IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Similar documents
IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

LAPLACE TRANSFORMS. 1. Basic transforms

graph of unit step function t

IX.2 THE FOURIER TRANSFORM

can be viewed as a generalized product, and one for which the product of f and g. That is, does

5.1-The Initial-Value Problems For Ordinary Differential Equations

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

4.8 Improper Integrals

e t dt e t dt = lim e t dt T (1 e T ) = 1

Chapter Direct Method of Interpolation

Contraction Mapping Principle Approach to Differential Equations

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

0 for t < 0 1 for t > 0

Math Week 12 continue ; also cover parts of , EP 7.6 Mon Nov 14

Positive and negative solutions of a boundary value problem for a

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

EECE 301 Signals & Systems Prof. Mark Fowler

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Physics 2A HW #3 Solutions

MTH 146 Class 11 Notes

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Solutions to Problems from Chapter 2

( ) ( ) ( ) ( ) ( ) ( y )

Chapter 2. First Order Scalar Equations

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms

ENGI 9420 Engineering Analysis Assignment 2 Solutions

1.0 Electrical Systems

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

Exponential Decay for Nonlinear Damped Equation of Suspended String

Introduction to SLE Lecture Notes

18.03SC Unit 3 Practice Exam and Solutions

Mathematics 805 Final Examination Answers

International ejournals

6.8 Laplace Transform: General Formulas

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2008

FM Applications of Integration 1.Centroid of Area

A LOG IS AN EXPONENT.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

Average & instantaneous velocity and acceleration Motion with constant acceleration

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

CONTROL SYSTEMS. Chapter 10 : State Space Response

REAL ANALYSIS I HOMEWORK 3. Chapter 1

..,..,.,

ME 391 Mechanical Engineering Analysis

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

t s (half of the total time in the air) d?

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

Chapter 9 - The Laplace Transform

Laplace Transforms. Examples. Is this equation differential? y 2 2y + 1 = 0, y 2 2y + 1 = 0, (y ) 2 2y + 1 = cos x,

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

The order of reaction is defined as the number of atoms or molecules whose concentration change during the chemical reaction.

Laplace Examples, Inverse, Rational Form

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.

EE Control Systems LECTURE 2

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

More on ODEs by Laplace Transforms October 30, 2017

Chapter 2 : Fourier Series. Chapter 3 : Fourier Series

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

Mon Apr 9 EP 7.6 Convolutions and Laplace transforms. Announcements: Warm-up Exercise:

MAT 266 Calculus for Engineers II Notes on Chapter 6 Professor: John Quigg Semester: spring 2017

Minimum Squared Error

Differential Equations

Minimum Squared Error

Solutions - Midterm Exam

A Kalman filtering simulation

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

Some Inequalities variations on a common theme Lecture I, UL 2007

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

2. The Laplace Transform

APPENDIX 2 LAPLACE TRANSFORMS

u(t) Figure 1. Open loop control system

Network Flows: Introduction & Maximum Flow

GEOMETRIC EFFECTS CONTRIBUTING TO ANTICIPATION OF THE BEVEL EDGE IN SPREADING RESISTANCE PROFILING

Math 266, Practice Midterm Exam 2

CSC 373: Algorithm Design and Analysis Lecture 9

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

Guest Lectures for Dr. MacFarlane s EE3350 Part Deux

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

Applications of Prüfer Transformations in the Theory of Ordinary Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations

Rectilinear Kinematics

September 20 Homework Solutions

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Transcription:

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 699 IX. THE APACE TRANSFORM IX.. The plce Trnform Definiion 7 IX.. Properie 7 IX..3 Emple 7 IX..4 Soluion of IVP for ODE 74 IX..5 Soluion of he He Equion in Semi-Infinie Region 76 IX..6 Wve Equion 7 IX..7 Soluion of Inegrl Equion 74 IX..8 Review Queion nd Eercie 76 IX..9 plce Trnform wih Mple 78

7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 IX.. DEFINITION: The plce rnform of he funcion f ( ), i defined plcetrnform { f ( ) } ( ) f ( ) φ e d > M K Me f ( ) There re everl rdiionl noion ued for he plce rnform: e : ( ) φ( ) ( ) Y ( ) ( ) u( ) f : y : u The funcion i he kernel of he rnform nd i he rnform vrible. The eience condiion for he plce rnform i eblihed for funcion growing no fer hn n eponenil funcion: if here ei conn > nd M,K > uch h f ( ) Me for ll K hen he funcion f ( ) i clled of eponenil order. Theorem 9. (ufficien condiion for eience of he plce rnform) e he funcion f ( ) be piecewie coninuou on [,) nd of eponenil order wih conn > nd M >, hen ) The plce rnform ) φ ( ) M 3) ( ) 4) ( ) φ when φ i bounded when ϕ f e d ei for ll > Emple:. f ( ) e, M f ( ) e d e >. f ( ) Me f ( ) M > Invere plce rnform We define he invere plce rnform of he funcion φ ( ) n operion which yield funcion f ( ) uch h { f ( ) } φ( ) : { φ } f Here, we conider he plce rnform rericed o rel vlue of. A more generl definiion i bed on he Fourier rnform pplied o funcion which re equl o zero for negive vlue, nd he vrible i n imginry frequency: iω, < ω < iω { f ( ) } π F{ f ( ) } f ( ) e d f ( ) e d Then he invere plce rnform i defined by α + i e d π i, φ f α i >, α Re( )

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 7 IX.. PROPERTIES To clcule he plce rnform nd i invere we will ue moly he ble f φ hen: of he plce rnform nd i properie. e { } ) ineriy: Boh nd re liner: { f ( ) + bg( ) } { f ( ) } b{ g( ) } + ) Shifing in : { αφ( ) + βψ ( ) } α { φ( ) } + β { ψ ( ) } { } φ { } φ ( + ) e f e f { φ ( )} e f { φ ( + )} e f 3) Shifing in : e H( ) ( ) H hen 4) Similriy: { f ( ) } be he Heviide uni ep funcion if > if < { } φ { φ } ( ) ( ) f H e > e f H φ d d φ 5) Differeniion: { f ( ) } ( ) 6) Inegrion: f φ d 7) Convoluion: ( ) Convoluion Theorem { f g } F( ) G( ) f g f g d definiion { } F G f g 8) Trnform of derivive: { f ( ) } φ ( ) f { f ( ) } φ ( ) f f ( n ) n n n ( n { f ( ) } φ ( ) f f... f )

7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 IX..3 EXAMPES ) Uing he definiion, clcule he plce rnform of f ( ) { } e d d e : d ( e ) inegrion by pr + e e d + + { } e lime ) Derive he propery { f ( ) H( ) } e φ ( ). According o definiion of he plce rnform { ( ) ( )} ( ) ( ) f H f H e d f e d ubiue τ + ( τ) ( τ + ) f e dτ e f e τ d ( τ) e φ ( ) 3) Derive he propery { f ( ) } ( ) f { ( ) } f 4) Evlue { }. f e d e d f τ φ. move o differenil f ( ) e f ( ) d e inegrion by pr f f e d + φ f e f ( ), hen f ( ) nd { f ( ) } φ ( ) f { } { } f { } { } { } 3 In generl, for n, pplicion of propery (7) yield n! { } n n + ume lim f e f. Apply he propery

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 73 5) Inverion of he formul { } { { }} n n! n+ n! n+ n n n+ n! n! : n n + 6) Invere rnform of rionl funcion (pril frcion decompoiion): Evlue 9. + Conver rionl funcion o pril frcion (ee Secion ): + 9 ( + ) + ( ) + A B A 3 B 3 + 3 + 3 3 + 3 3 + 3 3 6 A 3 6 B Therefore + 9 A 3 B 6 3 3 6+ 3 9 + e e 3 3 6 + 3 3 6 3 3 7) Invere rnform of rionl funcion (ue convoluion heorem): Evlue. ( ) Noice h { } ( ) nd { e } { { } { e }} e ( ) e d e d e d e e e e e + e e. Then by convoluion

74 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 IX..4 Soluion of IVP for ODE The plce rnform elimine derivive nd i cn be ued for he oluion of differenil equion in emi-infinie domin, <. Bu becue he plce rnform of he derivive include vlue of he funcion nd i derivive zero, he plce rnform i more uible for iniil vlue problem rher hn for boundry vlue problem like he Fourier rnform. Emple (Soluion of IVP by he plce Trnform) Conider he nd order differenil equion y + y y in ( ) π wih wo iniil condiion π y π y π ) Trnle iniil condiion by he chnge of he vrible τ o τ : π y + y y in τ + Then iniil condiion re τ : y y. ) Apply he plce rnform Solve for Y Y + Y Y + Y Y y τ e τ dτ o equion ( ): ( + )( )( + ) 3) Then by invere plce rnform y 6 5 τ τ ( τ ) e + e coτ + inτ π Ue bck ubiuion τ o ge he oluion of he originl IVP: y 6 π 5 3 3 π + + π e e co + in π π y( )

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 75 Emple (Soluion of IVP by he plce Trnform) Solve he 3 rd order differenil equion y y y + y e ( ) ubjec o iniil condiion y y y ) Apply he plce rnform Y y τ e τ dτ o equion ( ): Y y y y Y y y Y y + Y + 3 Y Y Y + Y + 3 3 + 3 + Y + Solve for Y Y + 3 ( + )( )( )( + ) Conver hi epreion o pril frcion (ee Emple 6): Y 5 + 3 3 ( + ) ( ) ( + ) ( ) ) Then he oluion of he IVP cn be found by invere plce rnform 5 y e e e e 3 3 + y( )

76 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 IX..5 SOUTION OF THE HEAT EQUATION IN SEMI-INFINITE REGIONS ) Dirichle Problem Conider he He Equion in he emi-infinie lb for u (, ) boundry condiion u, f u (,) u (,) u (,) iniil condiion u (, ) < u u (, ), >, α u (,) iniil condiion (,) f ( ) u > Dirichle b.c. lim u, < > bounded oluion U, u, e d Trnformed equion Apply he plce rnform in he vrible o he He Equion nd o he boundry condiion u, U, u, 4 G( ) { g(,) } e e 3 π U U (,) F ( ) where U F f e d Thi i he nd order liner ODE wih conn coefficien. Generl oluion U (,) ce + ce Soluion of he HE nd correpondingly i plce rnform hould be bounded when, herefore, we hve o ign c : U (, ) c e Applying boundry condiion, one end up wih he oluion for he rnformed funcion U, F e Noe (ee Mple Emple 7) h he funcion rnform of he funcion g 4 ( ) e π 3 e i plce Then he rnformed oluion i produc of wo plce rnform: rnformed oluion U (,) F ( ) G( ) Apply he invere plce rnform uing he convoluion heorem u (, ) { } ( ) F G f g f τ g τ dτ Then he oluion i given in erm of convoluion inegrl 4( τ ) e d 3 Forml Soluion of IVP: u(,) f ( τ ) π ( τ ) τ

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 77 Ce of conn b.c. f f Conider ce when he boundry condiion pecifie conn f f, hen emperure u, Mke he ubiuion: 4 ( τ ) f e π τ 3 dτ z ( τ ) ( ) 3 ( τ ) dz dτ τ z τ z ( ) z e dz π f z z u (,) e dz f e dz ferfc π π erf ee definiion of erf in VII.3, p.485. Then he oluion i given by u, f erfc f Plo he oluion for nd f u (,) 5 The emperure diribuion in he emi-infinie lyer pproche he edy e conn vlue of he boundry condiion f. Ce of conn i.c.: u (,) u Chnge he vrible: θ (,) u (,) u Iniil condiion: θ (,) u (,) u Boundry condiion: θ (,) u (,) u f u Soluion: θ u, u f u erfc, f u erfc +

78 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 b) Robin Problem Conider he He Equion in he emi-infinie lb for u (, ) u (,) u u (, ) > α u,h u u u (,) u (, ) < u u, iniil condiion u k + hu hu > Robin b.c. lim u, < > bounded oluion ) Reduce o IBVP wih zero iniil condiion: θ (,) u (,) u Chnge of vrible: θ (,) u (,) u u (,) θ (,) + u Iniil condiion: θ (,) u (,) u ( θ + u ) Boundry condiion: ( θ ) imiing condiion: limθ (,) He Equion: k + h + u hu θ h + Hθ H( u u ), H k θ < θ ) Soluion by plce rnform. Apply plce rnform Trnformed equion: Boundry condiion: Θ Θ Θ H u + HΘ limθ (,) < ( u ) Soluion: Θ, c e c e Θ + (,) c e Derivive: Subiue ino b.c.: Θ, ce H u c e + He H u c H + c ( u ) H u H + ( u ) c ( u )

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 79 Trnformed Soluion: Θ (,) ( u u ) H e H + Ue Mple o find he invere plce rnform: > invlplce(h/*ep(-**qr())//(qr()+h/),,); H e H H H e e erfc H + + erfc + Invere plce rnform: H H+ H θ (,) ( u u) e erfc + + ( u u) erfc Soluion: H H+ H u, u + u u erfc e erfc + Emple: u, u 5,, k 5, h u (,) u, 3 u

7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 c) Conc Problem Conider he idel herml conc of wo emi-infinie lb of uniform conduciviie k nd k, nd coefficien of hermodiffuiviy α nd α, correpondingly. Iniilly lb re he emperure T nd T, hen he rnien emperure diribuion i decribed by u (,) u,. u, nd T u k (,) T k u (,) T u u u u (,) > (, ) > α α Iniil condiion u, T u, T Conjuge condiion: u (,) u (,) > coninuiy k u, k u, > conervion of flu u (,) Symmeric eenion of u (, ) u (,) T u (,) T T Soluion of he Dirichle problem for he emi-infinie lb: + u, T T T erfc + u, T T T erfc Here, he condiion of emperure coninuiy he conc i umed wih conn emperure of he conc T : u, u, T

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 7 Differenie u nd u wih repec o u(,) ( T T ) ep π u(,) ( T T ) ep π nd pply condiion of conervion of flu he conc: k( T T ) ep π k( T T ) ep π k( T T ) π k T T π ( ) k ( T T) k T T Solve for conc emperure: Conc Temperure: kt T k + kt + k Conc emperure i conn for >. Emple: T 3. 3 T 4.3 T.. k 5. k 4..

7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 IX..6 WAVE EQUATION Conider vibrion of he emi-infinie ring (WE) u u + g(,) u (,) : (, ) > g (,) force per uni lengh of he ring (,) f ( ) u > Dirichle boundry condiion (, ) u ( ) u(, ) u ( ) u iniil condiion iniil condiion ) Trnformed equion Apply he plce rnform in he vrible U G F (,) u(,) e (,) g(,) ( ) f ( ) d e d e d o he WE nd boundry condiion U u u U + G (,) F ( ) U u u G U U Q Q noion Generl oluion: e + ce U p U c + where coefficien c, c re, in generl, funcion of. Hence he oluion hould be bounded, c become e U p U c +, nd he generl oluion Ce u u G Conider ce Q : iniilly he ring i re, here i no eernl force. Then he oluion become: U F Noe h ( ) e δ δ e d δ e d e for >

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 73 ) Invere rnform: (,) F ( ) e { f ( ) } δ δ f ( ) u Clcule convoluion δ f δ τ f ( τ) dτ δ τ f dτ f H The oluion become: (,) f H u Emple of ime dependen b.c. 3) Conider he ce of periodic b.c.: ( ) in u (,) in H Plo he oluion (T-.mw): f hen u (,) 4 5 Eercie Conider differen ce: wih grviionl force, fied end, iniil hpe nd velociy Coefficien in he Wve Equion: gt w m peed of propgion of ound wve in he medium; g ccelerion of grviy; T enion; w weigh of he ring per uni lengh.

74 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 IX..7 INTEGRA EQUATIONS Recll he Volerr inegrl equion of he nd kind (ee Chper XI) λ + u K, y u y dy f If he kernel of he inegrl equion K (,y ) i funcion of y K (,y) g( y) hen he inegrl equion i id o be convoluion inegrl equion: convoluion inegrl equion u ( ) λ g ( y) u ( y) dy + f ( ) We will conider pplicion of he plce rnform o he oluion of he convoluion inegrl equion. The mehod i bed on he convoluion heorem for he plce rnform: { f g} f g Apply he plce rnform o he convoluion inegrl equion λ ( ) + λ { } + λ + u g y u y dy f u g u f u g u f Solve for he rnformed funcion u( ) u ( ) f λ g Then he forml oluion of he inegrl equion i given by he invere plce rnform f u( ) λg Emple (non-homogeneou Volerr inegrl equion of he nd kind) Solve he inegrl equion λ u + u y dy Apply he plce rnform (ue ble propery 49): u u ( y) dy u u + λ

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 75 Solve for u u λ Then he oluion i given by he invere plce rnform u e λ λ Emple (Abel inegrl equion) Abel inegrl equion Tble T: { } Γ Solve he inegrl equion: u ( y) ( y) f dy Rewrie (AE) in he form ( ) f u y y dy nd pply he plce rnform < < (AE) f ( ) u ( y)( y) dy { } Γ { } { } u Γ u u Solve for he rnformed unknown funcion { } u y u( ) f ( ) u ( ) ( ) Γ ( ) Γ + Γ + f u Γ ( ) Γ u { f ( ) } { } + Γ Then pplicion of he invere plce rnform nd convoluion heorem, yield forml oluion for he Abel inegrl equion u ( ) u + ( y) f ( y) dy Γ ( ) Γ

76 Chper IX The Inegrl Trnform Mehod IX..8 REVIEW QUESTIONS IX. The plce Trnform November 6, 8 ) How i he plce rnform defined? ) Wh condiion gurnee he eience of he plce rnform? 3) How i he invere plce rnform defined? 4) Wh re he min properie of he plce rnform nd he invere plce rnform? 5) How cn he convoluion heorem be pplied for evluion of he invere plce rnform? 6) How cn he invere plce rnform of he rionl funcion be found? 7) Wh propery llow pplicion of he plce rnform for oluion of differenil equion? 8) Wh re he min ep in he procedure of pplicion of he plce rnform for oluion of differenil equion? EXERCISES.. ) { f ( )} φ. Derive he imilriy propery b) Prove h convoluion commue: f g g f. c) { f ( )} φ ( ) f f. Uing inegrion by pr derive Evlue uing he definiion of he plce rnform: ) {in ( )} b) { } e3

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 77 3. Evlue uing he Tble nd he properie of he plce rnform: e b) ( + 5) 3 ) { } c) { } { } d) { e in} e e co f) { f ( )}, f ( ) 3 e) { } 4. Evlue he following invere plce rnform uing pril frcion: ) 3 + ( 9)( + ) uing he convoluion heorem: c) ( + ) b) d) ( 3)( ) ( + 9) co, < π, π 5. Solve he following Iniil Vlue Problem wih he help of plce rnform nd plo he grph of oluion: ) y y 6y 3 y + y + y y b) y y y y in3 y c), < 3π y + y, 3π y y, < π y + y + y h, π < π, π d) y, y e), < π y + y, π y, y π f) y + 4y δ 4 y, y, g) y + y δ ( ), y, y 6. Solve he Neumnn Iniil-Boundry Vlue Problem for u (,) nd plo he grph of oluion: u u (, ) > T u, k u, q lim u, > < bounded oluion

78 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 7. Solve he Iniil-Boundry Vlue Problem for u (,) wih imedependen periodic boundry condiion: u u (,) > T u, k u (,) + hu (,) Tm in( ω) u (,) > Chooe ome vlue for he conn nd kech he oluion curve. 8. Eercie on p.73. IX..9 APACE TRANSFORM WITH MAPE ) Evluion of he plce Trnform uing he definiion (for > ): Emple : > f():;ume(>); f( ) : > phi():in(f()*ep(-*),..infiniy); φ( ~ ) : ~ ) Evluion of he plce Trnform nd he invere plce rnform wih he help of commnd in he pckge inrn: > wih (inrn): Emple : > lplce(ep(),,); Emple 3: Emple 4: Emple 5: > lplce(^*in(),,); ( + 3 ) ( + ) 3 > invlplce(/(^+9),,); co( 3 ) > invlplce(ep(-*)/,,); Heviide ( )

Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 79 Emple 6: > Y:(+3)/(+)/(-)/(-)/(+); + 3 Y : ( + ) ( ) ( ) ( + ) > y():invlplce(y,,); y( ) : + 5 ) + e( 3 e e ) 3 e( Emple 7: > ume(>):ume(>): > G():ep(-**qr()); > invlplce(g(),,); G( ) : e ( ~ ~ ) ~ ~ e ~ ~ 4 π ( 3/ )

7 Chper IX The Inegrl Trnform Mehod IX. The plce Trnform November 6, 8 Rue plce, Pri