Chapter 11 INTEGRAL EQUATIONS

Similar documents
Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116

Chapter 3 Linear Equations of Higher Order (Page # 144)

Fourier Techniques Chapters 2 & 3, Part I

1973 AP Calculus BC: Section I

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

82A Engineering Mathematics

( A) ( B) ( C) ( D) ( E)

Boyce/DiPrima/Meade 11 th ed, Ch 4.1: Higher Order Linear ODEs: General Theory

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

Approximate solutions for the time-space fractional nonlinear of partial differential equations using reduced differential transform method

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Response of LTI Systems to Complex Exponentials

Continous system: differential equations

Variational iteration method: A tools for solving partial differential equations

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Laguerre wavelet and its programming

Variational Iteration Method for Solving Initial and Boundary Value Problems of Bratu-type

Fractional Complex Transform for Solving the Fractional Differential Equations

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

Approximation of Functions Belonging to. Lipschitz Class by Triangular Matrix Method. of Fourier Series

What Is the Difference between Gamma and Gaussian Distributions?

Poisson Arrival Process

NAME: SOLUTIONS EEE 203 HW 1

Department of Mathematics. Birla Institute of Technology, Mesra, Ranchi MA 2201(Advanced Engg. Mathematics) Session: Tutorial Sheet No.

From Fourier Series towards Fourier Transform

Note 6 Frequency Response

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

Modified Variational Iteration Method for the Solution of nonlinear Partial Differential Equations

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

1.7 Vector Calculus 2 - Integration

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Elementary Differential Equations and Boundary Value Problems

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

EXERCISE - 01 CHECK YOUR GRASP

, R we have. x x. ) 1 x. R and is a positive bounded. det. International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:10 No:06 11

An Analytical Study on Fractional Partial Differential Equations by Laplace Transform Operator Method

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

Numerical KDV equation by the Adomian decomposition method

1985 AP Calculus BC: Section I

Poisson Arrival Process

Application of Homotopy Analysis Method for Solving Linear and Nonlinear Differential Equations with Fractional Orders

Chapter Taylor Theorem Revisited

EEE 303: Signals and Linear Systems

Fourier Series: main points

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Discrete Fourier Transform (DFT)

Mixing time with Coupling

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 6-2 Yıl:

Wave Equation (2 Week)

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

ON H-TRICHOTOMY IN BANACH SPACES

ECE351: Signals and Systems I. Thinh Nguyen

ECEN620: Network Theory Broadband Circuit Design Fall 2014

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 12 Introduction To The Laplace Transform

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Chap.3 Laplace Transform

Consider a system of 2 simultaneous first order linear equations

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

ANALYTICAL EXPRESSION FOR THE NON-ISOTHERMAL EFFECTIVENESS FACTOR: The n th -order reaction in a slab geometry

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

International Journal of Modern Mathematical Sciences, 2013, 5(3): International Journal of Modern Mathematical Sciences

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Midterm exam 2, April 7, 2009 (solutions)

Lecture 4: Laplace Transforms

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

15. Numerical Methods

UNIT I FOURIER SERIES T

Gauge Theories. Elementary Particle Physics Strong Interaction Fenomenology. Diego Bettoni Academic year

Finite Fourier Transform

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

UNIT III STANDARD DISTRIBUTIONS

Linear Systems Analysis in the Time Domain

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Fixed Point Theorems for (, )-Uniformly Locally Generalized Contractions

The Log-Gamma Distribution and Non-Normal Error

PURE MATHEMATICS A-LEVEL PAPER 1

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

Intrinsic formulation for elastic line deformed on a surface by an external field in the pseudo-galilean space 3. Nevin Gürbüz

FourierSpectralMethodsforNumericalSolvingoftheKuramotoSivashinskyEquation

DIFFERENTIAL EQUATIONS MTH401

Mixture of a New Integral Transform and Homotopy Perturbation Method for Solving Nonlinear Partial Differential Equations

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

Adomian Decomposition Method for Dispersion. Phenomena Arising in Longitudinal Dispersion of. Miscible Fluid Flow through Porous Media

Transcription:

hapr INTERAL EQUATIONS

hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar Opraors - coios opraors - bodd opraors. Igral Opraor.4 Igral qaios - Frdholm igral qaios - Volrra igral qaios - igro-dirial qaios - solio o igral qaio.5 Solio hods or Igral Eqaios. hod o sccssiv approimaios or Frdholm IE (Nma sris). hod o sccssiv sbsiios or Frdholm IE (Rsolv mhod). hod o sccssiv approimaios or Volrra IE.6 ocio bw igral qaios ad iiial ad bodary val problms. Rdcio o IVP o h Volrra IE. Rdcio o h Volrra IE o IVP. Rdcio o BVP o h Frdholm IE.7 Erciss Fr Topics:.7 Fid poi horm (s also [Hochsad Igral qaios, p.5]) Elmary isc horms.8 Pracical applicaios (s also [Jrri Irodcio o Igral Eqaios wih Applicaios ]).9 Ivrs problms (s also [ Jrri, p.7])

hapr INTERAL EUATIONS Dcmbr 4, 8. Normd Vcor Spacs W will sar wih som diiios ad rsls rom h hory o ormd vcor spacs which will b dd i his chapr.. Eclidia vcor spac Th -dimsioal Eclidia vcor spac cosiss o all pois { (,,..., ) } or which h ollowig opraios ar did: Scalar prodc (, y) y y... y,y,... Norm ( ) Disac ρ (,y) y ovrgc lim i lim. Vcor spac ( ) Vcor spac ( ) cosiss o all ral vald coios cios did o h closd domai : : D coios { } ( ) ( ) Norm ma ( ) ovrgc lim i lim. Vcor spac L ( ) Th spac o cios igrabl accordig o Lbsg (s Scio.) 4. achy-byaovsy Iqaliy Ir prodc ( ) ( ) ( ) Norm L ( ) ( ) ( ) : d<,g g d ( ) ( ), d Th ollowig propry ollows rom h diiio o h Lbsg igral ( ) d ( )d (,g) g or all,g L ( ) Proo: I,g L ( ), h cios, g ad ay combiaio α β g ar also igrabl ad hror blog o L ( ). osidr ( ) λ g L, λ R or which w hav

hapr INTERAL EUATIONS Dcmbr 4, 8 ( λ g ) d d λ g d λ g d Th righ had sid is a qadraic cio o λ. Bcas his cio is o-gaiv, is discrima is o-posiiv 4 g d 4 d g d g d d g d (,g) g 5. iowsi Iqaliy ( rd propry o h orm) rom which h claimd iqaliy yilds (,g) g bcas (, g) gd g d g d. g g or all,g L ( ) Proo: osidr g ( g, g) (, ) (, g) ( g, ) ( g, g) (, g) ( g, ) g g g rom -B iqaliy ( g ) Th racio o h sqar roo yilds h claimd rsl. No ha h iowsi iqaliy rdcs o qaliy oly i cios ad g ar qal p o h scalar mlipl, αg, α R (why?).

hapr INTERAL EUATIONS Dcmbr 4, 8. Liar Opraors L ad N b wo liar ormd vcors spacs wih orms ad, N corrspodigly. W di a opraor L as a map (cio) rom h vcor spac o h vcor spac N : L : N Irodc h ollowig diiios cocrig h opraors i h vcor spacs: Opraor L : N is liar i L( α βg) αl βlg or all, g ad all α, β R Opraor L : N is coios i rom i ollows L L i N (h imag o h covrg sqc i is a covrg sqc i N ) Opraor L : N is bodd i hr iss c > sch ha L c or all N Th orm o opraor o sch cosa c L : N ca b did as h gras lowr bod L L sp N Thorm 7. I opraor L : N is bodd h i is coios Proo: L opraor L : N b bodd, h accordig o h diiio hr iss c > sch ha L c. L N i. Tha mas ha lim. From h diiio o h limi i ollows ha or ay ε > hr iss N sch ha < ε or all. To prov h horm, show ow ha lim L L sch ha N. W hav o show ha or ay > L L < Ε or all Ε. N L L i N or ha Ε hr iss N Ε hoos ε, h c Ε L L L( ) c < c Ε or all. N N c Ε

hapr INTERAL EUATIONS Dcmbr 4, 8. Igral Opraor osidr a opraor calld a igral opraor giv by h qaio (, y) ( y) R Obviosly, ha igral opraor is liar. Fcio (, y) rls (, y) L ( ), hror (, y) d < is calld a rl o h igral opraor. W will cosidr I a cas o R, h domai ( a,b), whr a, b ca b ii or iii. Thorm 7. L b h igral opraor wih a rl (, y) coios i [ a,b] [ a,b]. Th opraor is bodd, ad, hror, coios. orovr: ) : L ( a,b) [ a,b] b a or L ( a,b) ) : L ( a,b) L ( a,b) ( b a) or L ( a,b) ) : [ a,b] [ a,b] ( b a) or [ a,b] Proo: Sic (, y) is coios i h closd domai [,b] [ a,b] > sch ha ma (, y).,y [ a,b ] ) L L ( a,b). Th bcas cio (, y) [ a,b] [ a,b], h cio ( )( ) is coios i [ a,b] : L ( a,b) [ a,b]. osidr ma a, b ( )( ) [ ] ma [ a,b ] b a (, y) ( y) a, hr iss is coios i, ad, hror ma [ a,b ] ( (, y), ( y) ) ma (rom achy-byaowsi iqaliy) [ a,b ] ma [ a,b ] b a (, y) b ma [ a,b ] a b a

hapr INTERAL EUATIONS Dcmbr 4, 8 ) (( )( ),( )( ) ) ( )( ) b a d b b a a (, y) ( y) d b a d b b a a (, y) d b b a a d b b a a ( b a) d ) Ercis

hapr INTERAL EUATIONS Dcmbr 4, 8.4 Igral Eqaios Igral qaios ar qaios i which h ow cio is dr h, igral sig. Th ypical igral qaios or ow cio ( ) R (i his chapr, w cosidr ( a,b) R i h orm o igral opraor wih h rl (, y) ) icld igral rm (, y) ( y) Th mai yps o igral qaios ar h ollowig: I Frdholm igral qaio ) Frdholm s igral qaio o h s id: (, y) ( y) ( ) o-homogos q (, y) ( y) homogos q ) Frdholm s igral qaio o h d id: λ is a paramr ( ) (, y) ( y) ( ) λ λ o-homogos q ( ) (, y) ( y) λ λ homogos q II Volrra igral qaio L (,a) R (, y) is calld a Volrra rl i (, y). a y or < < y < a ) Volrra s igral qaio o h s id: (, y) ( y) ( ) ) Volrra s igral qaio o h d id: ( ) λ (, y) ( y) ( ) a III Igro-Dirial Eqaio iclds a ow cio dr h igral sig ad also ay drivaiv o h ow cio. For ampl: d ( ) (, y) ( y) ( ) d A impora rprsaio o h igro-dirial qaio is a Radiaiv Trasr Eqaio dscribig rgy raspor i h absorbig, miig ad scarig mdia (aalogos qaios appar i h hory o ro raspor). Som ohr yps o igral qaios will b cosidrd i h Scio 8..4.

hapr INTERAL EUATIONS Dcmbr 4, 8 Solio o igral qaio is ay cio ( ) saisyig his qaio: λ o-homogos qaio λ homogos qaio Th val o h paramr λ or which h homogos igral qaio has a o-rivial solio L which is calld a igval o h rl (, y), ad h corrspodig solio is calld a igcio o his rl. Eigval problm W will disigish igval problms or h igral rl (igral qaio): λ ad or h igral opraor λ Th igvals o h igral opraor ar rcipical o igvals o h igral rl, ad igcios ar h sam i boh cass.

hapr INTERAL EUATIONS Dcmbr 4, 8.5 Solio hods or Igral Eqaios. Th hod o Sccssiv Approimaios or Frdholm s Igral Eqaio For h igral qaio λ h ollowig iraios o h mhod o sccssiv approimaios ar s by: ( ) ( ) ( ) λ,,... Lmma 7. ( ) λ whr ( ( )) ims Proo by mahmaical idcio (assm ha h ormla or is r): ( ) λ coirmd ( ) ( ) λ by diiio λ λ by assmpio λ liariy p p λ chag o id p λ p p λ p p p p λ p λ chag o id p Nma Sris λ is calld o b h Nma Sris Esimaio o iraios ( ) ( b a) Thorm 7. () ( b a) ( b a)

hapr INTERAL EUATIONS Dcmbr 4, 8 λ λ ( b a) [ ( b a) ] λ gomric sris λ ( b a) covrgs i λ < ( b a) Thror, h Nma sris λ covrgs or Do h sm o h Nma sris as a cio ( ) : λ <. ( b a) ( ) λ Show ha his cio saisis igral h qaio iraios ( ) λ h lim ( ) ( ) λ lim b ( ) (, y) lim ( y) λ a b λ a (, y) ( y) λ. osidr Ad, rcallig simaio, ( ) λ ( b a) Show ha his solio is iq. For ha, i is ogh o show ha h homogos qaio λ has oly a rivial solio. Idd, i λ, h [ a,b] ad, accordig o Thorm 6. ), λ b a, h ( ) ( b a) λ [ ] [ ] > Bcas λ <, ( b a) ( b a) yilds, ha ( ) or all [ a,b] homogos qaio. λ ad, hror,. Tha. So, oly h rivial solio iss or h Th o-homogos qaio λ ca b rwri i h orm ( I λ ) whr I is a idiy opraor Th solio o his qaio ca b rad as a ivrsio o h opraor ( I λ ) Thror, i λ <, h hr iss a ivrs opraor ( I λ ). b a ( ) Th abovmiod rsls ca b ormlad i h ollowig horm:

hapr INTERAL EUATIONS Dcmbr 4, 8 Thorm 7. Frdholm s igral qaio λ wih λ < ad coios rl (, y) ( b a) iq solio ( ) [ a,b] or ay ( ) [ a,b]. This solio is giv by a covrg Nma sris has a ad saisis I λ < ( I ) λ. ( b a) ( ) λ ( ) λ ( b a), h hr iss a ivrs opraor. odiios o Thorm 7. ar oly js sici codiios; i hs codiios ar o saisid, solio o h igral qaio sill ca iss ad h Nma sris ca b covrg. Eampl 7. Fid h solio o h igral qaio ( ) ( y) by h mhod o sccssiv approimaios ad i h orm o h Nma sris. Idiy: (, y) ( ) b a λ hc codiio: λ < < < ( b a) ) iraios: ( ) ( ) y ( y) ( ) ( ) ( ) ( y) [ ] Th solio o h igral qaio is a limi o iraios ( ) lim ( ) lim This rsl ca b validad by a dirc sbsiio io h giv igral qaio.

hapr INTERAL EUATIONS Dcmbr 4, 8 ) Nma sris: ( ) λ ( ) λ λ ( ) ( ) Th h Nma sris is ( ) ( ) ( ) ( ) ( ) ( ) ( ) So, h Nma sris approach prodcs h sam solio.

hapr INTERAL EUATIONS Dcmbr 4, 8. Th hod o Sccssiv Sbsiios or Frdholm s Igral Eqaio (h Rsolv hod) Irad rl L igral opraor has a coios rl (, y) Rpad opraor ( ) ( ), h di:,,... I has a has a rl (, y) (, y ) ( y, y) Idd, ( )( ) (, y) ( y) ( )( ) [ ( )]( ) (, y ) ( y, y) ( y) (, y ) ( y, y) ( y) rl (, y) (, y ) ( y, y) is calld a irad rl. rls (, y) ( a,b), h (, y) ( b a) (, y ) ( y, y) ar coios, ad i domai Rsolv Fcio did by h iii sris is calld a rsolv. R (, y, λ ) λ (, y) Thorm 6.4 Solio o igral qaio λ wih coios rl (, y) is iq i [ a,b] or λ <, ad or b a ay [ a,b] is giv by b ( ) ( ) λ R(, y, λ) ( y) a i.. hr iss ivrs opraor ( I λ ) I λr, λ < ( b a) ( )

hapr INTERAL EUATIONS Dcmbr 4, 8 Eampl 6. Fid solio o igral qaio ( ) y( y) 6 8 by h rsolv mhod. Idiy: (, y) y ( ) b a 6 λ 8 hc codiio: Irad rls: (, y) y λ < < < 8 ( b a) y y y y y (, y) (, y ) ( y, y) y y y (, y) (, y ) ( y, y) y y y y (, y) y Rsolv: R (, y,λ) λ (, y) Solio: y y y y y...... 8 8 8 8 y...... 8 8 8 8 y 4 4 y ( ) ( ) λ R(, y, λ) ( y) 6 6 6 4 b 8 a 4 y y 6 y y

hapr INTERAL EUATIONS Dcmbr 4, 8. Th hod o Sccssiv Approimaios or h Volrra Igral Eqaio o h d id osidr h Volrra igral qaio o h d id (o ha qaio o h s id ca b rdcd o h d id by dirrio) ( ) λ ( ) ( ) ( ), y y whr (, y) is a coios Volrra rl. Th mhod o sccssiv approimaio is did by h ollowig iraios: ( ) ( ) ( ) λ λ Thorm 6.5 Th Volrra igral qaio o h d id ( ) λ ( ) ( ) ( ), y y wih coios Volrra rl (, y) ad wih ay λ R has a iq solio ( ) [,a] or ay ( ) [,a]. This solio is giv by a iormly covrg Nma sris ( ) λ ( )( ) ad is orm saisis λ a ( ) Eampl 6. Fid solio o igral qaio ( ) ( y) by h mhod o sccssiv approimaios. Idiy: (, y) ( ) λ ( ) (, y)( )( y) [ y ] (, y)( )( y) y y y y (, y)( )( y)! Solio: ( ) ( )( ) λ!

hapr INTERAL EUATIONS Dcmbr 4, 8.6 ocio bw igral qaios ad iiial ad bodary val problms. Rdcio o IVP o h Volrra igral qaio Eampl 7.4 Rdc IVP ( ) o h Volrra igral qaio. Igra h dirial qaio rom o : ( ) d ( ) d ( ) d ( ) ( ) d s h iiial codiio ( ) ( ) d is a Volrra qaio wih (, y). Rdcio o h Volrra igral qaio o IVP Rcall h Libiz rl or diriaio o prssios wih igrals: d b( ) b( ) g g(, y) (, y ) d a( ) I pariclarly, a( ) g [,b( ) ] ( ) db d g [,a( ) ] ( ) d da d d g ( y) g( ) d g g(, y) (, y ) d g (, ) Rdcio o h Volrra igral qaio o IVP is prormd by cosciv diriaio o h igral qaio wih rspc o variabl ad sbsiio or sig o h iiial codiios. Eampl 7.5 Rdc h Volrra igral qaio ( ) ( y) ( y) iiial val problm. sbsi o g iiial codiio ( ) ( y) ( y) ( ) ( y) ( y) ( )

hapr INTERAL EUATIONS Dcmbr 4, 8 ( ) ( y) ( y) ( ) ( y) ( y) ( ) ( ) ( y) ( ) ( y) ( ) ( ) 6 ( ) Thror, h igral qaio is rdcd o IVP or rd ordr ODE: ( ) 6 ( ) ( ) ( ) ( ). Rdcio o BVP o h Frdholm igral qaio Rcall rpad igraio ormlas: d d d d d ( ) ( ) ( ) (! ) Eampl 7.6 Rdc h bodary val problm y y, ( ) ( ) ( ) y ( ) y( ) o h Frdholm igral qaio. S y ( ) ( ) igra y ( ) d ( ) y d ( ) y ( ) ( ) igra [ y ( ) y ( ) ] d ( ) d d Us h irs bodary codiio I his prssio, ( ) y y y d ( ) y( ) y ( ) ( ) d d ( ) y( ) y ( ) ( ) ( )d rpad igraio ( ) y ( ) ( ) ( )d y is o ow. Sbsi ad apply h scod bodary codiio

hapr INTERAL EUATIONS Dcmbr 4, 8 ( ) ( ) ( ) ( )d y y ( ) ( ) ( )d y Solv or ( ) y ( ) ( ) ( )d y Th ( ) y ( ) ( ) ( ) ( )d d ( ) ( ) ( ) ( )d d Now sbsi his prssio or ( ) y ad ( ) ( ) y io h origial dirial qaio ( ) ( ) ( ) ( ) d d ( ) ( ) ( ) ( ) d d ( ) ( ) ( ) ( )d d ( ) ( ) ( ) ( ) ( ) ( )d d d ( ) ( ) ( ) ( ) ( ) ( )d d d ( ) ( ) ( ) ( ) ( ) ( )d d d ( ) ( ) ( ) ( ) ( )d d ( ) ( ) ( ) ( )d d I yilds a Frdholm igral qaio ( ) ( ), d wih a rl ( ) ( ) ( ),

Erciss hapr INTERAL EUATIONS Dcmbr 4, 8. Prov par ) o h Thorm 6... lassiy ach o h ollowig igral qaios as Frdholm or Volrra igral qaio, liar or o-liar, homogos or o-homogos, idiy h paramr λ ad h rl (,y ) : y( y ) a) ( ) b) ( ) ( ) c) ( ) y ( y ) y ( y ) d) ( ) ( ) ) ( ) y ( y ) 4 y ( y ). Rdc h ollowig igral qaio o a iiial val problm ( ) ( ) ( ) y y 4. Fid h qival Volrra igral qaio o h ollowig iiial val problm y ( ) y ( ) cos ( ) y y ( ) 5. Driv h qival Frdholm igral qaio or h ollowig bodary val problm (,) y ( ) ( ) y y y 6. Solv h ollowig igral qaios by sig h sccssiv approimaio mhod ad h rsolv mhod: a) ( ) λ ( ) y y b) ( ) ( ) cos y 4 7. Solv h ollowig igral qaio by sig h sccssiv approimaio mhod ( ) ( ) ( ) y y 8. Solv h ollowig igral qaios: a) ( ) ( ) ( ) si s si s ds as b) ( ) ( s) ds ( )