Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study

Similar documents
Supporting Information Mechanism of Ullmann Coupling Reaction of Chloroarene on Au/Pd Alloy Nanocluster: A DFT Study

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2

Catalysis Science & Technology

Adsorption of water and ammonia on TiO 2 -anatase cluster models

Investigation of the promotion effect of WO 3 on the decomposition and reactivity of NH 4 HSO 4 with NO on V 2 O 5 -WO 3 /TiO 2 SCR catalysts

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

The mechanism of ammonium bisulfate formation and

The Mechanism of Directed Ni(II)-Catalyzed C H Iodination with Molecular Iodine

Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au Atoms

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Supplementary Figure 1 Morpholigical properties of TiO 2-x SCs. The statistical particle size distribution (a) of the defective {001}-TiO 2-x SCs and

1 Supporting information

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon

SUPPLEMENTARY INFORMATION

The role of various iron species in Fe-Beta catalysts with low. iron loadings for NH 3 -SCR

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China,

Supplementary Information

Investigation of Cation Binding and Sensing by new Crown Ether core substituted Naphthalene Diimide systems

Supplementary Information for:

Supporting Information

Effect of KCl on selective catalytic reduction of NO with NH 3 over a V 2 O 5 /AC catalyst

Hexagonal Boron Nitride supported mesosio 2 -confined Ni Catalysts. for Dry Reforming of Methane

Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature

Recent activities in TP C6:

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Supporting Information

Supporting Information

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

The Mechanism for the Selective Oxidation of CO Enhanced by H 2 O on a Novel PROC Catalyst

Supplementary Information

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason

Supporting Information for

Electronic Supplementary Information

Supporting Information

Strategic use of CuAlO 2 as a sustained release catalyst for production of hydrogen from methanol steam reforming

Au-C Au-Au. g(r) r/a. Supplementary Figures

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Ammonium adsorption on Brønsted acidic centers on low-index vanadium pentoxide surfaces

Effect of Calcination Temperature on the Characteristics of SO 4. /TiO 2 Catalysts for the Reduction of NO by NH 3

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Supporting Information

Supplementary Information

Thiourea Derivatives as Brønsted Acid Organocatalysts

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Supporting Information

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions

Oxygen Reduction Reaction

In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH 3

Brønsted/Lewis Acid Synergistically Promote the Initial C-C Bond Formation in MTO Reaction

Supporting Information

Supporting Information (SI) For. Reaction of Aniline with Singlet Oxygen (O 2 1 g )

Morphology-Selective Synthesis of Cu(NO3)2 2.5H2O. Micro/Nanostructures Achieved by Rational Manipulation

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for measuring their strong acidity and acidity distribution

Electronic Supporting Information

Supporting Information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

CHEM Chemical Kinetics

Supporting Information

Takahiro Fukuda, a Yasuhiro Hayasaki, b Takashi Hasumura, a Yoshihiro Katsube, b Raymond L.D. Whitby cd and Toru Maekawa* ab

Mechanistic Study of Selective Catalytic Reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in Situ DRIFTS

Supporting Information

Supporting Information

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the

Supplementary data Methanolysis of Ammonia Borane by Shape-Controlled Mesoporous Copper Nanostructures for Hydrogen Generation

Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal in situ DRIFTS study

Supporting Information. Oxidation Catalyst. Jingqi Guan, Chunmei Ding, Ruotian Chen, Baokun Huang, Xianwen Zhang, Fengtao

Supplementary Information

Pd-P nanoalloys supported on porous carbon frame as efficient catalyst for benzyl alcohol oxidation

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework

Lecture 15 February 15, 2013 Transition metals

Effects of Ethane Partial Pressure on the Apparent Rate Expressions of Oxidative Couplin... Page 1 of 16

Supplementary Information for

A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation

Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100)

SUPPORTING INFORMATION. Direct Observation on Reaction Intermediates and the Role of. Cu Surfaces

Zeolite supported iron catalyst for nitric oxide reduction by ammonia in the presence of oxygen

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas

Electronic Supplementary Information (ESI): First Principles Study of Photo-oxidation Degradation Mechanisms in P3HT for Organic Solar Cells

Catalytic performance of a dicopper-oxo complex for methane hydroxylation

NO removal: influences of acidity and reducibility

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7

Ab Initio Study of Hydrogen Storage on CNT

Supporting Information

2.2.7 Research Area Oxidative Coupling Reactions Methods and Mechanisms (M. Klußmann)

Supplementary file XRD. Supplementary figure 1. XRD pattern of pristine Co 3 O 4 and higher dopant (Ag 0.5 Co 2.5 O 4 biphasic).

Electronic Supplementary Information Oxygen reduction reaction on neighboring Fe-N 4 and quaternary-n sites of pyrolized Fe/N/C catalyst

Supporting Information

International Journal of Mass Spectrometry

Supporting Information

Catalytic mechanism and reaction pathway of acetone ammoximation to acetone oxime over TS-1

Cu 2 O/g-C 3 N 4 nanocomposites: An insight into the band structure tuning and catalytic efficiencies

Catalyst structure and C-O activation during FTS: new ideas from computational catalysis. Mark Saeys

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy

Supporting Information

Surface Chemical Modification of Nanosized Oxide Particles with a Titanate Coupling Reagent in Isopropanol

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College

Light Photocatalyst for Cr(VI) Reduction and

Transcription:

Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 05 Supporting Information Mechanistic Insight to Selective Catalytic Reduction of NO by NH 3 over Low-valent Titanium-porphyrin: A DFT Study Phornphimon Maitarad, a Jittima Meeprasert, b Liyi Shi, a Jumras Limtrakul, c Dengsong Zhang a * and Supawadee Namuangruk b * a Research Center of Nano Science and Technology, Shanghai University, Shanghai 00, P. R. China b National Nanotechnology Center, NSTDA, Thailand Science Park, Pahonyothin Road, Klong Luang, Pathum Thani 0, Thailand c Vidyasirimedhi Institute of Science and Technology, Rayong 0, Thailand S

Supporting Information Details Table S Total energies of all reaction steps over the Ti-porphyrin with low Page S3 and high spin states based on M06L/6-3G(d,p) (C, N, O, H) LANLDZ (Ti) Figure S-S Optimized structures and their relative energies for step - Page S-S7 for both low and high spin states Figure S5. Full reaction pathway of NH 3 -SCR of NO over the low spin Page S8 state (a) and high spin state (b) of Ti-porphyrin catalyst. Figure S6. Catalyst regeneration step by NH 3 reducing agent over the Page S9 Brønsted site of TiH-porphyrin Table S Cartesian coordinates of Ti-porphyrin and the transition states of Page S0-S7 NH 3 -SCR of NO reaction in low and high spin states of Ti-porphyrin S

Table S. Total energies of all reaction steps over the Ti-porphyrin with low and high spin states based on M06L/6-3G(d,p) (C, N, O, H) LANLDZ (Ti) Low spin Total energy (au) Relative energy (kcal/mol) singlet Ti-Por -06.695 0.00 Ti-NH 3-03.05530-5.9 TS -03.0760-8.57 TiH-NH -03.06580-7.96 doublet NO- TiH-NH -3.95737-37.3 TS -3.970-3.33 TiH-NH NO -3.957085-0.59 TS3-3.96783 -.57 TiH-NHNOH -33.008607-7.9 TS -3.99698-65.6 TiH-N -H O -33.0378-76.6 TiH-H O -3.9793-75.6 TiH-Por -07.087-7.0 High Spin triplet 3 Ti-Por -06.88 0.00 3 Ti-NH 3-03.3733-60.06 3 TS -03.0578 -.6 3 TiH-NH -03.0687-3.6 quartet NO- TiH-NH -3.9567-37.50 TS -3.937503-8.30 TiH-NH NO -3.93-30.6 TS3-3.8906 0.85 TiH-NHNOH -3.90-70.0 TS -3.9905-6.57 TiH-N -H O -33.009-7.36 TiH-H O -3.9560-73.35 3 TiH-Por -07.05305-5.0 Isolated molecule NH 3-56.5860 NO -9.87396 H O -76.08 N -09.57356 S3

Figure S. Step of NH 3 oxidation over the low and high spin states of Ti-porphyrin. S

Figure S. Step of NH NO intermediate formation over the low and high spin states of Tiporphyrin S5

Figure S3. Step 3 of NHNOH intermediate formation over the low and high spin states of Tiporphyrin S6

Figure S. Step of NHNOH decomposition to nitrogen and water molecules over the low and high spin states of Ti-porphyrin. S7

Figure S5. Full reaction pathway of NH 3 -SCR of NO over the low spin state (a) and high spin state (b) of Ti-porphyrin catalyst. S8

Catalyst Regeneration Figure S6. Catalyst regeneration step by NH 3 reducing agent over the Brønsted site of TiHporphyrin calculated at the high spin state. Ti-porphyrin catalyst in NH 3 -SCR can generate the Brønsted acid site namely TiH after production of H O and N molecules. This TiH species could be then regenerated to Tiporphyrin. In literature, it is found that during NH 3 -SCR process, NH 3 molecule can adsorb on the Brønsted acid site to produce NH + species. -3 Thus, in the present work, we have provided a possibility of catalyst regeneration by NH 3 oxidation process; TiH + NH 3 Tiporphyrin + NH +, as shown in Figure S6. The reaction started with the NH 3 adsorption on the Brønsted acid site of TiH with the adsorption energy -5.66 kcal/mol. Then the NH 3 oxidation process occurred by requiring energy of only 7.0 kcal/mol to form the NH + species. Finally, the catalyst is regenerated to Ti-porphyrin which it could continually become Lewis site for new reaction. References. G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal., B, 998, 8, -36.. M. Calatayud, B. Mguig and C. Minot, Surf. Sci. Rep., 00, 55, 69-36. 3. R. Yuan, G. Fu, X. Xu and H. Wan, Phys. Chem. Chem. Phys., 0, 3, 53 60. S9

Table S. Cartesian coordinates of Ti-porphyrin and the transition states of NH 3 -SCR of NO reaction in low and high spin states of Ti-porphyrin. Ti-Por (Ti-porphyrin at singlet state) C 0.69806.0969-0.000035 C -0.6983.09655-0.000063 C -.6899.86733-0.000095 N -0.00008.0339-0.00085 C.6875.867-0.00005 C.638-0.67656 0.00085 C.637 0.676577 0.00085 C.8859.753 0.00030 N.0530 0.000005 0.00003 C.885 -.7 0.0008 C -0.69808 -.09656-0.000063 C 0.698 -.0967-0.00005 C.6886 -.867-0.00009 N -0.000008 -.0339-0.00087 C -.6887 -.86736-0.000097 C -.63 0.67656-0.00000 C -.63-0.676577 0.000000 C -.885 -.75 0.000006 N -.059-0.000005 0.00009 C -.885.70 0.000006 C.539 -.7999 0.000050 C -.538 -.80-0.00005 C -.538.8003-0.000053 C.5309.8008 0.000055 H -5.683 -.3680-0.00003 H -5.686.36787-0.0000 H -.3556 5.06863-0.0000 H.3555 5.06863 0.00003 H 5.69.3680 0.000 H 5.69 -.3678 0.0000 H.35569-5.06868-0.00000 H -.355-5.06866-0.000038 H -3.68-3.936-0.000057 H -3.697 3.9-0.000057 H 3.677-3.98 0.000079 H 3.66 3.93 0.000087 Ti 0.0000 0.000000 0.00003 3 Ti-Por (Ti-porphyrin at triplet state) C -0.6857 -.7798-0.000336 C 0.680686 -.86-0.000366 C.0 -.8895-0.000788 N -0.006 -.05597-0.00098 C -.08 -.88535-0.00076 C -.795 0.685695 0.0075 C -.8759-0.68065 0.0073 C -.883067 -.0990 0.00000 N -.056 0.00-0.000 C -.88737.0 0.000395 C 0.68577.788-0.00037 C -0.68068.86-0.000338 C -.099.88865-0.00075 N 0.0063.055973-0.00099 S0

C.56.88585-0.000787 C.793-0.685687 0.0058 C.8736 0.68066 0.00550 C.88307.098 0.0007 N.056076-0.00-0.00035 C.88697 -.396 0.00068 C -.3776.3633-0.00030 C.3685.3767-0.00038 C.3808 -.363-0.00033 C -.365 -.3757-0.0003 H 5.059.35763 0.0090 H 5.033 -.35837 0.00906 H.3575-5.0590 0.00086 H -.358-5.0 0.0006 H -5.05970 -.35766 0.0033 H -5.0358.3580 0.00 H -.3577 5.05853 0.000 H.35789 5.098 0.00075 H 3.0556 3.033-0.0007 H 3.0360-3.0539-0.0007 H -3.073 3.0585-0.0007 H -3.05068-3.0389-0.0009 Ti -0.000036 0.000000-0.0006 TS (first transition state at singlet state) C.65 0.875-0.36067 C.6067-0.5833-0.399036 C.9390 -.039-0.8676 N.07 0.0790 0.008 C.8630.95-0.3 C -0.85756.689-0.568 C 0.55780.68-0.059379 C 0.98969.889560-0.08836 N -0.095506.030-0.558 C -.3578.85308-0.803 C -.6965-0.8738-0.66658 C -.3968 0.5397-0.753 C -.979.0380-0.909 N -.09563-0.06-0.05788 C -.88560 -.07-0.05595 C 0.898 -.605-0.0669 C -0.5750 -.0685-0.3560 C -.03079 -.8800-0.093636 N 0.05685 -.006506-0.8 C.9085 -.80760-0.965 C -.5655.3096-0.0 C -.3896 -.88-0.0656 C.5098 -.3569-0.687 C.3587.5773-0.09368 H -.05909-5.083033-0.0705 H.50389 -.9990-0.355 H 5.08 -.00-0.600756 H 5.08983.53559-0.507 H.60377 5.0939-0.0709 H -.597 5.0060-0.600 H -5.9398.58793-0.39983 H -5.09589 -.509-0.90380 Ti -0.396-0.0065 0.07578 H -3.98-3.8506-0.05905 H 3.9679-3.0778-0.37988 H -3.33987 3.09989-0.3608 H 3.067867 3.383-0.38993 S

N 0.5398-0.5086.380 H 0.5753 0.66990.76 H 0.3368-0.97.673737 H.699-0.0377.7778 3 TS (first transition state at triplet state) C -.503-0.68387-0.8999 C -.5059 0.6855-0.903 C -.89656.339-0.735 N -.078759-0.0000 0.035903 C -.89697 -.33996-0.7338 C 0.737 -.0900-0.880 C -0.665 -.578-0.6383 C -.089688 -.8635-0.30 N 0.0306 -.05993-0.850 C.986 -.85050-0.9 C.9980 0.68937-0.600 C.998-0.687-0.606 C.93565 -.50-0.3377 N.8690 0.000058-0.0596 C.935575.5380-0.33 C -0.6637.5693-0.63865 C 0.7963.0906-0.80 C.9698.85089-0.936 N 0.0.0598-0.890 C -.08980.863073-0.365 C.706 -.803-0.537 C.7097.850-0.5335 C -.300.3097-0.757 C -.996 -.303-0.7567 H.3835 5.060736-0.55999 H -.3505 5.0738-0.8680 H -5.05888.30568-0.63 H -5.05886 -.3075-0.637 H -.383-5.07399-0.86750 H.3869-5.060689-0.56053 H 5.59 -.3589-0.3679 H 5.503.3557-0.367 Ti 0.379-0.00006 0.8833 H 3.0358 3.0063-0.308 H -3.8003 3.060-0.678 H 3.09-3.0906-0.55 H -3.80090-3.0-0.6777 N -0.56056-0.0008.796 H -0.5566-0.8580.7603 H -0.55 0.8597.760 H -.683 0.00008.7087 TS (second transition state at doublet state) C -.069863.8737-0.93080 C -3.53036.379380-0.8993 C -.867.98633-0.370 N -.909 0.9970-0.30666 C -3.0956 0.8088-0.500563 C -0.97968 -.057-0.96 C -.38-3.5635-0.3753 C -.09660 -.0737-0.37967 S

N -0.7550 -.77337-0.38 C -0.0650 -.973076-0.663 C.39-0.970-0.6897 C 3.6958 -.3069-0.70508 C.7053 -.0855-0.5636 N.95897-0.7500-0.0539 C 3.883-0.053686-0.6989 C.073600.965-0.09366 C.33376 3.60055-0.059769 C.753.300-0.6695 N 0.89637.969-0.935 C 0.786 3.5-0.96 C.33590-3.085-0.53700 C 3.3687.3688-0.377 C -.60 3.876-0.330 C -3.597 -.8788-0.8678 H 3.8768.5363-0.03037 H 0.80668 5.370-0.09937 H -.0003 3.95988 -.7 H -5.0586 0.8089 -.8886 H -3.96 -.037065-0.83 H -0.700-5.0633-0.50395 H.338-3.63-0.85766 H 5.78866-0.69689-0.67750 Ti 0.83996-0.03687 0.8976 H.350.7537-0.58098 H -.589550.30378-0.753 H.709 -.9685-0.636065 H -.8 -.698-0.6603 N 0.79667-0.7535.7389 H.0378 -.68670.700 H.78 0.89055.7879 H -.86 0.858538 0.895899 S3 N -0.877-0.073570.377389 O -.3556 -.76.6908 TS (second transition state at quartet state) C -.069863.8737-0.93080 C -3.53036.379380-0.8993 C -.867.98633-0.370 N -.909 0.9970-0.30666 C -3.0956 0.8088-0.500563 C -0.97968 -.057-0.96 C -.38-3.5635-0.3753 C -.09660 -.0737-0.37967 N -0.7550 -.77337-0.38 C -0.0650 -.973076-0.663 C.39-0.970-0.6897 C 3.6958 -.3069-0.70508 C.7053 -.0855-0.5636 N.95897-0.7500-0.0539 C 3.883-0.053686-0.6989 C.073600.965-0.09366 C.33376 3.60055-0.059769 C.753.300-0.6695 N 0.89637.969-0.935 C 0.786 3.5-0.96 C.33590-3.085-0.53700 C 3.3687.3688-0.377 C -.60 3.876-0.330 C -3.597 -.8788-0.8678 H 3.8768.5363-0.03037

H 0.80668 5.370-0.09937 H -.0003 3.95988 -.7 H -5.0586 0.8089 -.8886 H -3.96 -.037065-0.83 H -0.700-5.0633-0.50395 H.338-3.63-0.85766 H 5.78866-0.69689-0.67750 Ti 0.83996-0.03687 0.8976 H.350.7537-0.58098 H -.589550.30378-0.753 H.709 -.9685-0.636065 H -.8 -.698-0.6603 N 0.79667-0.7535.7389 H.0378 -.68670.700 H.78 0.89055.7879 H -.86 0.858538 0.895899 N -0.877-0.073570.377389 O -.3556 -.76.6908 TS3 (third transition state at doublet state) C -3.93533 -.7053-0.7375 C -.9397-0.39357-0.657 C -3.660 0.375-0.5933 N -.0809-0.57896 0.097 C -.566 -.8738-0.3993 C.79998-3.87-0.787 C 0.3957 -.0076-0.6305 C -0.3568 -.99935-0.3768 N 0.880 -.90806-0.959 C.767606 -.865-0.3336 C 3.970.76088-0.6783 C.700 0.56-0.576988 C 3.0689-0.3096-0.3736 N.988793 0.566-0.9856 C.837.83-0.76890 C -.7677 3.88955-0.397 C -0.3937.39537-0.3930 C 0.375 3.0383-0.373776 N -0.53698.97076-0.587 C -.833.7537-0.586 C.957697 -.6808-0.376 C.70878.96665-0.835 C -3.0868.73093-0.077 C -.759559 -.988-0.6685 H -0.057 5.7753-0.5565 H -.6378.537-0.3930 H -5.5568 0.0358-0.9899 H -.55073 -.5777 -.097986 H -0.03763-5.90706-0.55705 H.58885 -.9095-0.77 H 5.5966 0.080-0.689 H.5603.683-0.86730 Ti 0.3786 0.066 0.337 H.900 3.9360-0.60680 H -3.9850.375-0.36635 H 3.87937 -.55838-0.0779 H -.500-3.8993-0.683706 N -0.90509 0.6678.35680 H 0.7806 0.533950.58970 H -.385697 0.906.7953 H -.999-0.6989.038560 N -0.856-0.763637.09367 S

O.550-0.5979.785 TS3 (third transition state at quartet state) C 3.6886.99300-0.800636 C.5700 0.90900-0.887 C 3.83 0.03500-0.60837 N.9767 0.85-0.0955 C.33576.9536-0.383005 C -.0077 3.79983-0.038 C -0.8368.7600-0.0733 C 0.0867 3.570-0.36606 N -0.697.97907-0.6788 C -.055.378968-0.09809 C -3.8099 -.9670-0.7039 C -.8656-0.68899-0.5905 C -3.566 0.677-0.3859 N -.00699-0.60788-0.376056 C -.3938 -.977-0.565808 C.0335-3.6550-0.53869 C 0.73759 -.076955-0.555778 C -0.599 -.90-0.505568 N 0.650 -.78687-0.078 C.9735 -.063-0.307 C -3.785.5389-0.703 C -.5998 -.98568-0.593 C 3.09570 -.37373-0.7957 C.37 3.966-0.893 H 0.39590-5.079-0.6959 H.98803 -.935-0.5583 H 5.6787 0.5807 -.9306 H.8995 3.0969 -.089 H -0.8330 5.30738-0.07039 H -3.039.3663 0.0067 H -5.30877-0.379-0.63958 H -.39370 -.8798-0.863306 Ti -0.776-0.00390 0.6865 H -.9506-3.97780-0.75 H.057 -.83575-0.689 H -.3653.0387-0.306 H.853563.908-0.0986 N 0.90796 -.858.756809 H -0.85 -.38975.6085 H.839 -.698 3.73056 H.86963 0.7736 0.9787 N 0.776-0.337.38968 O -0.680955-0.3530.75063 TS (fourth transition state at doublet state) C.0730 0.68733 -.0608 C.078-0.680 -.065 C.7975 -.3553-0.679 N.99095 0.0089-0.30678 C.790779.080-0.66530 C -0.7888.06557-0.76355 C 0.57767.60-0.373998 C.00630.856890-0.386565 S5

N -0.08903.0785-0.8656 C -.99765.839999-0.0989 C -.36883-0.68786-0.37788 C -.365896 0.67863-0.3768 C -.999778.0660-0.300733 N -.893-0.0060-0.0 C -.99809 -.070-0.3000 C 0.5866 -.506-0.37553 C -0.78988 -.078-0.77660 C -.9503 -.83-0.85 N -0.085957 -.073-0.8565 C.009005 -.85709-0.38776 C -.536050.6-0.67 C -.53375 -.605-0.678 C.3379 -.307-0.5709 C.379.3506-0.57300 H -.5359-5.0565-0.579 H.303-5.06950-0.87 H.8739 -.33686 -.3895 H.8733.3869 -.38057 H.3673 5.07070-0.6735 H -.6365 5.059-0.55800 H -5.536.35-0.5668 H -5.336 -.3567-0.5679 Ti -0.9089 0.0000 0.3830 H -3.80589-3.0305-0.303895 H 3.067666-3.05-0.70373 H -3.8583 3.9888-0.30305 H 3.06793 3.7585-0.738789 N.805-0.0073 3.03 H 0.3769-0.0056 3.0983 H.906885 0.0090 0.76870 N.00-0.00089.86608 O -0.6890-0.000556.06756 H -.535956-0.00578.853 TS (fourth transition state at quartet state) C -.07378-0.68370 -.06099 C -.073600 0.683 -.06083 C -.795.3796-0.6678 N -.990903 0.00039-0.3089 C -.79788 -.373-0.6680 C 0.78655 -.0697-0.76888 C -0.5888 -.597-0.37578 C -.0077 -.855680-0.38699 N 0.0876 -.0768-0.89 C.979 -.8075-0.359 C.36535 0.688-0.385 C.36585-0.686-0.3857 C.998705 -.0893-0.30 N.8853-0.00087-0.0 C.998968.08375-0.30076 C -0.58057.5359-0.375 C 0.785566.0685-0.76779 C.9777.8053-0.0 N 0.087569.07637-0.883 C -.006638.855933-0.386936 C.533807 -.58-0.668 C.5335.079-0.6508 C -.397.3655-0.573367 S6

C -.3973 -.30-0.573 H.57883 5.055-0.5639 H -.3993 5.07096-0.755 H -.8738.360 -.380655 H -.873579 -.30033 -.380675 H -.0-5.07066-0.750 H.5679-5.0557-0.566 H 5.00 -.38506-0.5773 H 5.360.3730-0.5708 Ti 0.9065-0.000030 0.3878 H 3.838 3.00836-0.303575 H -3.06503 3.503-0.73997 H 3.8530-3.055-0.303739 H -3.06570-3.89-0.7397 N -.796-0.000098 3.3780 H -0.375539-0.00078 3.0967 H -.9066 0.0005 0.768639 N -.0308 0.0000.86085 O 0.6958-0.0003.0658 H.536689-0.000.388 S7