arxiv: v1 [math.ap] 16 Apr 2016

Similar documents
Consider a system of 2 simultaneous first order linear equations

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

The Variance-Covariance Matrix

innovations shocks white noise

SIMEON BALL AND AART BLOKHUIS

9. Simple Rules for Monetary Policy

Advanced Queueing Theory. M/G/1 Queueing Systems

Frequency Response. Response of an LTI System to Eigenfunction

t=0 t>0: + vr - i dvc Continuation

CONTINUOUS TIME DYNAMIC PROGRAMMING

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

State Observer Design

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Midterm exam 2, April 7, 2009 (solutions)

Convergence of Quintic Spline Interpolation

Wave Superposition Principle

Chapter 9 Transient Response

Chapter 13 Laplace Transform Analysis

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

Institute of Actuaries of India

A Note on Estimability in Linear Models

Homework: Introduction to Motion

OUTLINE FOR Chapter 2-2. Basic Laws

Boosting and Ensemble Methods

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Stochastic Reliability Analysis

Safety and Reliability of Embedded Systems. (Sicherheit und Zuverlässigkeit eingebetteter Systeme) Stochastic Reliability Analysis

FAULT TOLERANT SYSTEMS

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

10.5 Linear Viscoelasticity and the Laplace Transform

CSE 245: Computer Aided Circuit Simulation and Verification

Grand Canonical Ensemble

"Science Stays True Here" Journal of Mathematics and Statistical Science, Volume 2016, Science Signpost Publishing

ELEN E4830 Digital Image Processing

Analysis of decentralized potential field based multi-agent navigation via primal-dual Lyapunov theory

Mechanics Physics 151

Exercise 1. Sketch the graph of the following function. (x 2

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Relative controllability of nonlinear systems with delays in control

Comparative Study of Finite Element and Haar Wavelet Correlation Method for the Numerical Solution of Parabolic Type Partial Differential Equations

Control Systems (Lecture note #6)

Theoretical Seismology

The Hyperelastic material is examined in this section.

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Final Exam : Solutions

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

The Matrix Exponential

Random Process Part 1

The Matrix Exponential

Notes on the stability of dynamic systems and the use of Eigen Values.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

RELATIONSHIPS BETWEEN SPECTRAL PEAK FREQUENCIES OF A CAUSAL AR(P) PROCESS AND ARGUMENTS OF ROOTS OF THE ASSOCIATED AR POLYNOMIAL.

EXERCISE - 01 CHECK YOUR GRASP

Implementation of the Extended Conjugate Gradient Method for the Two- Dimensional Energized Wave Equation

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Dynamic Power Allocation in MIMO Fading Systems Without Channel Distribution Information

Chapter 7. Now, for 2) 1. 1, if z = 1, Thus, Eq. (7.20) holds

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Conventional Hot-Wire Anemometer

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Chapter 10. The singular integral Introducing S(n) and J(n)

(heat loss divided by total enthalpy flux) is of the order of 8-16 times

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

On One Analytic Method of. Constructing Program Controls

Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching Method

Yutaka Suzuki Faculty of Economics, Hosei University. Abstract

Heat/Di usion Equation. 2 = 0 k constant w(x; 0) = '(x) initial condition. ( w2 2 ) t (kww x ) x + k(w x ) 2 dx. (w x ) 2 dx 0.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Solution in semi infinite diffusion couples (error function analysis)

Deift/Zhou Steepest descent, Part I

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

Basic Polyhedral theory

Folding of Regular CW-Complexes

Chapter 7 Stead St y- ate Errors

2/20/2013. EE 101 Midterm 2 Review

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

CHAPTER 33: PARTICLE PHYSICS

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Combinatorial Networks Week 1, March 11-12

SCHUR S THEOREM REU SUMMER 2005

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

Charging of capacitor through inductor and resistor

A universal saturation controller design for mobile robots

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

Spectral Synthesis in the Heisenberg Group

Week 3: Connected Subgraphs

9.5 Complex variables

Partition Functions for independent and distinguishable particles

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Robust decentralized control with scalar output of multivariable structurally uncertain plants with state delay 1

cycle that does not cross any edges (including its own), then it has at least

Transcription:

Th Cauchy problm for a combuson modl n porous mda J. C. da Moa M. M. Sanos. A. Sanos arxv:64.4798v [mah.ap] 6 Apr 6 Absrac W prov h xsnc of a global soluon o h Cauchy problm for a nonlnar racon-dffuson sysm coupld wh a sysm of ordnary dffrnal quaons. Th sysm modls h propagaon of a combuson fron n a porous mdum wh wo layrs, as drvd by J. C. da Moa and S. Schcr n Combuson frons n a porous mdum wh wo layrs, Journal of Dynamcs and Dffrnal Equaons, 8(3) (6). For h parcular cas, whn h ful concnraons n boh layrs ar knownfuncons, hcauchyproblmwas solvdbyj. C. damoaandm. M. Sanos nan applcaon of h monoon rav mhod o a combuson problm n porous mda, Nonlnar Analyss: al World Applcaon, (). For h full sysm, n whch h ful concnraons ar also unknown funcons, w consruc an rav schm ha conans a squnc whch convrgs o a soluon of h sysm, locally n m, undr h condons ha h nal daa ar Höldr connuous, boundd and nonngav funcons. W also show h xsnc of a global soluon, f h nal da ar addonally n h Lbsgu spac L p, for som p (, ). Our proof of h local xsnc rls on a carful analyss on h consrucon of h fundamnal soluon for parabolc quaons oband by h paramrx mhod. In parcular, w show h connuous dpndnc of h fundamnal soluon for parabolc quaons wh rspc o h coffcns of h quaons. To oban h global xsnc, w mploy h mhod of auxlary funcons as usd by O. A. Olnk and S. N. Kruzhkov n Quas-lnar scond-ordr parabolc quaons wh many ndpndn varabls, ussan Mahmacal Survys, 6(5) (96). Furhrmor, for a broad class of racon-dffuson sysms w show ha h non ngav quadran s a posvly nvaran rgon, and, as a consqunc, ha classcal soluons of smlar sysms, wh h racons funcons bng non dcrasng n on unknown and sm-lpschz connuous n h ohr, ar boundd by lowr and uppr soluons for any posv m f so hy ar a m zro. Inroducon W ar manly concrnd wh a spcfc sysm of h yp (u ) α (y )(u ) xx β (y )(u ) x = f (y,u,u ), x, > (.) for h unknowns u, y, wh =,, whr y sasfs an ordnary dfrnal quaon whch can b solvd dpndng on u, and α (y ),β (y ) ar gvn funcons of y, and f (y,u,u ) s a funcon (also gvn) of y, u and u. For fxd y, h quaons (.) ar a sysm of parabolc quaons for u,u coupld by h funcon f. For h full sysm, n h unknowns u,u,y,y, snc y can b xprssd dpndng on u, our sysm can b wrn n h unknowns u,u only, bu wh coffcns dpndng n a pcular way on u,u. In fac, h sysm w shall consdr can b wrn n h form for gvn funcons a, b, f, and F. (u ) a(x, f(u )d) (u ) xx b(x, f(u )d) (u ) x = F (x,u,u, f(u )d) (.) Dparamno d Mamáca, IME-UFG (Insuo d Mamáca Esaísca Unvrsdad Fdral d Goás). Cx. Posal 3, Campus II, 74-97 Goâna, GO, Brazl. jsus@ufg.br, rasanos@ufg.br Dparamno d Mamáca, IMECC-UNICAMP (Insuo d Mamáca, Esaísca Compuação Cnífca Unvrsdad Esadual d Campnas). ua Sérgo Buarqu d Holanda, 65, Cdad Unvrsára Zfrno Vaz, 383-859 Campnas, SP, Brazl. msanos@m.uncamp.br J.C. da Moa hanks FAPEG Fundação d Amparo à Psqusa do Esado d Goás, Brazl, for paral suppor of hs work, undr gran # 5/-Unvrsal..A. Sanos hanks CAPES Coordnação d Aprfçoamno d Pssoal d Nívl Supror, Brazl, for fnancal suppor hrough a scholarshp durng hs docora a IMECC-UNICAMP, Brazl, undr projc # 338.38/-48-AUXPE 747/.

Spcfcally, h funcons α, β and f n (.) ar gvn by whr f(u ) s h Arrhnus funcon λ c α (y ) =, β (y ) = and a b y a b y f (y,u,u ) = b A u d y f(u )( ) q u u (.3) a b y a b y f(u ) = E u, (.4) bng E s a posv consan, and λ,a,b,c,d,a, =,, and q ar posv consans. Th unknown y sasfs h ordnary dffrnal quaon Jon wh quaons (.) w add h nal daa and for gvn funcons u,,y,. Solvng (.5) for y w fnd Subsung (.8) n (.) w oban (.), wh a(x, (y ) = A y f(u ). (.5) u = = u, (.6) y = = y,, (.7) y = y, (x) A f(u)d. (.8) f(u )d) = α (y, (x) A f(u))d ), (.9) and b(x, F (x,u,u, f(u )d) = β (y, (x) A f(u)d ) (.) f(u )d) = f (y, (x) A f(u)d,u,u ). (.) Th sysm formd by h quaons (.) and (.5), wh h consuv funcons (.3) and (.4), modls h propagaon of a combuson fron n a porous mdum wh wo layrs [4]. Th unknowns u and y sands for h mpraur and h ful concnraon, rspcvly, n on layr, and u and y sands for h sam n h ohr layr, and h consans λ,a, c. ar paramrs rlad o h mdum. W rfr o [4] for a dald drvaon of hs modl. In hs papr w solv h Cauchy problm (.), (.3) (.7) (or, quvalnly, (.) jon wh h nal condons (.6), for gvn funcons y, and a,b,f n (.9)-(.), bng α,β,f and f gvn n (.3) and (.4)). Furhrmor, for a broad class of racon-dffuson sysms (s (.4) and (4.)) w show ha h non ngav quadran s a posvly nvaran rgon, and, as a consqunc, ha classcal soluons of smlar sysms, wh h racons funcons bng non dcrasng n on unknown and sm-lpschz connuous n h ohr (s (.5)), ar boundd by lowr and uppr soluons for any posv m f so hy ar a m zro. Sng som noaons, w say ha a funcon s of class C, n a s S d [, ) f has connuous drvavs up o scond ordr wh rspc o x and up o frs ordr wh rspc o for all (x,) S, and dno hs class by C, (S) (or smply by C, ), and of class C α,α n S, for som α (,], f s boundd and Höldr connuous n S wh xponn α wh rspc o x (Lpschz connuous f α = ) and wh xponn α wh rspc o, and dno hs class by Cα,α (S) (or smply by C α,α ),.. a funcon u(x,) s sad o b n C α, α (S), for som α (,], f hr s a consan C > such ha u(x,) C for all (x,) S and u(x, ) u(x, ) C( x x α α ) for all (x, ),(x, ) S. Th spac C α,α (S) s ndowd wh h norm u α, α u C α, α (S) := sup (x,) S u(x,) sup {(x,) (y,s),(x,),(y,s) S} u(x,) u(y,s) x y α s α. For h spac of lpschzan boundd W noc ha h funcon f(s) = E s, s, can b xndd by zro connuously from s > o s =. In fac, d lm k f s ds = for any k =,,,. Dsp h dsconnuy whn s (lm s f(s) = ), hs wll no caus problms n k our analyss bcaus ssnally w wll dal only wh non ngav funcons u, =,, cf. horms and.

3 funcons u, dfnd n a s S n d or d [, ), w us h norm u(x) u(y) u := sup S u sup {x y,x,y S} x y. Throughou h papr,j =, wh j. W dno by ϕ h uppr soluon ϕ() = (M β) α β for h Cauchy problm (.), (.6) wh gvn y, sasfyng y y,, whr M = max =, u,, α = max =, { Ab y, a } and β = max =, { d A b }, and, for < T, w dno by,ϕ T h scor (s) of vcor funcons u = (u,u ) : [,T) such ha u (x,) ϕ() (for =, and) for all (x,) [,T). 3 I s asy o chck ha h par of (vcor) funcons û := (,) and ũ := (ϕ,ϕ) s an ordrd par (ordrd n h sns ha û ũ ) of lowr and uppr soluons o h sysm (.) [3, Lmma ]. S Scon 3., p., for dals. Our man rsuls assurng h xsnc of a local and a global soluon o h Cauchy problm (.), (.3) (.7) (or, quvalnly, (.) (.6), (.9) (.)) ar h followng horms: Thorm. (Local soluon). L u, and y, b nonngav, lpschz connuous and boundd funcons n. Thn hr s a posv numbr T such ha h Cauchy problm (.) (.6), (.9) (.) has a soluon u = (u,u ) n h class C, ( (,T]) C, ( [,T]) sasfyng u (x,) ϕ() for all(x,) [,T]. Bsds, faddonallyu, L p () forsomp (, ) hnu L ((,T);L p ()), wh a possbl smallr T. Thorm. (Global soluon). Assum ha h hypohss of Thorm ar n forc, ncludng u, L p () for som p (, ), and, n addon, ha y, C () and (y, ) s boundd. Thn h Cauchy problm (.) (.6), (.9) (.) has a soluon u = (u,u ) n C, ( (, )) C, loc ( [, )) L loc ((, );L p ()) 4 sasfyng u (x,) ϕ(), for all (x,) [, ). Furhrmor, consdrng gnral parabolc opraors L = d a,kl (x,) xk x l k,l= d b,k (x,) xk, (.) whr x = (x,,x d ) d, < < T, d, and h opraor L s unformly parabolc,.. for somconsanλ >, d k,l= a,kl(x,)ξ k ξ l λ ξ forallξ = (ξ,,ξ d ) d andall(x,) Ω T := d (,T), usng h argumns on nvaran rgons gvn n [, 8], whch bascs s h proof of h maxmum prncpl for h ha quaon, w sa and prov Thorm 3 blow, and as a consqunc, Thorm 4. In hs horms w ak (vcor) funcons u = (u,u ) n h class C, (Ω T ) C( d [,T)) 5 sasfyng h condon lm nf u (x,) (.3) x, (cf. condon K n [8]). Thorm 3. L δ b a posv numbr and c (x,) a boundd funcon n Ω T. If f (x,,u,u ) s a funcon such ha, for som posv numbr ε, sasfs f whn ε < u < and u j > ε, for ach (x,) Ω T (whr j,,j =,) hn h quadran Q = {(u,u ); u,u } s a posvly nvaran rgon o h sysm L (u )c u = f (x,,u,u )δ (.4) for any classcal soluon u = (u,u ) sasfyng h condon (.3). Mor prcsly, undr h abov hypohss, f u = (u,u ) C, (Ω T ) C( d [,T)) sasfs (.3) and h nqualy ((L c )u )(x,) f (x,,u (x,),u (x,)) δ, for all (x,) Ω T, and u(x,) Q for all x d, hn, u(x,) Q for all (x,) d [,T). And as a corollary w oban If g s a boundd funcon dfnd n, g := sup x g(x). 3 If T < and h funcon u s dfnd and connuous n [,T], obvously w can xnd h nqualy u (x,) ϕ() o = T. 4 Hrh rm loc sands for locally n m,.. a funcon u C, loc ( [, )) L loc ((, );Lp ()) fu [,T] C, ( [,T]) L ((,T);L p ()), for any T >. 5 C( d [,T)) dnos h spac of connuous vcor funcons n d [,T). k=

4 Thorm 4. L δ b a posv numbr. Suppos ha for ach fxd (x,) Ω T, f (x,,u,u ) s a non dcrasng funcon wh rspc o u j (whr j,,j =,) and, for som posv numbr ε, sasfs h sm-lpschz condon f (x,,su,u ) f (x,,u,u ) c (x,)s, f (x,,u,su ) f (x,,u,u ) c (x,)s (.5) for all s ( ε,) and all ((x,),(u,u )) Ω T, whr c (x,) s som boundd funcon n Ω T, 6 and ls f (x,,u,su ) f (x,,u,u ) δ, f (x,,su,u ) f (x,,u,u ) δ (.6) for all s ( ε,) and all ((x,),(u,u )) Ω T, whr δ s som posv numbr lss han δ.. If û = (û,û ) C, (Ω T ) C( d [,T)) s a lowr soluon o h sysm L (u ) = f (x,,u,u ) (.7).. (L û )(x,) f (x,,û (x,),û (x,)), for all (x,) Ω T, and u = (u,u ) C, (Ω T ) C( d [,T)) s an uppr soluon o h sysm L (u ) = f (x,,u,u )δ (.8).. L (u )(x,) f (x,,u (x,),u (x,)) δ for all (x,) Ω T, and such ha u û sasfs h condon (.3), and u (x,) û (x,) for all x d, hn u (x,) û (x,) for all (x,) Ω T.. Analogously, f ũ = (ũ,ũ ) C, (Ω T ) C( d [,T)) s an uppr soluon o h sysm (.7),.. (L ũ )(x,) f (x,,ũ (x,),ũ (x,)), for all (x,) Ω T and u = (u,u ) C, (Ω T ) C( d [,T)) s a lowr soluon o h sysm L (u ) = f (x,,u,u ) δ (.9).. L (u )(x,) f (x,,u (x,),u (x,)) δ for all (x,) Ω T, and such ha ũ u sasfs h condon (.3), and ũ (x,) u (x,) for all x d, hn ũ (x,) u (x,) for all (x,) Ω T. Nx w gv h man das o prov horms and. From now on, w rfr o problm (.), (.3) (.7), or, quvalnly, (.) (.6), (.9) (.), smply as problm (.) (.7), or, (.) (.6). W prov Thorm by akng h lm of a subsqunc gvn by h rav schm )(u n ) xx β (y n )(u n ) x = f (y n ) = A y n f(u n (u n ) α (y n (y n (u n,yn ) ) = = (u,,y, ),,u n,u n ) (.) n =,,, sarng from an nal funcon (u,u ) n C, ( [,T]) for som suffcnly small m T >, whr f s h funcon ha concds wh h Arrhnus funcon f(s) = E s for s > and s qual o zro for s, and, f s h funcon f n (.3) xcp for h Arrhnus funcon f whch s rplacd by f. Mor prcsly, w show ha hr s a posv m T, dpndng on h nal daa u,,y, and on h paramrs n h quaons (.. on λ,a, c.), such ha h opraor A(u,u ) = (w,w ), whr (w,w ) solvs (w ) α (y )(w ) xx β (y )(w ) x = f (y,u,u ) (y ) = A y f(u ) (w,y ) = = (u,,y, ), (.) s wll dfnd n som ball Σ := {u = (u,u ) C, ( [,T]); u C,, =,}, >, ( [,T]).. hr xs posv numbr,t such ha A(u) Σ for all u Σ. S Lmma 6. In parcular, h squnc {u n } = {(u n,un )} gvn by A(un ) = A(u n ), sarng from any u Σ, s boundd n h norm,/. Thrfor, by Arzlà-Ascol s horm, hr xss a funcon u = (u,u ) Σ and a subsqunc of {u n }, whch w sll dno by {u n }, ha convrgs o u, unformly on boundd ss n [,T]. To show ha h lm u s a soluon of (.) and (.6), w us h ngral rprsnaon u n (x,) = Γ,n(x,,ξ,)u, (ξ)dξ Γ,n(x,,ξ,) f (y n,u n,u n )(ξ,)dξd, 6 Th condons (.5) ar usd n [6,.g. (.)/ 8.]. (.)

5 for h soluon u n of h parabolc quaon (u n ) α (y n )(u n ) xx β (y n )(u n ) x = f (y n,u n,u n ) (.3) occurrng n (.), whr Γ,n dnos h fundamnal soluon of h assocad homognous quaon L,n w =, for L,n := α (y n ) xx β (y n ) x. Now suppos ha h squnc of fundamnal soluons {Γ,n } convrgs, n som appropra sns, o h fundamnal soluon Γ of h also parabolc quaon L w =, for L := α (y ) xx β (y ) x, whn n nds o nfn, whr y = y, (x) A f(u))ds. Thn, havng ha h squnc {u n } s boundd n [,T], for som posv T, and ha convrgs unformly o u C,/ ( [,T]) n boundd ss n [,T], follows from (.) ha u sasfs h ngral quaon u (x,) = Γ (x,,ξ,)u, (ξ)dξ Γ (x,,ξ,) f (y,u,u )(ξ,)dξd, (.4) for (x, ) [, T]. Thus, by sandard argumns, follows ha u C, ( (,T]) C, ( [,T]) and s a soluon of (.) (.6). In Scon w show h connuous dpndnc of fundamnal soluons of parabolc quaons wh rspc o h coffcns of h quaons and, as a consqunc, h convrgnc of {Γ,n } o {Γ }, whn n. To conclud h las assron n Thorm w shall show n Scon 3., wh h hlp of h gnralzd Young s nqualy [6, p. 9] and h fac ha h fundamnal soluon Γ,n s a rgular krnl, unformly wh rspc o n (s Scon 3.), ha h squnc {u n } rmans n Lp for all (,T), wh u n (,) L p unformly boundd wh rspc o and n, f h nal daa u, L p and T s suffcnly small. Thn h assron follows by Banach-Alaoglu s horm. To show ha h oband soluon u = (u,u ) s n h scor,ϕ T, w obsrv ha u = (u,u ) s a soluon of h Cauchy problm { L (w ) (w ) α (y )(w ) xx β (y )(w ) x = f (y,w,w ), x, > (.5) w (x,) = u, (x), x n h unknown w, for y gvn by (.8), and show n Scon 3 ha h funcon f (x,,w,w ) f (y (x,),w,w ) sasfs all h hypohss of Thorm 4, or, mor prcsly, Corollary 4 n Scon 4. L us jus mnon hr ha h racon funcon f n (.5) s ncrasng wh rspc o w j (,j =,, j ). Indd, from (.3) w hav f / w j = q/(a b y ) for all w j. In Subscon 3. w show ha h sysm (.5) fulflls all h hypohss of Corollary 4. To prov Thorm, w l [,T ), < T, o b a maxmal nrval n whch hr xss a soluon u o h problm (.)-(.6) n h spac X T := C, ( (,T )) C, loc ( [,T )) L loc ((,T );L p ()) 7 nrcpdwhhscor,ϕ T,.. f T T and u s a soluon of (.)-(.6) n X T,ϕ T ha concds wh u n [,T ) hn T = T. (Th xsnc of T can b assurd n h sandard way by Zorn s lmma: w consdr h s of pars (u,x T,ϕ T ), such ha u s a soluon of (.)-(.6) n X T,ϕ T, < T, ordrd wh h rlaon (u,x T,ϕ T ) (u,x T,ϕ T ) f T T and u [,T] = u. Any subs C of hs s of pars ha s oally ordrd has h uppr bound (u,x T,ϕ T ), whr T s h suprmum of h s of T such ha (u,x T,ϕ T ) C (T = f hs s oft s unboundd) and u s dfnd by u [,T] = u whavr s (u,x T,ϕ T ) C. Thn, by Zorn s lmma h abov s of pars has a maxmum lmn,.. hr xss a par (u,x T,ϕ T ) such ha f (u,x T,ϕ T ) s any ohr par such ha (u,x T,ϕ T ) (u,x T,ϕ T ) hn (u,x T,ϕ T ) (u,x T,ϕ T ).. fus asoluonof (.)-(.6) n X T,ϕ T suchha T T and u [,T ) = u hn T = T and u = u.) Thn w shall show n Scon 5 ha f T < hn w hav a conradcon, by provng ha, n hs cas, h maxmal soluon u has a connuous xnson up o h m T, and ha hs xnson s lpschz connuous and s n L p, as a funcon of x, for = T, hus u can b xndd o a largr m, accordngly wh Thorm. Th da o xnd u up o h m T s, agan, o us h ngral rprsnaon (.4), for u = u, (x,) [,T ), wh Γ bng h fundamnal soluon of h quaon L w =, for L := α (y ) xx β (y ) x, whr y = y,(x) A f(u )ds, and wh f (y,u,u ) = f (y,u,u ). To accomplsh hs, w nd o prov ha h drvavs x u ar boundd n (,T ) (s Corollary 5) and w do ha by h mhod of auxlary funcons 8,.. followng [] (or [3, 4]; s [, p. 7]), w mak a subsuon u = h (v ) 7 Smlarly as n h samn of Thorm, hr h rm loc sands for locally n m,.. a funcon u C, loc ( [,T )) L loc ((,T );L p ()) f u [,T] C, ( [,T]) L ((,T);L p ()), for any T (,T ). 8 Ths rmnology was usd by. Fnn n h MahScN rvw #M6486 (6,59b). In hs rvw h also pons ou ha hs mhod was dvlopd by Pcard [s,.g., Couran and Hlbr, Mhodn dr mahmaschn Physk, Bd II, Sprngr, Brln, 937, pp. 74 76], Brnsn [Mah. Ann. 69, 8 36 (9); Doklady Akad. Nauk SSS (N.S.) 8, 385 388 (938)] and ohrs.

6 for an appropra funcon h (n parcular, such ha h s posv and boundd) and sma xv (nsad of ryng o sma x u ) a a maxmum pon, by lookng for h quaon sasfd by v. Ths lads o som chncal smas whr w us h xplc forms for h funcons α(y ), β (y ) and f (y,u,u ) n (.3) (s Scon 5). Cranly, would b a vry nrsng nvsgaon o xnd our man rsuls rgardng h sysm (.) (horms and ) o mor gnral funcons α(y ), β (y ) and f (y,u,u ) (or funcons a, b and F n (.)). Th prcdng paragraphs gv h fundamnal and nuv das o prov horms and. In h nx scons w gv h rgorous and compl proofs of all horms sad abov. In Scon w prsn a brf summary of h consrucon of fundamnal soluons for parabolc quaons by h paramrx mhod and sa som mporan known smas. Also n hs scon w show h dpndnc of h fundamnal soluon on h coffcns of h quaons. In Scon 3 w prov horm and n Scon 4 w prov horms 3 and 4 and sa and prov wo corollars whch ar vrson of hs horms n h cas on has connuous dpndnc of h soluon of h sysm wh rspc o h racon funcons, and also mak hr rmarks gvng alrnav condons for h hypohss of horms 3 and 4. Fnally, n Scon 5 w prov horm. Th fundamnal soluon In hs scon, w prsn a summary on h consrucon by h paramrx mhod and man proprs of h fundamnal soluon for parabolc quaons, and show s connuous dpndnc wh rspc o h coffcns of h quaons.. Dfnon and som proprs Consdr h quaon and h opraor L gvn by Lu u u a(x,) x b(x,) u c(x,)u =, (.) x n h s Ω T := {(x,); x, T}, for som posv numbr T, wh h coffcns a,b,c n h class C α,α (Ω T ), for som α (,], wh L bng a unform parabolc opraor n Ω T,.., hr ar srcly posv consans λ,λ such ha for all (x,) n Ω T. λ a(x,) λ (.) Dfnon. A fundamnal soluon of h parabolc quaon (.) s a funcon Γ(x,,ξ,), dfnd for all (x,) and (ξ,) n Ω T wh >, such ha LΓ = n Ω T, as a funcon of (x,), for ach fxd (ξ,) Ω T, and lm Γ(x,,ξ,)ψ(ξ)dξ = ψ(x), for all x and [,T), for any connuous funcon ψ(x) such ha ψ(x) c hx, for all x, for som posv consans c and h wh h < /(4λ T). Fundamnal soluons for parabolc quaons was found by E. E. Lv [], usng h paramrx mhod. Our prsnaon n hs scon follows mosly [8] and []. Accordngly, h fundamnal soluon o h quaon (.) s gvn by Γ(x,,ξ,) = Z(x,,ξ,) Z(x,,y,σ)φ(y,σ,ξ,)dydσ, (.3) whr (x,), (ξ,) Ω T, >, h funcon Z(x,,ξ,), as a funcon (x,), s h fundamnal soluon of h ha quaon u u a(ξ,) x =,.. for ach fxd (ξ,) Ω T, and Z(x,,ξ,) = (4πa(ξ,)( )) φ(x,,ξ,) = (x ξ) 4a(ξ,)( ), (.4) ( ) m (LZ) m (x,,ξ,), (.5) m=

7 whr (LZ) = LZ = (a(ξ,) a(x,)) Z x b Z x cz and, for m, (LZ) m (x,,ξ,) = [LZ(x,,y,σ)](LZ) m (y,σ,ξ,)dydσ. (.6) Nx w gv som mporan smas, whch, n parcular, show ha h funcon Γ gvn by (.3) s wll dfnd,.. h srs n (.5) convrgs and (.3) ylds a smooh funcon Γ, for >. In h squl, (x,),(ξ,) Ω T, >, and, K and C dno any posv consans. For h funcon Z(x,,ξ,), w hav h sma DD r xz(x,,ξ,) s K( ) rs (x ξ), (.7) for all nonngav ngrs r,s, whr hroughou D r or r and Ds x or s x sand for h drvavs wh rspc o and x of ordr r and s, rspcvly. Bsds, snc Z(z,,ξ,)dz =, w hav ha D r Ds zz(z,,ξ,)dz =, (.8) for all r,s Z such ha rs >. Fnally, Z and s drvavs ar Höldr connuous n ξ,.. D r Ds z Z(z,,ξ,) Dr Ds z Z(z,ξ,,) K ξ ξ α ( ) rs z, (.9) whr C = C(λ ) and K = K(λ,λ, a α, α). For h funcon φ(x,,ξ,), w hav h smas φ(x,,ξ,) K ( ) 3 α φ(x,,ξ,) φ(y,,ξ,) K x y γ ( ) 3 (α γ) (x ξ), (.) whr C = C(λ ) and K = K(λ,λ, a α, α, b, c,t), and, for any γ (,α), ( (x ξ) (y ξ) ), (.) whr C and K ar as n (.). Fnally, for h funcon Γ(x,,ξ,) w hav h sma (s also Corollary n hs papr) D r Ds x Γ(x,,ξ,) K (x ξ) ( ) rs, (.) for all r,s Z such ha r s, and, agan, C and K ar as n (.). Bsds, h fundamnal soluon Γ s nonngav (s [] and [9]). Now consdr h Cauchy problm { Lu(x,) = f(x,), n (,T], T > u(x,) = u (x), n, (.3) whr L s dfnd n (.) and f and u ar gvn connuous funcons, n (,T] and, rspcvly, boundd by h xponnal growh f(x,), u (x) c hx (.4) for posv consans c and h such ha h < 4/(λ T), and for all x and [,T]. Th followng horm gvs a rprsnaon formula for s soluon usng h fundamnal soluon. Thorm 5. L Γ b h fundamnal soluon of h quaon Lu =, whr L s h parabolc opraor n (.3). If, bsds (.4), h funcon f s locally Höldr connuous n x, unformly wh rspc o, hn h funcon u(x,) = Γ(x,,ξ,)u (ξ)dξ Γ(x,,ξ,)f(ξ,)dξd (.5) s h unqu soluon of h Cauchy problm (.3) n C, ( (,T]) C( [,T]) boundd by an xponnal growh wh rspc o x, as n (.4).

8 For a proof, s.g. [8, p. 5] and [7, p.8]. mark. In h parcular cas whr c(x,), w hav Γ(x,,ξ,)dξ = and Dr Ds x Γ(x,,ξ,)dξ = for all r,s Z such ha < rs ; cf. (.8). Indd, h scond clam coms from h frs, by h Lbsgu s convrgnc domnad horm, and f c(x,) =, u(x,) = s h unqu soluon (n h C, class wh an xponnal growh for larg x) of h problm { Lu(x,) =, n (,T], (.6) u(x,) =, n, hus, by h Thorm 5, follows ha = Γ(x,,ξ,)dξd, so h() Γ(x,,ξ,)dξ =, snc f h( ) for som [,T] hn, assumng, whou loss of gnraly, ha h( ) >, by connuy of h(), hr would xs an nrval [a,b] [,T] such ha h() > for any [a,b], and hus w would g h conradcon b a = b a Γ(x,,ξ,)dξd Γ(x,,ξ,)dξd = b a Γ(x,,ξ,)dξd > b a.. Connuous dpndnc on h coffcns W bgn hs scon by sng a noaon for boundd ss of coffcns a,b,c of parabolc quaons (.). GvnposvnumbrsT,, λandα, wh < α andλ <, l B(,λ,α) b hsofvcor valudfunconsv = (a(x,),b(x,),c(x,)) nc α,α (Ω T )suchhaa λand a α, α, b α, α, c α, α <. = max{ a α, α, b α, α, c α, α }. Any v = (a,b,c) For a v B(,λ,α), w dfn h norm v α, α B(,λ,α) dfns a parabolc quaon of h form (.) (wh (.) sasfd wh λ = λ and λ = ) and, rcprocally, any (unformly) parabolc quaon of h form (.) (sasfyng (.)) ylds a v = (a,b,c) B(,λ,α), for any λ (,λ ) and > v α, α. To hghlgh h dpndnc of h opraor L gvn n (.) on h coffcns a,b,c v, w shall wr L = L [v],.. L [v] u Lu = u a(x,) u x b(x,) u x c(x,)u and for h fundamnal soluon of L [v] u = w shall wr Γ = Γ [v],.. Γ [v] (x,,ξ,) = Z [v] (x,,ξ,) Z [v] (x,y,,σ)φ [v] (y,σ,ξ,)dydσ, (.7) whr Z [v] = Z [(a,,)] Z and φ [v] φ ar gvn n (.4) and (.5). In h nx lmmas w sablsh som smas for h fundamnal soluon (.7) and s drvavs whch aks no accoun h dpndnc on s coffcns a,b,c v. W frs sablsh hs smas for h funcons Z [v] and φ [v] and hn, usng (.7) and h srs (.5) for φ [v], w xnd hm for Γ [v]. Ths smas ar h ky pon o oban h local soluon sad n Thorm. W shall wr C and K o dno posv consans ha mgh dpnd on h paramrs,λ,α,t, bu no on h coffcns v nhr on h soluons u or h daa f, u, unlss ohrws sad. Bsds, K dpnds connuously on T. Lmma. Gvn v,v B(,λ,α), w hav ha (D s x Z [v] D s x Z [v])(x,,ξ,) K a a for s =,,, whr C < /(4) and K = K(,λ). ( ) s (x ξ) ( ), Proof. SncZ [v] (x,,ξ,) = (x ξ) (4πa(ξ,)( )) 4a(ξ,)( ) andsdrvavsonxdpndsonhcoffcn a of L [v], bu no dpnds on h ohr coffcns b and c, compung h drvav of DxZ s [v] wh rspc o a, w fnd D a DxZ s (x ξ) K [v] (x,,ξ,) ( ) s ( ), for s =,,, and consans K and C as n samn of h lmma. Thn h dsrd nqualy follows by h Man Valu Thorm. Lmma. L A and α b srcly posv numbrs bng α, and l g dno h gamma funcon g(x) := x d. Thn m= mam /g( mα ) s a convrgn srs.

9 Proof. W bgn by rcallng h rlaon g(x)g(y) g(xy) = B(x,y) bwn h gamma funcon g and h ba funcon, B(x,y) = x ( ) y d (s [5, p.4]). Dnong h gnral rm of h gvn srs by b m, and usng h abov rlaon, w oban lm m b m b m B( = Alm mα,α ) m g( α ) = Alm m g( α ) mα ( ) α d =. Thrfor, h rsul follows. Lmma 3. L β [,] and γ (,α). If v,v B(,λ,α) hn and whr C < 4 (φ [v] φ [v] )(x,,ξ,) K v v α, α ( ) 3 α (x ξ) (.8) (φ [v] (x,,ξ,) φ [v] (x,,ξ,)) (φ [v] (y,,ξ,) φ [v] (y,,ξ,)) (.9) K v v β α, x y γ( β) ( α (x ξ) ( ) 3 (α γ( β)) and K = K(,λ,α,T). Proof. Th proof of (.8) follows from h followng nqualy: (y ξ) ), ((LZ [v] ) m (LZ [v] ) m )(x,,ξ,) mk m( )m π g( C v v α α, α )m (x ξ) g( mα ) ( ) 3 mα, (.) whr, for smplcy, w s L L [v], and g dnos h gamma funcon; s Lmma. W show hs nqualy by nducon on m. For m =, w hav ((L [v] Z [v] ) (L [v] Z [v] ) )(x,,ξ,) ((a(ξ,) a(x,)) xx Z [v] b(x,) x Z [v] c(x,)z [v] ) ((a(ξ,) a(x,)) xx Z [v] b(x,) x Z [v] c(x,)z [v] ) ((a(ξ,) a(x,)) ((a(ξ,) a(x,)))) xx Z [v] (a(ξ,) a(x,)) xx Z [v] xx Z [v] b(x,) b(x,) x Z [v] b(x,) x Z [v] x Z [v] c(x,) c(x,) Z [v] c(x,) Z [v] Z [v] I. Thn from Lmma, (.7), and h sma x ξ α (x ξ) = ( (x ξ) ) α( ) α/ (x ξ) 8 (C 8) (x ξ) K( ) α/ (x ξ), whr C s a nw consan whch w shall connu dnong by C, w oban I K v v α, α ( (x ξ) ( ) 3 (x ξ) α ( ) K v v α, α ( ) 3 α (x ξ), ( ) (x ξ) )

whr C < /(4) and K = K(,λ,α,T). Now, assumng ha (.) s ru for an m, w oban: ((L [v] Z [v] ) m (L [v] Z [v] ) m )(x,,ξ,) [L [v] Z [v] (x,y,,σ)](l [v] Z [v] ) m (y,ξ,σ,) [L [v] Z [v] (x,y,,σ)](l [v] Z [v] ) m (y,ξ,σ,)dydσ (L [v] Z [v] L [v] Z [v] )(x,y,,σ) (L [v] Z [v] ) m (y,ξ,σ,) dydσ L [v] Z [v] (x,,ξ,) (L [v] Z [v] ) m (y,ξ,σ,) (L [v] Z [v] ) m (y,ξ,σ,) dydσ K v v α, α ( σ) 3 α K ( σ) 3 α (x y) ( σ K m π C (x y) ( σ mk m π C =(m)k m( π ) m g( α v v )m α, α C g( mα ) whr w usd ha and (s [, p. 36]). So, ) m g( α )m (y ξ) g( mα ) (σ ) 3 mα σ dydσ )m ( σ) 3 α ( (x y) σ (y ξ) σ π ) dy = C ( σ) α (σ ) mα dσ = ((L [v] Z [v] ) m (L [v] Z [v] ) m )(x,,ξ,) (m)k m( π C ) m g( α ( )m g (m)α v v α, α g(α )m (y ξ) g( mα ) (σ ) 3 mα σ dydσ (x y) σ ( ( σ)(σ ) ( ) (m)α (σ ) 3 mα ) v v α, α ( ) 3 (m)α ) (x ξ) g( α )g(mα ) g ( (m)α (y ξ) σ dydσ, (x ξ). Ths provs h nqualy (.). Th nqualy (.), (.5) and Lmma mply ha (φ [v] φ [v] )(x,,ξ,) m= ((L [v] Z [v] ) m (L [v] Z [v] ) m )(x,,ξ,) m= mk m( π ) m g( α )m v v α,α C g( mα ) ( ) 3 mα K v v α, α (x ξ) ( ) 3 α, whrc < 4 and K = m= mkm ( π)m C by T. Ths nds h proof of (.8). To prov (.9), w wr g( α )m (m )α g( mα )T (x ξ) ar posv consans and was smad (φ [v] (x,,ξ,) φ [v] (x,,ξ,)) (φ [v] (y,,ξ,) φ [v] (y,,ξ,)) J = J β.j β and hn us (.8) o sma J β and (.) o sma J β, nocng ha w can sma J by (Φ [v] Φ [v] )(x,,ξ,) (Φ [v] Φ [v] )(y,,ξ,) andalsoby Φ [v] (x,,ξ,) Φ [v] (y,,ξ,) Φ [v] (x,,ξ,) Φ [v] (y,,ξ,).

Lmma 4. L v,v B(,λ,α), β (,), γ (,α), and Γ [v], Γ [v], h fundamnal soluons of h quaons L [v] u =, L [v] u =, as dfnd n (.7) and (.4)-(.6). Thn w hav h followng smas: and whr C < 4 (Dx s Γ [v] Dx s Γ [v])(x,,ξ,) K v v α, α ( ) s (x ξ), s =,; (.) ( xx Γ [v] xx Γ [v] )(x,,ξ,) (.) K( v v α, α v v β α, )( α x ξ (α γ( β)) γ( β) ( ) ( ) 3 (x ξ) ) ; ( Γ [v] Γ [v] )(x,,ξ,) (.3) K( v v α, α v v β α, )( α x ξ (α γ( β)) γ( β) ( ) and K = K(,λ,α,T). ( ) 3 Proof. For s = w hav ha (Γ [v] Γ [v] )(x,,ξ,) (Z [v] Z [v] )(x,,ξ,) Z [v](x,y,,σ)φ [v] (y,σ,ξ,) Z [v] (x,y,,σ)φ [v] (y,σ,ξ,) dydσ Z [v] Z [v] Z [v] Z [v] φ [v] Z [v] φ [v] φ [v] dydσ. From smas (.7) and (.) and Lmmas and 3 follows ha (x ξ) ) ; (Γ [v] Γ [v] )(x,,ξ,) Snc, w oban (x ξ) K a a ( ) K a a ( σ) K ( σ) (x y) σ (x y) σ (y ξ) π σ dy = ( K (σ ) 3 α (y ξ) σ dydσ (x y) K v v α, α (y ξ) σ (σ ) 3 α σ dydσ. ( σ)(σ ) C ) ( ) (x ξ), (.4) (Γ [v] Γ [v] )(x,,ξ,) (.5) (( π C ) (σ ) α dσ ( π C ) ( σ) α dσ) K v v α, α ( ) (x ξ) K v v α, α ( ) whr K = K(,λ,α,T). For h cas s =, w hav (x ξ) ( x Γ [v] x Γ [v] )(x,,ξ,) =( x Z [v] x Z [v] )(x,,ξ,) x Z [v] (x,y,,σ)φ [v] (y,σ,ξ,) x Z [v] (x,y,,σ)φ [v] (y,σ,ξ,)dydσ =( x Z [v] x Z [v] ) J J J 3. ( x Z [v] x Z [v] )φ [v] dydσ x Z [v] (φ [v] φ [v] )dydσ

From Lmma, w hav J = ( x Z [v] x Z [v] )(x,,ξ,) K a a (x ξ). (.6) Usng Lmma, h sma (.) and h dny (.4), w hav J ( x Z [v] x Z [v] )(x,y,,σ) φ [v] (y,σ,ξ,) dydσ (.7) K a a σ K a a (x y) ( σ) σ K a a (x ξ) ( ) α (x y) σ Fnally, usng Lmma 3, (.7) and (.4), w oban J 3 K v v α, α ( ) K v v α, α K (σ ) 3 α (y ξ) σ dydσ ( σ) (σ ) α dσ K a a (x ξ). x Z [v] (x,y,,σ) (φ [v] φ [v] )(y,σ,ξ,) dydσ (.8) K (x y) σ (x ξ) (x ξ), K v v α, α (σ ) 3 α whr K = K(,λ,α,T). From (.6), (.7) and (.8), w g ( x Γ [v] x Γ [v] )(x,,ξ,) K v v α, α for a K as abov. gardng h scond drvav wh rspc o x, w hav From Lmma, (y ξ) σ dydσ ( σ) (σ ) α dσ (x ξ), ( xx Γ [v] xx Γ [v] )(x,,ξ,) = ( xx Z [v] xx Z [v] )(x,,ξ,) xx Z [v] (x,y,,σ)φ [v] (y,σ,ξ,) xx Z [v] (x,y,,σ)φ [v] (y,σ,ξ,)dydσ =( xx Z [v] xx Z [v] ) I I I 3. To sma I, w wr I = = xx Z [v] (φ [v] φ [v] )dydσ ( xx Z [v] xx Z [v] )φ [v] dydσ I = ( xx Z [v] xx Z [v] )(x,,ξ,) K a a (x ξ) ( ) 3. (.9) I I. ( xx Z [v] xx Z [v] )(x,y,,σ)φ [v] (y,σ,ξ,)dydσ ( xx Z [v] xx Z [v] )φ [v] dydσ ( xx Z [v] xx Z [v] )φ [v] dydσ

3 Applyng Lmma, (.) and (.4) w g Now, I = = = I K a a ( σ) 3 K a a (x ξ) ( ) K a a (x ξ) ( ) 3 α (x y) σ K (σ ) 3 α ( xx Z [v] xx Z [v] )(x,y,,σ)φ [v] (y,σ,ξ,)dydσ (y ξ) σ dydσ ( σ) (σ ) α dσ ( xx Z [v] xx Z [v] )(x,y,,σ)(φ [v] (y,σ,ξ,) φ [v] (x,ξ,σ,) φ [v] (x,ξ,σ,))dydσ ( xx Z [v] xx Z [v] )(x,y,,σ)(φ [v] (y,σ,ξ,) φ [v] (x,ξ,σ,))dydσ (( xxz [v] xxz [v])(x,y,,σ) ( xxz [v] xxz [v])(x,x,,σ) ) φ [v](x,ξ,σ,)dydσ, snc ( xx Z [v] (x,x,,σ) xx Z [v] (x,x,,σ))dy = (s (.8)). Thn, applyng Lmma, (.9), (.) and (.), w oban Thus, I K a a ( σ) 3 (x y) σ (x y) K a a β ( σ ) ( σ) 3 K a a ( σ) 3 γ K a a β (x y) σ (x y) σ K x y γ (σ ) 3 (α γ) β ( σ) 3 α( β) (y ξ) ( σ (x ξ) σ )dydσ (x y) β (x ξ) x y α( β) ( σ ) ( σ )dydσ ( σ) 3 (σ ) 3 α (σ ) 3 (α γ) (x ξ) K( a a a a β ). ( ) 3 α To sma I 3, w wr I 3 = = (x ξ) σ (σ ) 3 α (y ξ) ( σ dydσ (x ξ) I I I K( a a a a β ) ( ) 3 α xx Z [v] (x,y,,σ)(φ [v] φ [v] )(y,σ,ξ,)dydσ (x ξ) σ )dydσ xx Z [v] (x,y,,σ)[(φ [v] φ [v] )(y,σ,ξ,) (φ [v] φ [v] )(x,ξ,σ,)]dydσ ( xx Z [v] (x,y,,σ) xx Z [v] (x,x,,σ))(φ [v] φ [v] )(x,ξ,σ,)dydσ I 3 I 3,. (.3)

4 whr w hav usd (.8). Applyng Lmma 3 and (.7), w g I 3 K ( σ) 3 K v v β α, α K v v β α, α K v v β α, α K ( σ) 3 γ( β) x y γ( β) (x y) K v v β α, α σ (σ ) 3 (α γ( β)) K v v β α, α ( ) (x y) σ ( σ) 3 γ( β) ( σ) 3 γ( β) ( σ) γ( β) (x ξ) K v v β α, ( α ( ) 3 α K v v β α, α ( ) 3 α (x ξ) (σ ) 3 (α γ( β)) (x ξ) (y ξ) ( σ σ )dydσ K v v β α, α (x ξ) (y ξ) ( (σ ) 3 (α γ( β)) σ σ )dydσ (x ξ) σ ( (σ ) 3 (α γ( β)) (σ ) 3 (α γ( β)) ( σ) γ( β) ( (x y) σ dy)dσ (x y) σ (y ξ) σ dy)dσ (x ξ) σ dσ (σ ) (α γ( β)) x ξ (α γ( β)) α( β) ( ) K v v β α, ( α x ξ (α γ( β)) γ( β) ( ) In ordr o sma I 3, w us Lmma 3 and (.9) as follows: I 3 K x y α ( σ) 3 K v v α, α K v v α, α ( ) 3 α (x y) v v α, α (x ξ) σ (σ ) 3 α σ dydσ ( σ) 3 α ( σ) α (σ ) 3 α (σ ) 3 α (x ξ) σ ( (x ξ) σ dσ dσ (x ξ) ) (x ξ) ). (x y) σ dy)dσ Thn, K v v α, α T α γ( β)β ( σ) γ( β) T γ( β) (σ ) 3 (α γ( β)) K v v α, α ( x ξ (α γ( β)) ( ) γ( β) (x ξ) σ dσ ( ) 3 α (x ξ) ). I 3 I 3 I 3 K( v v α, α v v β α, α )( x ξ (α γ( β)) ( ) γ( β) From h abov smas, (.9), (.3) and (.3), w oban ( ) 3 α (x ξ) ). (.3) ( xx Γ [v] xx Γ [v] )(x,,ξ,) K( v v α, α v v β α, ) α ( x ξ (α γ( β)) γ( β) ( ) ( ) 3 (x ξ) ). Fnally, h proof of (.3) follows from (.), (.) and h quaons L [v] Γ [v] = L [v] Γ [v] =.

5 Corollary. For v B(,λ,α) w hav h followng unform sma: whr K = K(,λ,α,T). Proof. Tak v = (,,) n (.). D s xγ [v] (x,,ξ,) W also hav h followng lmma. K ( ) s (x ξ), s =, (.3) Lmma 5. L v n,v B(,λ,α), n =,,. If v n (x,) convrgs o v(x,) ponws n [,T], as n gos o nfny, hn Γ [vn](x,,ξ,) convrgs o Γ [v] (x,,ξ,), for any (x,), (ξ,) [,T], wh >. Proof. Frs w show h ponws convrgnc of Z [vn] and φ [vn]. From (.4) s asy o s ha D r D s xz [vn] D r D s xz [v] (.33) ponws, whr r and s ar nonngav ngrs. To proof ha φ [vn] convrgs ponws o φ [v], w noc ha so, follows from (.33) ha ponws. Bsds, w hav L [vn](z [vn]) = (a n (ξ,) a n (x,)) xx Z [vn] b n (x,) x Z [vn] c n (x,)z [vn], L [vn](z [vn]) L [v] (Z [v] ), (.34) L [vn](z [vn](x,,ξ,)) K ( ) 3 α (x ξ), (.35) whr K and C ar posv consans whch do no dpnds on n. Now, rcallng (.6), on can show by nducon on m ha (L [vn]) m convrgs o (L [v] ) m, ponws, as m gos o nfny. Indd, followng h consrucon of h fundamnal soluon n [, p. 36], w hav (L [vn]) m (Z [vn](x,,ξ,)) K m( )m π g( α )m (x ξ) C g( mα ) ( ) 3 mα, (.36) whr g s h gamma funcon. So, (L [vn])(z [vn](x,y,,σ))(l [vn]) m (Z [vn](y,ξ,σ,)) (x y) K σ K m ( π g( α ( σ) 3 α C )m )m g( mα (y ξ) σ ) (σ ) 3 mα and hus, by h nducon hypohss, w oban(l [vn])(z [vn])(l [vn]) m (Z [vn]) (L [v] )(Z [v] )(L [v] ) m (Z [v] ), ponws. Thn, by h Lbsgu s Domnad Convrgnc Thorm, (L [vn]) m (Z [vn](x,,ξ,)) = (L[vn])(Z [vn](x,y,,σ))(l [vn]) m (Z [vn](y,ξ,σ,))dydσ convrgs o (L [v] ) m (Z [v] (x,,ξ,)). Th sma (.36) nsurs h unform convrgnc of m= ( )m (L [vn](z [vn]) m (x,,ξ,) wh rspc o (x,ξ) and > δ, for ach fxd δ >, and so, φ [vn] φ [v], ponws. To nd h proof of h Lmma, noc ha Z [vn](x,y,,σ)φ [vn](y,σ,ξ,) K (x y) (y ξ) ( σ) σ (σ ) 3 α σ and Z [vn]φ [vn] convrgs ponws o Z [v] φ [v], so, agan from h Lbsgu s Domnad Convrgnc Thorm follows ha Z[vn]φ [vn]dydσ Z[v] φ [v] dydσ. Thus, w conclud ha Γ [vn] Γ [v], ponws. Thorm 6. L T >, β (,), v = (a,b,), v = (a,b,) B(,λ,), f,f C, (Ω T ) and u,u b Lpschz connuous and boundd funcons n. If u and u ar h soluons of h problms hn L [v] u = f, n (,T], u(x,) = u, x, (.37) L [v] u = f, n (,T], u(x,) = u, x, (.38) u u, K[ v v, v v β u, u (.39) whr K = K(,λ,T, u ). T ( f, )( f f, v v, v v β )],,

6 Proof. From Thorm 5 w hav (u u)(x,) = Γ [v] (x,,ξ,)u (ξ) Γ [v] (x,,ξ,)u (ξ)dξ Γ [v] (x,,ξ,)f(ξ,) Γ [v] (x,,ξ,)f(ξ,)dξd V(x,)W(x,). By Lma 4 and (.), w g V(x,) Γ [v] (x,,ξ,)u (ξ) Γ [v] (x,,ξ,)u (ξ) dξ (.4) (Γ [v] Γ [v] )(x,,ξ,)u (ξ) Γ [v] (x,,ξ,)(u (ξ) u (ξ)) dξ K v v, (x ξ) u K K( v v, u u ), (x ξ) u u dξ whr K = K(,λ,T, u ). In vw of mark, w can wr x V(x,) = x Γ [v] (x,,ξ,)u (ξ) x Γ [v] (x,,ξ,)u (ξ)dξ = ( x Γ [v] x Γ [v] )(x,,ξ,)(u (ξ) u (x))dξ x Γ [v] (x,,ξ,)[(u (ξ) u (ξ)) (u (x) u (x))]dξ, so, by Lmma 4 and sma (.) and usng ha w g x ξ (x ξ) = /( x ξ (x ξ) (C/) / x V(x,) ( K v v, u x ξ K u v v, K( v v, u u ), ) (C/)(x ξ) cons. / (C/) (x ξ), K u u x ξ (x ξ) ) dξ (.4) K u u ) (x ξ) dξ wh K = K(,λ,T, u ). In ordr o g h Höldr connuy wh rspc o, usng agan mark, w wr V(x,) V(x, ) = (Γ [v] (x,,ξ,) Γ [v] (x,,ξ,))u (ξ) (Γ [v] (x,,ξ,) Γ [v] (x,,ξ,))u (ξ)dξ = = = Γ [v] (x,s,ξ,)u (ξ) Γ [v] (x,s,ξ,)u (ξ)dsdξ ( Γ [v] Γ [v] )(x,s,ξ,)u (ξ) Γ [v] (x,s,ξ,)(u u )(ξ)dξds ( Γ [v] Γ [v] )(x,s,ξ,)(u (ξ) u (x))dξds Γ [v] (x,s,ξ,)[(u u )(ξ) (u u )(x)]dξds.

7 Thnc, from Lmma 4 and sma (.), w oban V(x,) V(x, ) (.4) Γ [v] Γ [v] )(x,s,ξ,) u (ξ) u (x) dξds Γ [v] (x,s,ξ,) (u u )(ξ) (u u )(x) dξds K( v v, v v β, K u u x ξ s 3 ) u x ξ ( (x ξ) s dξds K( v v, v v β ) u, ( T K u u s (x ξ) s dξds K( v v, v v β u, u ) K( v v, v v β u, u ) x ξ γ( β) s γ( β) (x ξ) ) s 3 s dξds s (x ξ) s ) s s K( v v, v v β u, u )( ), whr K = K(,λ,T, u ). From smas (.4), (.4) and (.4), w hav wh a nw K. Smlarly, w can sma W: W(x,) = dξds (x ξ) s s dξds V, K(,λ,T, u )( v v, v v β u, u ), (.43) = Hnc, usng Lmma 4 and (.), w hav Bsds, W(x,) x W(x,) Γ [v] (x,,ξ,)f(ξ,) Γ [v] (x,,ξ,)f(ξ,)dξd (Γ [v] Γ [v] )(x,,ξ,)f(ξ,) Γ [v] (x,,ξ,)(f f)(ξ,)dξd. ds (Γ [v] Γ [v] )(x,,ξ,)f(ξ,) Γ [v] (x,,ξ,)(f f)(ξ,) dξd (.44) K( v v, f f f ) ( ) K(,λ,T)( f )T( v v, f f ). (x ξ) dξd ( x Γ [v] x Γ [v] )(x,,ξ,)f(ξ,) x Γ [v] (x,,ξ,)(f f)(ξ,) dξd (.45) K( v v, f f f ) ( ) K(,λ,T)( f )T ( v v, f f ) (x ξ) dξd

8 To prov h Höldr connuy wh rspc o, w wr W(x,) W(x, ) = [(Γ [v] (x,,ξ,)]f(ξ,) Γ [v] (x,,ξ,)f(ξ,)dξd = = ǫ ǫ [(Γ [v] (x,,ξ,)]f(ξ,) Γ [v] (x,,ξ,)f(ξ,)dξd (Γ [v] (x,,ξ,)]f(ξ,) Γ [v] (x,,ξ,)f(ξ,))dξd [(Γ [v] (x,,ξ,) Γ [v] (x,,ξ,))f(ξ,) (Γ [v] (x,,ξ,) Γ [v] (x,,ξ,))f(ξ,)]dξd ((Γ [v] Γ [v] )(x,,ξ,)]f(ξ,) Γ [v] (x,,ξ,)(f f)(ξ,))dξd [(Γ [v] (x,,ξ,) Γ [v] (x,,ξ,))f(ξ,) (Γ [v] (x,,ξ,) Γ [v] (x,,ξ,))f(ξ,)]dξd W W W 3 [ Γ [v] (x,ξ,s,)f(ξ,) Γ [v] (x,ξ,s,)f(ξ,)]dsdξd, whr < ǫ < s arbrary. Usng Lmma 4 and (.8), w sma W gardng W, w apply (.8) o g W ǫ (x ξ) (K v v, f K f f ) dξd (.46) ( ) K(,λ,T)( f )T ( v v, f f )( ) ( K ( ) K( f f )ǫ. (x ξ) K ( ) Th rm W 3 can b smad usng mark as follows: W 3 = = ǫ ǫ (x ξ) ) ( f f )dξd (.47) [ Γ [v] (x,ξ,s,)f(ξ,) Γ [v] (x,ξ,s,)f(ξ,)]dsdξd [( Γ [v] Γ [v] )(x,ξ,s,)(f(ξ,) f(x,)) Γ [v] (x,ξ,s,)((f f)(ξ,) (f f)(x,))]dξdsd

9 Now, applyng Lmma 4 and (.8), and wrng K = K( v v, v v β ) f,,, follows ha W 3 ǫ K ( x ξ γ( β) (s ) γ( β) K (s ) 3 K( f, )[ v v, v v β, ǫ f f, ] (s ) 3 (x ξ) s f f, x ξ dξdsd ( x ξ γ( β) (s ) γ( β) x ξ (x ξ) ) (s ) 3 s dξdsd K( f, )[ v v, v v β, ǫ f f, ] ( (x ξ) (s ) s ) s dξdsd K( f, )[ v v, v v β, ǫ f f, ](T (x ξ) ) s s dξdsd K( f, )[ v v, v v β f f,, ] (x ξ) ) s x ξ (.48) ǫ K( f, )[ v v, v v β f f,, ]T( ), (s ) whr for h las nqualy w usd ha (.47) s ru for all ǫ (, ). From (.46), (.47) and (.48), w conclud ha dsd W(x,) W(x, ) K( f, )( v v, v v β f f,, )T ( ), (.49) whr K = K(,λ,T). I follows from (.44), (.45) and (.49) ha W, K(,λ,T)T ( f, )( v v, v v β, Fnally, from (.43) and (.5), w hav f f, ). (.5) u u, V, W, K( v v, v v β u, u T ( f, )( f f, v v, v v β )),, (.5) whr K = K(,λ,T, u ). In parcular w hav h followng sma for a soluon of (.37) Corollary. In h sam condons of Thorm 6, f u s a soluon of (.37) hn whr K = K(,λ,T, u ). u, K(,λ,T, u )( u T ( f, ) f, ), (.5) Proof. Th proof follows from Thorm 6 by akng v = v, f = f and u = u. 3 Local soluon In hsscon wprovthorm. Forsmplcy wshallwr f and f nsadof f and f, rspcvly. Consdr h opraor A gvn n (.). In h lmma blow w consruc an nvaran s for A. ( a b λ a b y,,t, u, ) b h consan gvn n λ a b y,,t, u, ), M > K u, and Σ = {(u,u ) Lmma 6. L = λc a y, ), K(, h Corollary, K = sup T K(, ( ; C ( [,T])), u, M }. Thn A(Σ) Σ, f T > s suffcnly small.

Proof. Gvn (u,u ) Σ w g y y (u ) xplcly solvng (y ) = A y f(u ),.. and, so, y y,, and ls, y, y, A f(u(x,s))ds, = y, ( sup (x,) Ω T ( A y (x,) = y, (x) A f(u(x,s))ds (3.) f(u(x,s))ds ) sup ( A f(u(x,s))ds A f(u(x,s))ds )) (x,),(x,) Ω T x x f(u(x,s))ds A f(u(x,s))ds y, ( sup ) x x (x,),(x,) Ω T ( A sup ( A f(u(x,s))ds A f(u(x,s))ds )) (x,),(x,) Ω T y, ( sup (A (x,),(x,) Ω T sup (x,),(x,) Ω T ( A y, ( sup (A (x,),(x,) Ω T f(u (x,s) f(u (x,s) ds) x x y, (TA u, f T A ) f(u (x,s))ds )) f u, ds) (3.) sup (A f )) (3.3) (x,),(x,) Ω T y, (TA M f T A ) y,, whr, for h las nqualy, w ook ( T > suffcnly ) small such ha T TA M f λ. Furhrmor, v v (u ) = a, c b y (u ) a, λ b y (u ) B(, a b y,,); s h dfnon of h s B(,λ,α) a h bgnnng of scon.. Indd, λ a b y (u ), = sup (x,) Ω T λ a b y (u ) sup (x,),(x,) Ω T λ a b y (u (x,)) λ b λ y (u (x,)) y (u (x,)) a a ( sup ) (x,),(x,) Ω T x x λ b λ y a, λ b λ y,, a a a x x λ a b y (u (x,)) whr w usd (3.). Analogously, w can vrfy ha a b y (u ), c c a bc y, a and, so, λ c a b y (u ), a b y (u ), λ c ( b y, ) = a a Addng o h fac ha < ( λ v (u ) B, a b y,, λ a b y, ). λ a b y (u ), w conclud ha From h abov, h hyposs of Thorm 5 ar sasfd. Thrfor, h problm { L[v(u )](w ) = f (y,u,u ), n (,T], w (x,) = u, (x), x, (3.4) has a unqu soluon wh an xponal growh n h spac C, ( (,T]) C( [,T]).

From Corollary, w hav provdd ha T s suffcnly small. 3. Proof of Thorm w, λ K(,,T, u, )[ u, a b y, T ( f (y,u,u ), ) F (y,u,u ), ] K [ u, T ( f (y,u,u ), ) F (y,u,u ), K [ u, T K(M,M, y, )] M, L T, A and Σ b as n Lmma 6, and for any fxd (u,u ) Σ, l (u n,u n ), n =,,, b h squnc dfnd by (u n,un ) = A(un,u n ). From Lmma 6 w hav ha hs squnc s boundd n C, (Ω T )(Ω T = (,T)). Thn, byarzlà-ascol shorm(s[5, p. 635]), hrxssa(u,u ) Σ and a subsqunc of (u n,u n ), whch w shall sll dno by (u n,u n ), such ha convrgs o (u,u ), unformly n compacs ss n [,T]. By Thorm 5 w can wr wh and u n (x,) = Γ [v(u n )] (x,,ξ,)u, (ξ)dξ ( v (u n ) = Γ[v(u n )] (x,,ξ,)f (y (u n ),un,un )(ξ,)dξd, (3.5) λ a y (u n ), ) c a y (u n ), ] (3.6) y (u n )(x,) = y, (x) A f(un (x,s))ds. (3.7) As u n convrgs o u, w hav ha y (u n ), v (u n ) and f (y (u n ),un,u n ) convrg o y (u ), v (u ) and f (y (u ),u,u ), rspcvly. Such convrgncs ar unform on compacs ss n [,T], bcaus u n so convrgs, f s boundd on, and f s boundd on [,M ] [,M ] [, y (, ]. Morovr, ) as u n, M, foralln N, whavha u, M and so, v (u n ),v λ (u ) B, a b y,,. From Lmma 5 w hav ha Γ [v(u n )] convrgs o Γ [v(u )] ponws. As Γ [v(u n )] (x,,ξ,)u, (ξ) K (x ξ) and Γ [v(u n )] (x,,ξ,)f (y (u n ),u n,u n )(ξ,) K( ) (x ξ), whr K and C ar consans ha do dpnd on n (s Corollary ), follows, by h Lbsgu s domnad convrgnc horm, ha u (x,) = Γ (x,,ξ,)u, (ξ)dξ Γ (x,,ξ,)f (y,u,u )(ξ,)dξd. (3.8) whr Γ s h fundamnal soluon o h quaon (w ) α (y )(w ) xx β (y )(w ) x =, whh y y (x,) = y, (x) A f(u(x,))d. Thn, by Thorm 5, u = (u,u ) s a soluon of h sysm (.) (.7), wh u C, ( (,T]) C, ( [,T]). To oban ha u s n h scor,ϕ T, by wha w dscussd n h Inroducon (s p. 5) w nd o show h connuous dpndnc of h soluon of h Cauchy problm (.5) wh rspc o racon funcons f (hr, dnod smply by f ).. (mor prcsly) ha h soluon u δ = (u δ,uδ ), δ >, of { (w ) α (y )(w ) xx β (y )(w ) x = f δ (y,w,w ), x, > w (x,) = u, (x), x, (3.9) whr f δ(y,w,w ) := f (y,w,w )±δ, y y (x,) = y, (x) A f(u(x,))d, convrgs ponws o u whn δ, and, ha all hypohss of Corollary 4 ar fulflld. L us frs obsrv ha û = (,) and ũ = (ϕ,ϕ), whr (s p. 3) ϕ() = (M β) α β (bng M = max =, u,, α = max =, { Ab y, a }and β = max =, { d A b }) araparoflowrand uppr soluons o h sysm L (w ) (w ) α (y )(w ) xx β (y )(w ) x = f (y,w,w ) f (x,,w,w )

occurrngn(.5) (.. h sysmn (3.9)whou dla). (S Lmman[3].) Indd, sobvousha û = (, ) s a lowr soluon (n fac, a soluon) o hs sysm, snc f (,) =. gardng ũ = (ϕ,ϕ), noc ha f = b A w d y f(w ) a b y b A w d y, whn w = w and w (rcall ha f s h funcon ha concds wh h a Arrhnus funcon E s for s > and vanshs for s ) and L (ϕ) = ϕ () = α(m β) α, so, L (ϕ)(x,) f (x,,ϕ,ϕ) α(m β) α A b ϕ()d y, a = (M β)(α A b y,. a ) α A b a (β d A b ) y, Nx, as w nocd n h Inroducon, w obsrv ha f s ncrasng wh rspc o w j (,j =,; j ) for (a b y ) f / w j = q >. On h ohr hand, (a b y ) f / w = b A y f(w )(b A w d )y f (w ) q b A y k (b A d )y q b A y, k (b A d ) y, q, whr k s som posv consan, so f / w s boundd by a consan,.. f s unformly lpschz connuous n h varabl w, and hus h sm-lpschz condon (.5) s sasfd wh c bng a consan, for an arbrary ε (n h noaon of Thorm (4)). Concrnng h condon (.6), w hav f w j=su j = sq, w j=u j so, s sasfd wh any ε < δ/q and δ = ε q. Now, w noc ha boh h lowr soluon û = (,) and h uppr soluon ũ = (ϕ,ϕ) sasfy rvally h condon (.3), snc hr componns ar non ngav funcons. As for u, usng h ngral rprsnaon (3.8), w also s asly ha sasfs (.3), snc h frs par Γ (x,,ξ,)u, (ξ)dξ s non ngav (Γ,u, ) and h modulus of h scond par Γ (x,,ξ,)f (y,u,u )(ξ,)dξd can b smad by a consan ms, bcaus u s boundd and Γ dξ = (s mark ). I rmans o show h connuous dpndnc,.. ha u δ convrgs ponws o u, bu up o hr, w can conclud, by Thorm 4, ha u δ,ϕ T. In parcular, u δ s boundd, unformly wh rspc o δ. To show h connuous dpndnc, usng h ngral rprsnaon (.5), wh Γ bng h fundamnal soluon o h quaon (w ) α (y )(w ) xx β (y )(w ) x =, and agan ha Γ (x,,ξ,)ξdξd = (s mark ), w hav (u u δ )(x,) = Γ (x,,ξ,)[f(y,u,u ) f(y,u δ,uδ )](ξ,)dξd ±δ hus, usng h lpschz connuy of f n boundd ss (rcall ha u s boundd and u δ s n h scor,ϕ T ; h lar bng a consqunc of Thorm 4) w oban sup x (u u δ )(x,) K sup x (u u δ )(x,) dδt, so,bygronwall slmma, sup x (u u δ )(x,) δt KT,forsomconsanK. Thsshows ha lm δ u δ = u ponws (n fac, unformly) n Ω T = (,T). Now rmans o show h L p assron (h las assron) n Thorm. Ths s ssnally a consqunc of h gnralzd Young s nqualy [6, p. 9] and h fac ha h fundamnal soluon Γ [v(u n )] s a rgular krnl, unformly wh rspc o n. Mor prcsly, w shall show n h nx paragraph ha hr xs posv numbrs T T and S such ha, f u n (.,) Lp S for all [,T] hn u n (.,) L p S for all [,T] as wll. Thn h assron follows by Banach-Alaoglu shorm. From (3.5), h gnralzd Young s nqualy [6, p. 9] and h Mnkowsk s ngualy for ngrals

3 [7, p. 94]), w hav (.,) L p Γ [v(u n )] (,,ξ,)u, (ξ)dξ L p Γ [v(u n )] (.,,ξ,)f (u n,un,y (u n ))(ξ,)dξd L p (sup Γ [v(u n )] (x,,ξ,) dx) u, L p u n ξ (sup Γ [v(u n )] (x,,ξ,) dx) f (u n,un,y (u n ))(,) L pd ξ K (sup ξ (sup ξ (x ξ) K ( ) dx) u, L p (x ξ) dx) f (u n,u n,y (u n ))(,) L pd =K u, L p K f (u n,un,y (u n ))(,) L pd (K K x dx) K u, L p K( S K( sup f ) n a compac s sup f )ST n a compac s ( u n (,) L p un (,) L p)d f S K u, L p and u n (,) Lp S for all [,T] S, f T /4K( sup f ). n a compac s Ths nds h proof of Thorm. 4 Proofs of horms 3 and 4 and ohr rsuls In hs scon w ar concrnd wh gnral parabolc opraors L gvn by (.). W prov horms 3 and 4 and sa and prov wo corollars whch ar vrson of hs horms n h cas on has connuous dpndnc of h soluon of h sysm wh rspc o h racon funcons, and also mak hr rmarks gvng alrnav condons for h hypohss of horms 3 and 4. W bgn by gvng h man da o prov Thorm 3, cf. [, Thorm 4.] ([8, Thorm 4.7]). Undr h hypohss of Thorm 3, xcp for h condon (.3) for now, suppos for an arbrary small posv numbr ε ( < ε < ε ) hr s a pon (x, ) d (,T) on whch u = (u,u ) blongs o h boundary of h slghly nlargd quadran Q ε := {u ε and u ε} and such ha u(x,) blongs o s nror for all (x,) d (, ). If u(x, ) blongs o h vrcal par V ε := {u = ε and u ε} of h boundary Q ε, akng h quaon (.4) a h h pon (x,) = (x, ) w oban u = ε and L (u), so f (x,, ε,u (x, )) δ = (L (u )c u )(x, ) c ε, whch conradcs h hypohss f (x,,u,u ), whn ε < u < and u > ε, snc w can ak ε (,ε ) suffcnly small such ha c ε < δ. Analogously, w oban a conradcon f u(x, ) blongs o h horzonal par H ε := {u ε and u = ε}. Thus, h crux pon of hs argumn s o show h xsnc of h pon (x, ) havng h abov proprs. Th da s ha f w assum ha u(x,) dos no blong o Q ε for all (x,) Ω T = (,T) hn, snc a =, u n.(q ε ), hr would xs hs frs pon (x, ) d (,T) (wh > ) on whch u blongs o h boundary of Q ε, from hnc w oban h conradcon wh h assumpon f whn ε < u < and u j > ε (bng j,,j =,). Howvr, a pror mgh occur ha u(x n, n ) Q ε for a squnc of pons (x n, n ) Ω T wh n ց and x n, vn hough u(x,) n.(q ε ) for all x d, and n hs cas, hs pon (x, ) would no xs. Ths suaon s avodd wh h condon (.3). Proof of Thorm 3. L us assum hr s a pon (x,) Ω T such ha u(x,) Q ε and w shall oban a conradcon. If hs s h cas hn, by h connuy of u, hr xss anohr pon on whch u blongs o V ε or H ε (dfnd abov). Consdr h cas ha u V ε (h cas u H ε s

4 smlar). Thn w dfn = nf{ (,T);u(x,) V ε for som x d }. W clam ha >. L (x n, n ) Ω T = (,T) b a squnc wh n ց and u (x n, n ) = ε. Now, from (.3) hr ar posvnumbrs and such u (x,) > ε/for(x,) Ω T wh x < and < <. Thn f =, w would hav x n for all n suffcnly larg, so, by passng o som subsqunc w can assum ha (x n ) convrgs o som x. By connuy agan, w arrv a u (x,) = ε. Ths conradcs h hypohss u (x,) for all x d. Thus, w conclud ha >. Morovr, u (x, ) = ε, and, as w show abov hs conradcs h hypohss f whn ε < u < and u > ε. Proof of Thorm 4. Thorm 4 s oband by comparson, va Thorm 3. Indd, n h cas ha u s an uppr soluon o (.8), dfnng w = u û, w hav (L c )w = L (u ) L (û ) c w f (x,,u,u ) f (x,,û,û ) c w δ = f (x,,w û,w û ) f (x,,û,û ) c w δ g (x,,w,w )δ δ, whr g (x,,w,w ) = f (x,,w û,w û ) f (x,,û,û ) c w δ. Now, omng h dpndnc on som argumns for smplcy, and consdrng h cas = (h cas = s smlar), subracng and addng h rm f (û,w û ), w hav g = [f (w û,w û ) f (û,w û )] c w [f (û,w û ) f (û,û )]δ for all w ( ε,) and w ε, by (.5), h monooncy of f wh rspc o u, and (.6). Thus w hav shown ha w sasfs all h hypohss of Thorm 3 wh w, c and δ δ n plac of u, c and δ, rspcvly, hn, w conclud ha w (x,), and, smlarly, w can show ha w (x,), for all (x,) Ω T. Ths nds h proof of h frs samn of Thorm 4. gardng h scond samn, ha s, h cas ha u s a lowr soluon, w obsrv ha rducs o h frs samn by subsung f by f δ and akng ũ n plac of h u n h frs samn and h u n h scond samn n plac of û. Corollary 3. (Corollary of Thorm 3.) Undr h hypohss and noaons of Thorm 3 bu wh δ =, suppos w hav a connuous dpndnc of h soluons of h sysm L (u )c u = f (x,,u,u ) (4.) (x,) Ω T = d (,T), < T, wh rspc o h racon funcons f. Thn h quadran Q = {(u,u ); u,u } s a posvly nvaran rgon o h sysm (4.). Mor prcsly, l u = (u,u ) C, (Ω T ) C( d [,T)) b a soluon o h sysm (4.) such ha u(x,) Q for all x d. If u s h ponws lm, whn δ, of u δ, whr u δ C, (Ω T ) C( d [,T)) sasfyng (.3) s a soluon of h Cauchy problm (assumng has such a soluon) { L (u δ )c u δ = f (x,,u δ,uδ )δ, (x,) Ω T u δ (x,) = u(x,), x d (4.) hn u(x,) Q for all (x,) d [,T). Proof. By Thorm 3 w hav u δ (x,) Q for all (x,) d [,T), for any δ >. Snc u(x,) = lm δ u δ (x,) for ach (x,) d [,T) and Q s a closd s n d, follows ha u(x,) Q for all (x,) d [,T) as wll. mark. As w can s by h proofs of Thorm 3 and Corollary 3, w can rplac n hs rsuls h condon on h racon funcons f whn ε < u < and u j > ε (,j =,, j ) by f > whn u = and u j, f w assum ha u(x,) n.(q) for all x d, or, f w assum a connuous dpndnc also on h nal daa,.. u(x,) Q (for all x d ) and u s h ponws lm, whn δ, of h soluon u δ = (u δ,u δ ) n h spac C, (Ω T ) C( d [,T)) and sasfyng (.3) of h Cauchy problm (assumng has such a soluon) { L (u δ )c u δ = f (x,,u δ,uδ )δ, (x,) Ω T u δ (x,) = u (x,)δ, x d (4.3). mark 3. In Thorm 3 and Corollary 3, and n mark as wll, w noc ha o oban u(x,) Q for all (x,) Ω T, suffcs o show ha u(x,) Q ε,s for all (x,) Ω T, for arbrarly small ε > and larg S >, whr Q ε,s = {(u,u ); ε u S}. Thn w oban h sam rsuls f w dspns h condon f or f >, whn ε < u < and u j > ε, (,j =,, j ), and assum ha f > whn u = and f s connuous a h pon u =, unformly wh rspc o (x,) Ω T and ε u j S, for any S > and som ε >. Indd, n hs cas, gvn S >, hr xss som ε > such ha f > whn ε < u < and ε < u j S.

5 Corollary 4. (Corollary of Thorm 4.) L h hypohss of Thorm 4 on h racons funcons f b n forc and suppos w hav a connuous dpndnc of h soluons of h sysm (.7) wh rspc o h racon funcons f ; mor prcsly, suppos u = (u,u ) C, (Ω T ) C( d [,T)) ( < T, Ω T = d (,T)) s a soluon of (.7) whch s h ponws lm, n Ω T, of (u δ ) and also of (u δ ), whn δ, whr u δ = (u δ,uδ ) (rspc. u δ = (u δ,u δ )), n h spac C, (Ω T ) C( d [,T)) and sasfyng (.3), s a soluon of h Cauchy problm (assumng such a soluon xss) { L (u ±δ ) = f (x,,u ±δ,u±δ )±δ, (x,) Ω T u ±δ (x,) = u(x,), x d, δ >. Thn f û = (û,û ) (rspc. ũ = (ũ,ũ )), n h spac C, (Ω T ) C( d [,T)) and sasfyng (.3), s alowr (rspc. uppr) soluon o h sysm (.7) (.. L (û )(x,) f (x,,û (x,),û (x,)) for all (x,) Ω T ; rspc. L (ũ )(x,) f (x,,ũ (x,),ũ (x,)) for all (x,) Ω T ) such ha û (x,) u (x,) (rspc. u (x,) ũ (x,)) for all x d, hn û (x,) u (x,) (rspc. u (x,) ũ (x,)) for all (x,) d [,T). Proof. L us consdr only h cas rgardng h lowr soluon û, snc h cas rgardng h uppr soluonũcanbprovnanalogously. ThproofconsssnapplyngThorm4wh f ˆδ (f ˆδ fwr h cas rgardngũ) n plac of f, whr ˆδ s som numbr bwm δ and δ,.g. (δ δ)/. Noc ha û and u δ ar, rspcvly, a lowrand an uppr soluon o h sysm L (u ) = f (x,,u,u )(δδ )/. Bsds, u δ û sasfs (.3), snc boh u δ and û do sasfy, and u δ (x,) = u (x,) û (x,) for all x d. Thn, by Thorm 4, w hav ha u δ (x,) û (x,) for all (x,) d [,T). Snc hs s ru for any δ and u(x,) = lm δ u δ (x,) for all (x,) Ω T, w oban h rsul. mark 4. In h samn (rspc. samn ) of Thorm 4 w can rplac h condons (.5) and (.6) by (4.4) f (x,,su (x,),u (x,)) f (x,,u (x,),u (x,)) c (x,)s, f (x,,u (x,),su (x,)) f (x,,u (x,),u (x,)) c (x,)s (4.5) and f (x,,u (x,),su (x,)) f (x,,u (x,),u (x,)) δ, f (x,,su (x,),u (x,)) f (x,,u (x,),u (x,)) δ (4.6) for all (x,) Ω T = d (,T), s ( ε,), and all u = (u,u ) C, (Ω T ) C( d [,T)) sasfyng (.3) and such ha u û (rspc. u ũ ). Cf. [6, 8.]. Indd, followng h proof of Thorm 3, p. 3, f hr was a pon (x,) Ω T such ha w(x,) := (u û)(x,) Q ε (rspc. w(x,) := (ũ u)(x,) Q ε ) for som arbrarly small ε, hn w would g h conradcon (L c )w and (s h proofofthorm 4) (L c )w f (x,,u,u ) f (x,,û,û ) c w δ > a som pon n (x, ) Ω T. Noc ha u ũ (rspc. u ũ ) for all (x,) Ω. 5 Global soluon In hs scon w prov Thorm. L us dno n hs scon by u = (u,u ) a maxmal soluon of (.) (.6), dfnd n a maxmal nrval [,T ), (s h Inroducon, p. 5), n h spac X T = C, ( (,T )) C, loc ( [,T )) L loc ((, );Lp ()), whch was also prsnd n h Inroducon, nrcpd wh h scor,ϕ T. Thn w shall show ha T =. Throughou hs scon w assum all h hypohss n Thorm, spcally u, L p (), for som p (, ). W suppos ha T < and w shall oban a conradcon. L us rcall ha h convoluon produc of funcons n conjuga Lbsgu spacs on n dcay o zro a nfny, mor prcsly, f f L p ( n ) and g L q ( n ), wh < p < and /p /q =, hn f g C ( n ), whr C ( n ) dno h spac of connuous funcons h on n such ha lm x h(x) =. Bsds, sup x n (f g)(x) f L p g L q. S [7, p. 4]. 9 Usng hs fac w can prov h followng lmma. Lmma 7. For any (,T ) and s =,, w hav ( s x u)(.,) C (). Furhrmor, hr xs h paral drvavs ( 3 x u)(x,) and ( x )u(x,), for any (x,) (,T ). 9 W would lk o hank Prof. Lucas C. F. Frrra for brngng our anon o hs fac and suggsng us o ak h nal daa u, n L p.