Časopis pro pěstování matematiky

Similar documents
Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Commentationes Mathematicae Universitatis Carolinae

Mathematica Bohemica

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Mathematica Bohemica

Archivum Mathematicum

Časopis pro pěstování matematiky a fysiky

Acta Universitatis Carolinae. Mathematica et Physica

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Časopis pro pěstování matematiky

d F = (df E 3 ) E 3. (4.1)

Časopis pro pěstování matematiky

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Linear Differential Transformations of the Second Order

Časopis pro pěstování matematiky a fysiky

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

ON THE MEAN CURVATURE FUNCTION FOR COMPACT SURFACES

Časopis pro pěstování matematiky

Parts Manual. EPIC II Critical Care Bed REF 2031

EQUADIFF 6. Jean-Claude Nédélec Mixed finite element in 3D in H(div) and H(curl) Terms of use:

Czechoslovak Mathematical Journal

Applications of Mathematics

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Commentationes Mathematicae Universitatis Carolinae

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Acta Universitatis Carolinae. Mathematica et Physica

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Spacetime and 4 vectors

STRAIGHT LINES EXERCISE - 3

Časopis pro pěstování matematiky a fysiky

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Acta Universitatis Carolinae. Mathematica et Physica

Archivum Mathematicum

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

Aplikace matematiky. El Said El Shinnawy The Euclidean plane kinematics. Terms of use: Aplikace matematiky, Vol. 24 (1979), No.

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Czechoslovak Mathematical Journal

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Archivum Mathematicum

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

42. Change of Variables: The Jacobian

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

EQUADIFF 7. Linard Eduardovič Reizinš Theory of completely integrable equations. Terms of use:

Acta Mathematica Universitatis Ostraviensis

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Czechoslovak Mathematical Journal

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

Chapter 3 - Vector Calculus

Acta Mathematica et Informatica Universitatis Ostraviensis

Applications of Mathematics

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN S 4

DIFFERENTIAL GEOMETRY HW 7

Czechoslovak Mathematical Journal

Linear Transformations: Standard Matrix

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

ENGI 4430 Parametric Vector Functions Page dt dt dt

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Bohemica

Theorem. In terms of the coordinate frame, the Levi-Civita connection is given by:

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Czechoslovak Mathematical Journal

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

Mathematica Slovaca. Dragan Marušič; Tomaž Pisanski The remarkable generalized Petersen graph G(8, 3) Terms of use:

Mathematica Bohemica

Acta Universitatis Carolinae. Mathematica et Physica

Tensor Analysis in Euclidean Space

2014/2015 SEMESTER 1 MID-TERM TEST. September/October :30pm to 9:30pm PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

A matrix over a field F is a rectangular array of elements from F. The symbol

Classical differential geometry of two-dimensional surfaces

ELEMENTARY LINEAR ALGEBRA


Czechoslovak Mathematical Journal

Aplikace matematiky. Gene Howard Golub Least squares, singular values and matrix approximations. Terms of use:

Czechoslovak Mathematical Journal

j=1 ωj k E j. (3.1) j=1 θj E j, (3.2)

Commentationes Mathematicae Universitatis Carolinae

100Z-1 100Z-1 51 HA 50. Cushion ring Cushion ring. Type. Standard type. Switch Set

ELEMENTARY LINEAR ALGEBRA

Differential Forms, Integration on Manifolds, and Stokes Theorem

Chapter 4. The First Fundamental Form (Induced Metric)


Notes on Cartan s Method of Moving Frames

Review of Integration Techniques

1. Geometry of the unit tangent bundle

Mathematica Bohemica

Toposym 2. Miroslav Katětov Convergence structures. Terms of use:

ON THE PARALLEL SURFACES IN GALILEAN SPACE

% dr. dm d 2 r dt 2 = F g + F P,t + F P,b !"#$%&'()*+(,-%&'./'0(/1(2%#'0( !"#$%&'()*+(,-%&'./'0(/1(2%#'0( !"#$%&'()*+(,-%&'.

Material Properties Measurement. Accuracy of Plastic Strain Estimated by Hardness to Assess Remaining Fatigue Lives

Transcription:

Časopis pro pěstování matematiky Alois Švec Determination of a surface by its mean curvature Časopis pro pěstování matematiky, Vol. 103 (1978), No. 2, 175--180 Persistent URL: http://dml.cz/dmlcz/108617 Terms of use: Institute of Mathematics AS CR, 1978 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Časopis pro pěstování matematiky, roč. 103 (1978), Praha DETERMINATION OF A SURFACE BY ITS MEAN CURVATURE ALOIS SVEC, Olomouc (Received August 17, 1976) M. MATSUMOTO [2] and T. Y. THOMAS [3] have shown how to reconstruct a surface of the Euclidean 3-space from its metric form and its mean curvature; see also [1]. In what follows, a simpler and more complete solution of the same problem is presented. 1. Let be given a domain D a R 2 and a metric (1) ds 2 = A(x, y) dx 2 + 2 B(x, y) dx dy + C(x, y) dy 2 on it. Let us choose the forms co l = F{ dx 4- r\ dy, co 2 = r\ dx + T\ dy such that (2) ds 2 = (co 1 ) 2 + (co 2 ) 2. Then there is exactly one form co\ such that (3) dco 1 = -co 2 A co\, dco 2 = co 1 A co\. If (4) dco 1 = ret) 1 A co 2, dco 2 = sco 1 A CO 2, we have (5) co\ = rco 1 + sco 2. The Gauss curvature K of the metric (1) is defined by the formula (6) dco\ = -Kco 1 A co 2. Let f:d-+r be a function. Its covariant derivatives fi,fij = fji with respect to the chosen coframe (co 1, co 2 ) let be defined by the equations (7) df = f 1 o> 1 +f 2 a>*; (8) d/. - f 2 <o\ = A X + f 12 a> 2, df 2 + f l0 >\ = f 12 <o l + / 22 «-. 175

Let/, g : D -* R be functions. Let us introduce the following differential operators: (9) - V(L0)=/.a. +/ 2 2, V/=V(L/). (10) 4t = A i + f 2 2, W = (Ai - f 22 ) 2 + Vh, (11) *(/, g) = (/.. - / 22 )(/.. - f 2 g 2 ) + 2/ 12 (/.«2 + / 2 a.), <P/ = $(/,/). Let (12) ds 2 = (T 1 ) 2 + (r 2 ) 2 be another expression of the form (2). Then (13) x 1 = co 1. cos c/> co 2. sin c/>, T 2 = s(co 1. sin c/> + co 2. cos c/>) ; From e = ±1. (14) dt 1 = - T 2 A e(co\ dc/>), dt 2 = T 1 A e((o\ dc/>), we see that (15) T 2 = e((o\ - dq>). Denote by /*,/i* the covariant derivatives of the function / with respect to the coframe (T 1, T 2 ). Then (16) f x = cos c/>./* + e sin c/>./*, / 2 = -sin cp.f* + e cos c/>./* ; ( 17 ) h I = cos 2 c/>. /fj + 2e sin c/> cos cp. /* 2 + sin 2 q>. f* 2, This implies / 12 = sin c/> cos c/>.f xl + fi(cos 2 c/> sin 2 c/>)/* 2 + sin c/> cos c/>./* 2, / 22 = sin 2 c/>./^ - 2e sin c/> cos c/>./* 2 + cos 2 c/>./* 2. (18) V*(/, g) = V(/, c/), A*f = J/,!F*/ = Vf, **(f, g) = <!>(/, g). 2. Let M : D ->.E 3 be a surface. The frame (w x, w 2 ) on D being dual to (co 1, co 2 ), let the orthonormal frame (v l9 v l9 v 3 ) associated with M be v x = (dm) w i9 v 2 = = (dm)w 2 and v 3 the unit normal vector. Then the fundamental equations of M are (19) dm = co 1^ + w 2 v 2, dv x = o\v 2 + co^a, di> 2 = o x v x + coftfa, dt; 3 = (o\v x co t? 2 with the integrability conditions (3), (20) co 1 A (o\ + (O 2 A (o\ = 0 176

and (21) dot) 2 = -co\ A co 2, Aco\ = co 2 A co\, dc01 = -coj A CO?, From (20), we get the existence of functions x, y : D -.» R such that (22) co\ = (H + x) co 1 + jew 2, co 2 = yco 1 + (H - x) co 2, H being the mean curvature of M. From (21J and (6), (23) K = (H + x) (H - x) - y 2. Let us introduce the functions (24) / = V(H 2 -K), L=/ 2 = H 2 -K. Then (25) x 2 + jr 2 = Z 2, and we are in the position to write 3 _ (IT, i ^ c \ Ml, j c : M M m 2 (26) co* = (Я + / cos a) co 1 + / sin a co co\ = / sin a. co 1 + (Я / cos a) co 2 Our task is to produce, the forms co 1, co 2 and the function H being given, a function a such that the forms (26) satisfy (21 2>3 ). By direct calculation, we get (27) /a x = H 1 sin a + H 2 cos a + / 2 2r/, /a 2 = H x cos a + H 2 sin a / A 2s/, the indices denoting the above introduced covariant derivatives. Let us write (28) da = a^1 + a 2 co 2, (29) d(x t <x 2 co\ = Unco 1 + a 12 co 2, da 2 + a^2 = a 21 co 1 + a 22 ct) 2 ; the equation (30) a 12 = a 21 is then the integrability condition of (28). The differentiation of (27) yields (31) /a n = -(/j + H t cos a + H 2 sin a) a x - r/a 2 (H lt + rh 2 ) sin a + + (H 12 rif 1 )cos a + / 12 3^ 2r x Z, /a 12 = / 2 a t - (si + H 1 cos a + H 2 sin a) a 2 (if 12 + sh 2 ) sin a + 177

+ (H 22 - sh t ) cos a + / 22 - sl t - 2r/ 2-2r 2 /, /a 21 = (r/ H! sin a + H 2 cos a) a x l t a 2 + (H 12 rh t ) sin a + + (H lx + rh 2 ) cos a / 11L 2s/ x r/ 2 2s x /, /a 22 = s/a x (/ 2 + H 1 sin a H 2 cos a) a 2 + (H 22 sh x ) sin a + + (H 12 + sh 2 ) cos a / 12 3s/ 2 + 2s 2 /. Let us recall that (5) and (6) imply (32) K = r 2 - Sl - r 2 - s 2. From (3l 2, 3 ) and (27), we get (33) L(a 12 - a 21 ) = - 2(H 12 / - H 2 l t - H x l 2 ) sin a + + (H 22 f - H tl l + 2HJ! - 2H 2 / 2 ) cos a - Further, - VH + IAI - V/ - 2KL. (34) L x = 2H-., L 2 = 2// 2, and L xl = 2/ 1 + 2// u, L 12 = 2/ 1 / 2 + 2// 12, L 22 = 2/ 2 + 2// 22 (35) VL=2LVZ, JL=2V/ + 2/A/. The equation (33) may be rewritten as (36) 2L 2 (a 12 - a 21 ) = -4L(H 12 / - H 2 l 1 - H x l 2 ) sin a + + 2UH 22 l - H u / + 2HJ! - 2H 2 / 2 ) cos a - 2LVH + LAL - VL - 4KL 2 Further, (37) L x = 2HH! - K x, L 2 = 2iJH 2 - K 2, which implies L 1X = 2H X + 2HH tl K n, L 12 = 2H 1 H 2 + 2HH 12 K 12, L 22 = 2ii 2 + 2HH 22 A 22, (38) VL=4H 2 VJJ- 4ifV(iJ,K) + VK, AL= 2 WH + 2H AH - AK. Because of this, the integrability condition (28) may be written as (39) -4LP t sin a + 2LP 2 cos a + P = 0 178

with (40) P x = H t2 l - H 2 l, - HJ 2, P 2 = (H 22 - H tl ) I + 2H l l l - 2H 2 / 2, (41) P = -4KH 4 + 2 AH. H 3 + (8K 2 - AK - 4 VH) H 2 + Further, it is easy to see that + 2{2 V(H, K) - K AH} H + K AK - VK - 4K 3. (42) (AP\ + P 2 2) L = (H 2 - K) 2 VH + 4H 2 (VH) 2 + + VH. {VK - 4H V(H, K)} + 2(H 2 - X) {#(H, K) - 2H <f>h}. 3. Let us recall that the second fundamental form of M is given by (43) II = co l col + co 2 co 3 2 = = (H + I cos a) (co 1 ) 2 + 2/ sin acow + (H - / cos a) (co 2 ) 2 ; the vectors v t9 v 2 are principal at p e D if sin a(p) = 0. Now, it is easy to see the validity of the following Theorem. In a domain D c R 2, let a metric ds 2 be given. Let K be its Gauss curvature, and let H : D -> it be a function satisfying H 2 > K. Let pedbe a fixed point, and let the vectors w x (p), w 2 (p) be orthonormal with respect to ds 2. 1 Let VH = 0. If there is a surface M : D -> E 3 with its first form equal to ds 2 and the mean curvature H, H is a solution of the equation (44) 4KH 4 + (AK - 8K 2 ) H 2 + VK - K AK + AK 3 = 0. Let ds 2 be such that there exists a constant solution H of (44) satisfying H 2 > K. Then there is a neighborhood U cz D of p and a unique surface M :U -> E 3 having ds 2 for its first form and H for its mean curvature, the vectors dm p w t (p), dm p w 2 (p) being principal. 2 Let (45) (H 2 - K) 2 H + 4H 2 (VH) 2 + VH. {VK - AH V(H, K)} + + 2(H 2 - K) {<P(H, K) - 2H <PH} = 0. If there is a surface M : D - E 3 with its first form equal to ds 2 and the mean curvature H, we have (46) 4KH 4-2 AH. H 3 + (AK + AVH - 8K 2 ) H 2 + + 2{K AH - 2 V(H, K)}H + VK-KAK + AK 3 = 0. 179

Let ds 2 be such that, in a suitable neighborhood U x c D of p, there exists a solution H of (45) and (46) satisfying H 2 > K. Then there is a neighborhood U c U l of p and a unique surface M : U -> E 3 having ds 2 for its first form and H for its mean curvature, the vectors dm p w^p), dm p w 2 (P) being principal. It remains to discuss the case in which the function H does not satisfy (45) at any point of p e D. In this case 4PJ + P 2 =# 0, and (39) may be written as (47) cos /? sin a 4- sin f} cos a = 2LV(4PJ + P2 i ) the angle /? being determined by (48) - cosl--- ~}?1 sinjs = ^Pl + Pl) 9 " VC^ + Jl)' Thus (49) P 2 ^ 4L 2 (4P 2 + P 2 ). Let H satisfy (49). Then we produce fi from (48) and a from (47); if this a satisfies (27), the local existence of our surface is ensured. Its second form is given by (43). Bibliography [1] Glãssner E. t Simon U.: Zur Geometrie der zweiten Grundform. Überblicke Mathematik, Bd. 6, 1973, 197 242. Bibliographisches Inst. AG, Mannheim Wien Zürich. [2] Matsumoto M.: Determination of the second fundamental form of a hypersurface by its mean cuгvature. Mem. Coll. Sci., Univ. Kyoto, Ser. A., 32 (1959), 259 279. [3] Thomas T. Y.: Algebraic determination of the second fundamental form of a surface by its mean curvatuгe. Bull. A.M.S., 51 (1945), 390-399. Authoŕs address: 771 46 Olomouc, Leninova 26 (Přírodov decká fakulta UP). 180