. Li & H. Wonneberger: Adv. Mat., 24(5), (2012). Alexander Schubert Exciton trapping in aggregates 2 / 17

Perylene Bisimide (PBI) 3,4,9,10-perylene tetracarboxylic bisimide acid PBI 1,2 : n-type semi-conductor intense photoluminescence robust & air-stable functionalizing of up to 12 positions self-aggregating Self-assembled π π-stack (H-aggregate) 1 F. Würthner: Chem. Commun., 11 1564, (2004). 2 C. Li & H. Wonneberger: Adv. Mat., 24(5), (2012). Alexander Schubert Exciton trapping in aggregates 2 / 17

Perylene Bisimide (PBI) 3,4,9,10-perylene tetracarboxylic bisimide acid PBI 1,2 : n-type semi-conductor intense photoluminescence robust & air-stable functionalizing of up to 12 positions self-aggregating Self-assembled π π-stack (H-aggregate) Drawback: disappointing aggregat properties 1 F. Würthner: Chem. Commun., 11 1564, (2004). 2 C. Li & H. Wonneberger: Adv. Mat., 24(5), (2012). Alexander Schubert Exciton trapping in aggregates 2 / 17

Photoinduced Processes 1 Photoabsorption delocalized state 1 2 Localization dimer state 2 3 competing processes Exciton Energy Transfer Emission Self-Trapping 1 B. A. West et al.: J. Phys. Chem. B, 115, (2010). 2 I. A. Howard et al.: J. Phys. Chem. C, 113, (2009). Alexander Schubert Exciton trapping in aggregates 3 / 17

Photoinduced Processes 1 Photoabsorption delocalized state 1 2 Localization dimer state 2 3 competing processes Exciton Energy Transfer Emission Self-Trapping 1 B. A. West et al.: J. Phys. Chem. B, 115, (2010). 2 I. A. Howard et al.: J. Phys. Chem. C, 113, (2009). Alexander Schubert Exciton trapping in aggregates 3 / 17

Photoinduced Processes 1 Photoabsorption delocalized state 1 2 Localization dimer state 2 3 competing processes Exciton Energy Transfer Emission Self-Trapping 1 B. A. West et al.: J. Phys. Chem. B, 115, (2010). 2 I. A. Howard et al.: J. Phys. Chem. C, 113, (2009). Alexander Schubert Exciton trapping in aggregates 3 / 17

Absorption & emission spectra Monomer model 1 single vibrational mode (harmonic) ω, q eq., E electronic state transition? 1 J. Seibt et al.: Chem. Phys., 328, (2006). Alexander Schubert Exciton trapping in aggregates 4 / 17

Absorption & emission spectra Monomer model 1 single vibrational mode (harmonic) ω, q eq., E Dimer model Absorption Emission dipole-dipole coupling (ĤM M H ex = Ĵ Ĵ Ĥ M M geometry dependence (static) ) red-shifted, broad emission band Quantum chemical (TD-HF) calculation 2 : torsional mode φ adiabatic, ab-initio PECs red-shift long radiative lifetime 3 electronic state transition? 1 J. Seibt et al.: Chem. Phys., 328, (2006). Alexander Schubert Exciton trapping in aggregates 4 / 17

Absorption & emission spectra Monomer model 1 single vibrational mode (harmonic) ω, q eq., E Dimer model Absorption Emission dipole-dipole coupling (ĤM M H ex = Ĵ Ĵ Ĥ M M geometry dependence (static) ) red-shifted, broad emission band Quantum chemical (TD-HF) calculation 2 : torsional mode φ adiabatic, ab-initio PECs red-shift long radiative lifetime 3 electronic state transition? 1 J. Seibt et al.: Chem. Phys., 328, (2006). 2 R. F. Fink et al.: J. Am. Chem. Soc., 130, (2008). 3 I. A. Howard et al.: J. Phys. Chem. C, 113, (2009). Alexander Schubert Exciton trapping in aggregates 4 / 17

Absorption & emission spectra Monomer model 1 single vibrational mode (harmonic) ω, q eq., E Dimer model Absorption Emission dipole-dipole coupling (ĤM M H ex = Ĵ Ĵ Ĥ M M geometry dependence (static) ) red-shifted, broad emission band Quantum chemical (TD-HF) calculation 2 : torsional mode φ adiabatic, ab-initio PECs red-shift long radiative lifetime 3 electronic state transition? 1 J. Seibt et al.: Chem. Phys., 328, (2006). 2 R. F. Fink et al.: J. Am. Chem. Soc., 130, (2008). 3 I. A. Howard et al.: J. Phys. Chem. C, 113, (2009). Alexander Schubert Exciton trapping in aggregates 4 / 17

Transient absorption spectroscopy aggregate signal OD [%] 0,0-0,5 0,0 Delay time [ps] 0,5 PBI Fit 1,0 Solvent monomer signal Fit components: oscillation τ=215 fs step function 0,0 0,5 Delay time [ps] 1,0 S. Lochbrunner, Uni Rostock E. Riedle, I. Pugliesi, LMU Munich exponential decay of stimulated emission signal (τ = 215 fs) = ultrafast de-population of the excited state Alexander Schubert Exciton trapping in aggregates 5 / 17

The dimer model The role of charge transfer states quantum chemical description 1 HOMO-LUMO transitions 4 electronic states 2 find induced nuclear motion 3 high-level ab initio computations 4 (mixed) adiabatic PECs and electronic properties 4 diabatization 4 coupled diabatic states 5 set up exact kinetic energy operator 6 include dissipation effects Excitation energy φ{1,...,4} g Orbital energy M M* ζ1 M* M ζ2 M + M ζ3 adiabatic energy levels Frenkel states Charge transfer states LUMO HOMO M M + ζ4 Alexander Schubert Exciton trapping in aggregates 6 / 17

The dimer model The role of charge transfer states quantum chemical description 1 HOMO-LUMO transitions 4 electronic states 2 find induced nuclear motion 3 high-level ab initio computations 4 (mixed) adiabatic PECs and electronic properties 4 diabatization 4 coupled diabatic states 5 set up exact kinetic energy operator 6 include dissipation effects Excitation energy φ{1,...,4} g Orbital energy M M* ζ1 M* M ζ2 M + M ζ3 adiabatic energy levels Frenkel states Charge transfer states LUMO HOMO M M + ζ4 Alexander Schubert Exciton trapping in aggregates 6 / 17

The dimer model The role of charge transfer states quantum chemical description 1 HOMO-LUMO transitions 4 electronic states 2 find induced nuclear motion 3 high-level ab initio computations 4 (mixed) adiabatic PECs and electronic properties excited state dynamics 4 diabatization 4 coupled diabatic states 5 set up exact kinetic energy operator 6 include dissipation effects Excitation energy φ{1,...,4} g Orbital energy M M* ζ1 M* M ζ2 M + M ζ3 adiabatic energy levels Frenkel states Charge transfer states LUMO HOMO M M + ζ4 Alexander Schubert Exciton trapping in aggregates 6 / 17

The effective mode groundstate structure q = 0 deformational mode q q = 0: neutral (ground state) geometry monomer distance: 3.3Å, torsional angle: 30 q = 1: combined dimer: anionic and cationic structure else: linear inter- and extrapolation Alexander Schubert Exciton trapping in aggregates 7 / 17

The effective mode groundstate structure relaxed anion structure ( 20) relaxed cation structure ( 20) q = 0 q = 1 q = 1 deformational mode q q = 0: neutral (ground state) geometry monomer distance: 3.3Å, torsional angle: 30 q = 1: combined dimer: anionic and cationic structure stabilization of charge transfer states? else: linear inter- and extrapolation Alexander Schubert Exciton trapping in aggregates 7 / 17

Potential Energy Curves 3,5 V4 ad 1,0 A ad 4 potential energy V ad [ev] na 3,0 V2 ad V1 ad V3 ad CT character A ad na 0,8 0,6 0,4 0,2 A ad 2 A ad 1 A ad 3 2,5-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q ab initio computations adiabatic Potential Energy Curves groundstate (SCS-MP2) 4 excited states (SCS-CC2) avoided crossings 0,0-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q Alexander Schubert Exciton trapping in aggregates 8 / 17

Potential Energy Curves 3,5 V4 ad 1,0 A ad 4 potential energy V ad [ev] na 3,0 V2 ad V1 ad V3 ad CT character A ad na 0,8 0,6 0,4 0,2 A ad 2 A ad 1 A ad 3 2,5-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q ab initio computations adiabatic Potential Energy Curves groundstate (SCS-MP2) 4 excited states (SCS-CC2) avoided crossings 0,0-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q Character analysis via projection in monomer MO basis (Löwdin orthogonalization) electronical structure Alexander Schubert Exciton trapping in aggregates 8 / 17

Diabatization Hamilton-Operator Ĥ = ˆV (R) + ˆT R in electronic bases: {φ n(r)}: adiabatic basis (ab initio basis) H ad nm H ad = n,m φ {}}{ n φ n ˆV + ˆT φ m r φ m {ξ n f(r)}: diabatic basis T d diagonal Unitary transformation UT ad U 1 = T d UV ad U 1 = V d non-diagonal coordinate coupling Alexander Schubert Exciton trapping in aggregates 9 / 17

Diabatization Hamilton-Operator Ĥ = ˆV (R) + ˆT R in electronic bases: {φ n(r)}: adiabatic basis (ab initio basis) H ad nm H ad = n,m φ {}}{ n φ n ˆV + ˆT φ m r φ m {ξ n f(r)}: diabatic basis T d diagonal Unitary transformation UT ad U 1 = T d UV ad U 1 = V d non-diagonal coordinate coupling Alexander Schubert Exciton trapping in aggregates 9 / 17

Diabatization Hamilton-Operator Ĥ = ˆV (R) + ˆT R in electronic bases: {φ n(r)}: adiabatic basis (ab initio basis) H ad nm H ad = n,m φ {}}{ n φ n ˆV + ˆT φ m r φ m V ad nn = φ n Ĥel φ n r (R) diagonal T ad nm = δ nm ˆTR + 2 φ n R φ m r (R) R + φ n 2 R φm r (R) non-adiabatic, derivative (kinetic) coupling {ξ n f(r)}: diabatic basis T d diagonal Unitary transformation UT ad U 1 = T d UV ad U 1 = V d non-diagonal coordinate coupling non-diagonal Alexander Schubert Exciton trapping in aggregates 9 / 17

Diabatization Hamilton-Operator Ĥ = ˆV (R) + ˆT R in electronic bases: {φ n(r)}: adiabatic basis (ab initio basis) H ad nm H ad = n,m φ {}}{ n φ n ˆV + ˆT φ m r φ m V ad nn = φ n Ĥel φ n r (R) diagonal T ad nm = δ nm ˆTR + 2 φ n R φ m r (R) R + φ n 2 R φm r (R) non-adiabatic, derivative (kinetic) coupling {ξ n f(r)}: diabatic basis T d diagonal Unitary transformation UT ad U 1 = T d UV ad U 1 = V d non-diagonal coordinate coupling non-diagonal Alexander Schubert Exciton trapping in aggregates 9 / 17

Diabatization Hamilton-Operator Ĥ = ˆV (R) + ˆT R in electronic bases: {φ n(r)}: adiabatic basis (ab initio basis) H ad nm H ad = n,m φ {}}{ n φ n ˆV + ˆT φ m r φ m V ad nn = φ n Ĥel φ n r (R) diagonal T ad nm = δ nm ˆTR + 2 φ n R φ m r (R) R + φ n 2 R φm r (R) non-adiabatic, derivative (kinetic) coupling {ξ n f(r)}: diabatic basis T d diagonal Unitary transformation UT ad U 1 = T d UV ad U 1 = V d non-diagonal coordinate coupling Task: eigenvalues of V d resemble adiabatic PECs Problem: not unambiguous non-diagonal Alexander Schubert Exciton trapping in aggregates 9 / 17

Diabatization {ζ n}: diabatic basis of localized MO orbitals to define CT-character operator  = ζ CT 1 ζ CT 1 + ζ CT 2 ζ CT 2 A ad n (R) = ζ 3 φ n r (R) 2 + ζ 4 φ n r (R) 2 A d n (R 0) = ζ 3 ξ n r 2 + ζ 4 ξ n r 2 constant known Alexander Schubert Exciton trapping in aggregates 10 / 17

Diabatization {ζ n}: diabatic basis of localized MO orbitals to define CT-character operator conditions for V d : Â = ζ CT 1 ζ CT 1 + ζ CT 2 ζ CT 2 A ad n (R) = ζ 3 φ n r (R) 2 + ζ 4 φ n r (R) 2 A d n (R 0) = ζ 3 ξ n r 2 + ζ 4 ξ n r 2 1 U 1 V d U = V ad 2 U 1 A d }{{} const. U = A ad constant known Alexander Schubert Exciton trapping in aggregates 10 / 17

Diabatization conditions for V d : U 1 V d U = V ad U 1 A d U = A ad 3,5 100 1,0 A ad 4 potential energy [ev] 3,0 V4 d V3 d V2 d V1 d V4 ad V3 ad V2 ad V1 ad coupling elements V d nd 4 [mev] 80 60 40 20 V d 14 V d 34 na CT character A ad 0,8 0,6 0,4 0,2 A ad 2 A ad 1 2,5-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q dashed line: constructed diabatic curves (V d n ) solid lines: eigenvalues of V d (V ad n ) dots: ab initio computations V24 d 0-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q 0,0 A ad 3-0,5 0,0 0,5 1,0 1,5 2,0 coordinate q solid lines: unitary transformation of constant CT elements dots: ab initio CT characters Alexander Schubert Exciton trapping in aggregates 11 / 17

kinetic energy operator + dissipation kinetic energy exact treatment of ˆT R B. Podolsky, Phys. Rev., 32(5), (1928). linear, one-dimensional motion effective mass approach ˆT q = 2 2 j,k g 1 4 [ g 1 2 g jk ] g 1 4 q j q k Alexander Schubert Exciton trapping in aggregates 12 / 17

kinetic energy operator + dissipation kinetic energy exact treatment of ˆT R B. Podolsky, Phys. Rev., 32(5), (1928). linear, one-dimensional motion effective mass approach ˆT q = 2 2 j,k = 1 2 m eff [ g jk q j q k ( ) 2, where m eff = ( m α q α ] x (q=1) α ) x (q=0) 2 α Alexander Schubert Exciton trapping in aggregates 12 / 17

kinetic energy operator + dissipation kinetic energy exact treatment of ˆT R B. Podolsky, Phys. Rev., 32(5), (1928). linear, one-dimensional motion effective mass approach Dissipation ˆT q = 2 2 j,k = 1 2 m eff [ g jk q j q k ( ) 2, where m eff = ( m α q α simplified stochastic Hamiltonian: energy-dependent damping term Ĥn diss d = i λ Ĥd n d and renormalization Ψ d n d (q, t + t) = Ψ d n d (q,t+ t) 4n=1 Ψ d n (q,t+ t) 2 dq ] x (q=1) α ) x (q=0) 2 α Alexander Schubert Exciton trapping in aggregates 12 / 17

kinetic energy operator + dissipation kinetic energy exact treatment of ˆT R B. Podolsky, Phys. Rev., 32(5), (1928). linear, one-dimensional motion effective mass approach Dissipation ˆT q = 2 2 j,k = 1 2 m eff [ g jk q j q k ( ) 2, where m eff = ( m α q α simplified stochastic Hamiltonian: energy-dependent damping term Ĥn diss d = i λ Ĥd n d and renormalization Ψ d n d (q, t + t) = Ψ d n d (q,t+ t) 4n=1 Ψ d n (q,t+ t) 2 dq ] x (q=1) α ) x (q=0) 2 α Alexander Schubert Exciton trapping in aggregates 12 / 17

resulting dynamics population 1,0 0,5 0,0 1,0 nd = 1 nd = 2 nd = 4 Ψ d nd Ψd nd q (t) Ψ d nd (q, t) 2 coordinate q 0,0-1,0 1,0 0,0-1,0 nd = 2 nd = 1 0,0 0,2 0,4 0,6 0,8 1,0 Time t [ps] Alexander Schubert Exciton trapping in aggregates 13 / 17

summarized picture Alexander Schubert Exciton trapping in aggregates 14 / 17

summarized picture OD [%] 0,0-0,5 0,0 Delay time [ps] 0,5 PBI Fit 1,0 Solvent Fit components: oscillation τ=215 fs step function 0,0 0,5 Delay time [ps] 1,0 intensity [arb. units.] Ex = 0, 11 ev Ex = 0, 01 ev 0,0 0,5 1,0 time t [ps] Alexander Schubert Exciton trapping in aggregates 14 / 17

quantum beating simultaneous excitation of two modes E q, E x Ψ, t = c 00 Ψ 00 e i E 00t intensity [arb. units.] E x = 0, 11 ev E x = 0, 01 ev 0,0 0,5 1,0 time t [ps] beating signal +c 10 Ψ 10 e i E 10t +c 01 Ψ 01 e i E 01t +c 11 Ψ 11 e i E 11t Ψ, t  Ψ, t 2 cos [ Ex t/ ] +2 cos [ E q t/ ] + cos [ ( E x + E q) t/ ] + cos [ E x E q t/ ] Alexander Schubert Exciton trapping in aggregates 15 / 17

first insights in localization processes Mr1 M r2 M r1 Mr2 energy ω r2 W (t) r1 M-M excited Dimer time-dependent perturbation Localization J. Wehner et al.: Chem. Phys. Lett., 541, (2012). Alexander Schubert Exciton trapping in aggregates 16 / 17

first insights in localization processes Mr1 M r2 M r1 Mr2 energy resonant r2 W (t) r1 M-M excited Dimer time-dependent perturbation Localization J. Wehner et al.: Chem. Phys. Lett., 541, (2012). Alexander Schubert Exciton trapping in aggregates 16 / 17

first insights in localization processes M-M excited Dimer M-M-M excited Trimer M-M-M time-dependent perturbation Localization J. Wehner et al.: Chem. Phys. Lett., 541, (2012). Alexander Schubert Exciton trapping in aggregates 16 / 17

PBI Spectroscopy Quantum Chemistry Diabatization Trapping dynamics Localization Acknowledgement Acknowledgement Workgroup Engel (W urzburg) Prof. Dr. Volker Engel Johannes Wehner Workgroup Engels (W urzburg) Prof. Dr. Bernd Engels Prof. Dr. Reinhold F. Fink Volker Settels Dr. Wenlan Liu Prof. Dr. Stefan Lochbrunner (Rostock) Prof. Dr. Frank W urthner (W urzburg) Alexander Schubert GRK 1221 FOR1809 Exciton trapping in aggregates 17 / 17