Boltzmann-Gibbs Preserving Langevin Integrators

Similar documents
Introduction to Hamiltonian Monte Carlo Method

Stochastic Variational Integrators

Estimating Accuracy in Classical Molecular Simulation

Downloaded 07/22/13 to Redistribution subject to SIAM license or copyright; see

Gradient-based Monte Carlo sampling methods

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5)

Monte Carlo in Bayesian Statistics

Effective dynamics for the (overdamped) Langevin equation

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems

Riemann Manifold Methods in Bayesian Statistics

Hamiltonian flows, cotangent lifts, and momentum maps

Notes on symplectic geometry and group actions

CE 530 Molecular Simulation

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

A Backward Particle Interpretation of Feynman-Kac Formulae

Discrete Dirac Mechanics and Discrete Dirac Geometry

Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group

Canonical transformations (Lecture 4)

Two recent works on molecular systems out of equilibrium

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Physics 5153 Classical Mechanics. Canonical Transformations-1

Entropy and Large Deviations

arxiv: v1 [math.pr] 14 Nov 2017

A Brief Introduction to Statistical Mechanics

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 750 Lecture 9

Speeding up Convergence to Equilibrium for Diffusion Processes

Random dynamical systems with microstructure

The Microcanonical Approach. (a) The volume of accessible phase space for a given total energy is proportional to. dq 1 dq 2 dq N dp 1 dp 2 dp N,

Basic math for biology

7.1 Coupling from the Past

EULER-LAGRANGE TO HAMILTON. The goal of these notes is to give one way of getting from the Euler-Lagrange equations to Hamilton s equations.

Caltech Ph106 Fall 2001

Variational integrators for electric and nonsmooth systems

Dirac Structures and the Legendre Transformation for Implicit Lagrangian and Hamiltonian Systems

Discretizations of Lagrangian Mechanics

Harnack Inequalities and Applications for Stochastic Equations

Hopping transport in disordered solids

Large Fluctuations in Chaotic Systems

Synchro-Betatron Motion in Circular Accelerators

3.320 Lecture 18 (4/12/05)

Lecture 11 : Overview

Wave Packet Representation of Semiclassical Time Evolution in Quantum Mechanics

Intertwinings for Markov processes


Controlling Mechanical Systems by Active Constraints. Alberto Bressan. Department of Mathematics, Penn State University

Stochastic Behavior of Dissipative Hamiltonian Systems with Limit Cycles

Linear Response Theory, The Green-Kubo formula and Langevin Dynamics

Mean field simulation for Monte Carlo integration. Part II : Feynman-Kac models. P. Del Moral

Homework 4. Goldstein 9.7. Part (a) Theoretical Dynamics October 01, 2010 (1) P i = F 1. Q i. p i = F 1 (3) q i (5) P i (6)

Handout 10. Applications to Solids

Downloaded 07/28/14 to Redistribution subject to SIAM license or copyright; see

Properties for systems with weak invariant manifolds

GSHMC: An efficient Markov chain Monte Carlo sampling method. Sebastian Reich in collaboration with Elena Akhmatskaya (Fujitsu Laboratories Europe)

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Stochastic Hamiltonian systems and reduction

Markovian Approximation and Linear Response Theory for Classical Open Systems

Ambient space formulations and statistical mechanics of holonomically constrained Langevin systems

The Geometry of Euler s equation. Introduction

Computing ergodic limits for SDEs

Quantitative Model Checking (QMC) - SS12

Robust control and applications in economic theory

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh

Lecture 12: Detailed balance and Eigenfunction methods

On the holonomy fibration

Assignment 8. [η j, η k ] = J jk

Quantum Hydrodynamics models derived from the entropy principle

Turbulent Flows. g u

High performance computing and numerical modeling

MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY

Lecture 18 Stable Manifold Theorem

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Accurate approximation of stochastic differential equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

A Short Introduction to Diffusion Processes and Ito Calculus

Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators

The tree-valued Fleming-Viot process with mutation and selection

Statistical mechanics of random billiard systems

1 Geometry of high dimensional probability distributions

A GENTLE STOCHASTIC THERMOSTAT FOR MOLECULAR DYNAMICS

arxiv: v7 [quant-ph] 22 Aug 2017

The Atiyah bundle and connections on a principal bundle

Theory and applications of random Poincaré maps

Rigorous Functional Integration with Applications to Nelson s and the Pauli-Fierz Model

Importance splitting for rare event simulation

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs

9.1 System in contact with a heat reservoir

arxiv: v2 [physics.comp-ph] 24 Apr 2013

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Mix & Match Hamiltonian Monte Carlo

Backward Stochastic Differential Equations with Infinite Time Horizon

Enhanced sampling via molecular dynamics II: Unbiased approaches

arxiv: v2 [math.pr] 22 Apr 2016

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations

1. Introductory Examples

Lecture 8 Phase Space, Part 2. 1 Surfaces of section. MATH-GA Mechanics

Statistical Mechanics of Active Matter

An Introduction to Malliavin calculus and its applications

Transcription:

Boltzmann-Gibbs Preserving Langevin Integrators Nawaf Bou-Rabee Applied and Comp. Math., Caltech INI Workshop on Markov-Chain Monte-Carlo Methods March 28, 2008

4000 atom cluster simulation

Governing Equations of 4000 atom cluster

Governing Equations of 4000 atom cluster Consider the Hamiltonian

Governing Equations of 4000 atom cluster Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q)

Governing Equations of 4000 atom cluster Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric

Governing Equations of 4000 atom cluster Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw.

Scheme

Scheme BG-preserving SVI P 1/2 k = e ch p k h 2 q k+1 = q k + hp 1/2 k, p k+1 = P 1/2 k h 2 U q (q k)+ U q (q k+1). 1 e 2ch β ξ k,

4 3.5 3 2.5 c=8, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster SVI instantaneous temperature

4 3.5 3 2.5 c=64, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster SVI instantaneous temperature

4 3.5 3 2.5 c=512, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster SVI instantaneous temperature

4 3.5 3 2.5 c=4096, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster SVI instantaneous temperature

4 3.5 3 2.5 c=8, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster LAMMPS instantaneous temperature

4 3.5 3 2.5 c=16, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster LAMMPS instantaneous temperature

4 3.5 3 2.5 c=32, T=1 2 1.5 1 0.5 0 0 2 4 6 8 10 12 14 16 18 20 4000 atom cluster LAMMPS instantaneous temperature

Unstable for c>32 4000 atom cluster LAMMPS instantaneous temperature

Langevin Process

Langevin Process Consider the Hamiltonian

Langevin Process Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q)

Langevin Process Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric

Langevin Process Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw.

Langevin Process Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw. Hamiltonian

Langevin Process Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw. Hamiltonian Dissipative

Langevin Process Consider the Hamiltonian H(q, p) = 1 2 pt M 1 p + U(q) Langevin equations; C is symmetric dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw. Hamiltonian Dissipative Diffusive

Langevin Process Langevin equations dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw.

Langevin Process Langevin equations dq = H p dt, dp = H q preserves BG measure: dt cc H p dt + σc1/2 dw.

Langevin Process Langevin equations dq = H p dt, dp = H q preserves BG measure: dt cc H p dt + σc1/2 dw. dµ = Z 1 π(q, p)dqdp = Z 1 exp ( βh(q, p)) dqdp Z = T Q π(q, p)dqdp

Langevin Process Langevin equations dq = H p dt, dp = H q preserves BG measure: dt cc H p dt + σc1/2 dw. dµ = Z 1 π(q, p)dqdp = Z 1 exp ( βh(q, p)) dqdp Z = T Q π(q, p)dqdp if C is definite equilibrium (q t,p t ) exponentially converges to

Splitting Technique Langevin Equations { dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw.

Splitting Technique Langevin Equations { dq = H p dt, dp = H q Divide and conquer dt cc H p dt + σc1/2 dw.

Splitting Technique Langevin Equations { dq = H p dt, dp = H q Divide and conquer { dq = 0 Ornstein- Uhlenbeck dt cc H p dt + σc1/2 dw. dp = cc H p dt + σc1/2 dw

Splitting Technique Langevin Equations { dq = H p dt, dp = H q Divide and conquer { dq = 0 Ornstein- Uhlenbeck Hamiltonian dt cc H p dt + σc1/2 dw. dp = cc H p dt + σc1/2 dw { dq = H p dt dp = H q dt

Hamiltonian { dq = H p dt dp = H q dt Apply a pth-order accurate symplectic integrator

Hamiltonian { dq = H p dt dp = H q dt Apply a pth-order accurate symplectic integrator θ h : T Q T Q

Hamiltonian { dq = H p dt dp = H q dt Apply a pth-order accurate symplectic integrator θ h : T Q T Q Recall, integrator is symplectic, i.e., θhω =Ω

Hamiltonian { dq = H p dt dp = H q dt

Hamiltonian { dq = H p dt dp = H q dt Using backward error analysis H(θh N one can show that (q, p)) H(q, p) γ(q, p)h p

Hamiltonian { dq = H p dt dp = H q dt Using backward error analysis H(θh N one can show that (q, p)) H(q, p) γ(q, p)h p 0.24 0.2405 energy error of a Q 0.241 0.2415 0.242 symplectic integrator remains bounded for exponentially long times 0 20 40 60 80 100 120 140 160 180 200 t

{ Ornstein- Uhlenbeck dq = 0 dp = cc H p dt + σc1/2 dw A linear SDE

{ Ornstein- Uhlenbeck dq = 0 dp = cc H p dt + σc1/2 dw A linear SDE dp(t) = ccm 1 p(t)dt + σc 1/2 dw (t) p(0) = p,

{ Ornstein- Uhlenbeck dq = 0 dp = cc H p dt + σc1/2 dw A linear SDE dp(t) = ccm 1 p(t)dt + σc 1/2 dw (t) p(0) = p, Solution p(t) = exp( ccm 1 t)p + σ t 0 exp( ccm 1 (t s))c 1/2 dw (s).

{ Ornstein- Uhlenbeck dq = 0 dp = cc H p dt + σc1/2 dw A linear SDE dp(t) = ccm 1 p(t)dt + σc 1/2 dw (t) p(0) = p, Solution p(t) = exp( ccm 1 t)p + σ t 0 exp( ccm 1 (t s))c 1/2 dw (s). Define map ψ h :(q, p) (q, p(h)).

Ornstein-Uhlenbeck Process ψ h :(q, p) (q, p(h)).

Ornstein-Uhlenbeck Process ψ h :(q, p) (q, p(h)).

Ornstein-Uhlenbeck Process ψ h :(q, p) (q, p(h)). Properties:

Ornstein-Uhlenbeck Process ψ h :(q, p) (q, p(h)). Properties: preserves BG measure

Ornstein-Uhlenbeck Process ψ h :(q, p) (q, p(h)). Properties: preserves BG measure however, not even consistent with Langevin SDEs

Divide and Conquer

Divide and Conquer θ h : T Q T Q approximates { dq = H p dt dp = H q dt

Divide and Conquer θ h : T Q T Q approximates ψ h : T Q T Q solves { { dq = H p dt dp = H q dt dq = 0 dp = cc H p dt + σc1/2 dw

Divide and Conquer θ h : T Q T Q approximates ψ h : T Q T Q solves { { dq = H p dt dp = H q dt dq = 0 dp = cc H p dt + σc1/2 dw φ h = θ h ψ h approximates { dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw.

Divide and Conquer θ h : T Q T Q approximates ψ h : T Q T Q solves { { dq = H p dt dp = H q dt dq = 0 dp = cc H p dt + σc1/2 dw φ h = θ h ψ h approximates { dq = H p dt, dp = H q dt cc H p dt + σc1/2 dw. Remark: trivial to extend to manifolds

Composite Map φ h = θ h ψ h Recall mean-squared norm Y (x) ms = ( E [ Y (x) 2]) 1/2, Y : E E

Composite Map φ h = θ h ψ h Recall mean-squared norm Y (x) ms = ( E [ Y (x) 2]) 1/2, Y : E E First-order, mean-square convergent φ k h(q, p) ϕ tk (q, p) ms Ch.

Composite Map φ h = θ h ψ h Nearly preserves BG measure.

Composite Map φ h = θ h ψ h Nearly preserves BG measure. Define deviation from BG as N h : L 2 µ(t Q) R N h (f) = T Q E [ f(φ N h (q, p)) ] dµ T Q f(q, p)dµ

Composite Map φ h = θ h ψ h Nearly preserves BG measure. Define deviation from BG as N h : L 2 µ(t Q) R N h (f) = T Q E [ f(φ N h (q, p)) ] dµ T Q f(q, p)dµ Recall a Markov chain preserves a measure means N h (f) =0, f L 2 µ(t Q)

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies (e ) N h (f) = f(q, p) β (H((θ N h ) 1 (q,p)) H(q,p)) 1 dµ. T Q

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies (e ) N h (f) = f(q, p) β (H((θ N h ) 1 (q,p)) H(q,p)) 1 T Q dµ. change in energy of a symplectic integrator

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies (e ) N h (f) = f(q, p) β (H((θ N h ) 1 (q,p)) H(q,p)) 1 dµ. T Q

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies (e ) N h (f) = f(q, p) β (H((θ N h ) 1 (q,p)) H(q,p)) 1 T Q dµ. Corollary: (by long-time energy preservation) N h (f) e βmhp 1 sup f 1

Composite Map φ h = θ h ψ h Theorem: Forward error of composite map satisfies (e ) N h (f) = f(q, p) β (H((θ N h ) 1 (q,p)) H(q,p)) 1 T Q dµ. Corollary: (by long-time energy preservation) N h (f) e βmhp 1 Corollary: (by exponential convergence to equilibrium) E Ce λeh 0 /(2h) µ µ h TV E + Ce λeh 0 /(2h) E sup f 1 e βmhp 1

Boltzmann-Gibbs Preserving Integrator Define symplectic-energy-momentum integrator as in Kane, Marsden, and Ortiz [1999]

Boltzmann-Gibbs Preserving Integrator Define symplectic-energy-momentum integrator as in Kane, Marsden, and Ortiz [1999] θ hk : T Q T Q

Boltzmann-Gibbs Preserving Integrator Define symplectic-energy-momentum integrator as in Kane, Marsden, and Ortiz [1999] θ hk : T Q T Q Composite map φ hk = ψ hk θ hk

Boltzmann-Gibbs Preserving Integrator Define symplectic-energy-momentum integrator as in Kane, Marsden, and Ortiz [1999] θ hk : T Q T Q Composite map φ hk = ψ hk θ hk Langevin integrator (i.e., mean-squared convergent)

Boltzmann-Gibbs Preserving Integrator Define symplectic-energy-momentum integrator as in Kane, Marsden, and Ortiz [1999] θ hk : T Q T Q Composite map φ hk = ψ hk θ hk Langevin integrator (i.e., mean-squared convergent) exactly preserves BG measure

Preserving Conformal Symplecticity BG- Quasi- Symplecticity BG-SVI X X X LD-SVI X CS-SVI X X LAMMPS X

Cubic Oscillator c=2, T=1

Cubic Oscillator c=4, T=1

Cubic Oscillator c=8, T=1

Rare Event Simulation

For more information see: http://arxiv.org/pdf/0712.4123 http://www.acm.caltech.edu/~nawaf/