****** bjt model parameters tnom= temp= *****

Similar documents
Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

Symbolic SPICE TM Circuit Analyzer and Approximator

BIPOLAR JUNCTION TRANSISTOR MODELING

Type Marking Pin Configuration Package BGA427 BMs 1, IN 2, GND 3, +V 4, Out SOT343. Maximum Ratings Parameter Symbol Value Unit Device current I D

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

BFP193. NPN Silicon RF Transistor*

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

BFP196W. NPN Silicon RF Transistor*

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

BFP196W. NPN Silicon RF Transistor*

Berkeley. Two-Port Noise. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad. September 13, 2014

Charge-Storage Elements: Base-Charging Capacitance C b

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

PSpice components for CAD

Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

DISCRETE SEMICONDUCTORS DATA SHEET. BFT93W PNP 4 GHz wideband transistor. Product specification Supersedes data of November 1992

4-Bit ALU Circuit Glitch Reduction for Power Optimization

Lecture Notes for ECE 215: Digital Integrated Circuits

University of Pittsburgh

ELEC3106 Electronics: lecture 7 summary. SPICE simulations. Torsten Lehmann

Diode Model (PN-Junction Diode Model)

SPICE Differentiation Mike Engelhardt

Analog Simulation. Digital simulation. Analog simulation. discrete values. discrete timing. continuous values. continuous timing

ATS177. General Description. Features. Applications. Ordering Information SINGLE OUTPUT HALL EFFECT LATCH ATS177 - P L - X - X

ECE251. VLSI System Design

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc

Status of HICUM/L2 Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

E40M Review - Part 1

ATS276 X - P X - B - X. Lead Free L : Lead Free G : Green

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE 304: Bipolar Capacitances E B C. r b β I b r O

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

(213) N E W S L E T T E R. Hidden within based computers is a full 32 bit architecture that breaks 640 Kbyte program

Chapter 5. BJT AC Analysis

E2.2 Analogue Electronics

Section 1: Common Emitter CE Amplifier Design

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

EE100Su08 Lecture #9 (July 16 th 2008)

ECE 497 JS Lecture - 11 Modeling Devices for SI

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

Chapter 9 Frequency Response. PART C: High Frequency Response

ECE 546 Lecture 16 MNA and SPICE

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

Physical resistor model n subtype

Tutorial #4: Bias Point Analysis in Multisim

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

Advanced Design System Circuit Components Nonlinear Devices

CHAPTER.4: Transistor at low frequencies

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

PURPOSE: See suggested breadboard configuration on following page!

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Examination paper for TFY4185 Measurement Technique/ Måleteknikk

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

Scilab Textbook Companion for Microelectronic Circuits by A. S. Sedra And K. C. Smith 1

CIRCUIT MODELING IN DYMOLA. Daryl Ralph Hild

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Homework Assignment 08

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

Silicon Carbide Power Schottky Diode

SOT-23 Mark: 1A. = 25 C unless otherwise noted T A. Symbol Parameter Value Units

Homework Assignment 09

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

Class E Design Formulas V DD

Insulated Gate Bipolar Transistor (IGBT)

Exercise 1: RC Time Constants

I F = 1 A, T j = 25 C I F = 1 A, T j = 175 C V R = 650 V, T j = 25 C 1 10 V R = 650 V, T j = 175 C di F /dt = 200 A/μs

Figure (13-1) Single Thermoelectric Couple where Th > Tc

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

EE247 Analog-Digital Interface Integrated Circuits

Electronic Circuits Summary

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

case TO 252 T C = 25 C, t P = 10 ms 18

ENGR 2405 Class No Electric Circuits I

Tolerances for Electrical Design

Coulomb s constant k = 9x10 9 N m 2 /C 2

VBIC MODELING HANDBOOK

.. Use of non-programmable scientific calculator is permitted.

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Engineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties

EMC Considerations for DC Power Design

Isolated Current Sensor with Common Mode Field Rejection

Automatic Formulation of Circuit Equations

case T C = 25 C, t P = 10 ms 32 A Non-repetitive peak forward current I F,max T C = 25 C, t P = 10 µs 120 A I 2 t value i 2 T C = 25 C, t P = 10 ms 5

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Integrating Circuit Simulation with EIT FEM Models

Transcription:

****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** Copyright (C) 2013 Synopsys, Inc. All Rights Reserved. Unpublished rights reserved under US copyright laws. This program is protected by law and is subject to the terms and conditions of the license agreement from Synopsys. Use of this program is your acceptance to be bound by the license agreement. HSPICE is the trademark of Synopsys, Inc. Input File: ProjectBJTCascodeResBiased2001.sp Command line options: ProjectBJTCascodeResBiased2001.sp lic: lic: FLEXlm: v10.9.8 lic: USER: davis HOSTNAME: boomhauer lic: HOSTID: 00248c5a712b PID: 25287 lic: Using FLEXlm license file: lic: 27001@nautilus lic: Checkout 1 hspice lic: License/Maintenance for hspice will expire on 07 mar 2014/2013.03 lic: 1(in_use)/50(total) FLOATING license(s) on SERVER nautilus lic: 1****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** ****** *design example 1 ****** bjt model parameters tnom= 25.000 temp= 25.000 ***** ************************************************************************ *** bjt model parameters model name: 0:t2n5089 model type:npn *** ************************************************************************ names values units names values units names values units

1*** basic dc parameters *** level= 1.00 bf= 1.43k br= 1.26 brs= 0. bulk= gnd is= 5.91f amps iss= 0. amps nf= 1.00 nr= 1.00 ns= 1.00 ibe= 0. amps ibc= 0. amps subs= 1.00 expli= 0. amps 2*** low current beta degradation effect parameters *** isc= 0. amps ise= 5.91f amps nc= 2.00 ne= 1.42 3*** base width modulation parameters *** vaf= 62.37 volts var= 0. volts 4*** high current beta degradation effect parameters *** ikf= 15.40m amps nkf= 500.00m ikr= 0. amps 5*** parasitic resistor parameters *** irb= 0. amps rb= 10.00 ohms rbm= 10.00 ohms re= 0. ohms rc= 1.61 ohms rcc= 0. ohms vo= 0. volts gamma= 0. 6*** junction capacitor parameters *** cbcp= 0. farad cbep= 0. farad ccsp= 0. farad cjc= 4.02p farad cje= 4.97p farad cjs= 0. farad fc= 500.00m mjc= 317.40m mje= 414.60m mjs= 500.00m vjc= 750.00m volts vje= 750.00m volts vjs= 750.00m volts xcjc= 1.00 qco= 0. coul 7*** transit time parameters *** itf= 350.00m amps ptf= 0. deg k tf= 822.30p secs tr= 4.67n secs vtf= 4.00 xtf= 7.00

8*** temperature compensation parameters *** tlev= 0. tlevc= 0. tre1= 0. /deg tre2= 0. /deg2 trb1= 0. /deg trc1= 0. /deg trb2= 0. /deg2 trm1= 0. /deg xtb= 1.50 trm2= 0. /deg2 xti= 3.00 cte= 0. /deg ctc= 0. /deg cts= 0. /deg trc2= 0. /deg2 tref= 25.00 deg c bex= 2.42 bexv= 1.90 9*** noise parameters *** kf= 0. af= 1.00 **warning** (ProjectBJTCascodeResBiased2001.sp:44) Could not find branch eleme nt re ;branch output ignored ***************************************************************** ****** option summary ****** runlvl = 3 bypass = 2 1****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** ****** *design example 1 ****** operating point information tnom= 25.000 temp= 25.000 ***** ***** operating point status is all simulation time is 0. node =voltage node =voltage node =voltage +0:2 = 6.2895 0:3 = 10.2102 0:5 = 5.8032 +0:6 = 0. 0:7 = 0. 0:8 = 0. +0:22 = 10.6966 0:33 = 14.2443 0:vcc = 20.0000

**** voltage sources element 0:vcc 0:vin volts 20.0000 0. current 2.2743u 0. power 45.4870u 0. total voltage source power dissipation= 45.4870u watts **** resistors element 0:rs 0:r11 0:r12 0:re1 0:r21 0:r22 r value 50.0000 22.9200x 10.5900x 5.5400x 14.6000x 16.9000x v drop 0. 13.7105 6.2895 5.8032 9.3034 10.6966 current 0. 598.1902n 593.9075n 1.0475u 637.2212n 632.9332n power 0. 8.2015u 3.7354u 6.0789u 5.9283u 6.7702u element 0:rc2 0:rl r value 5.5400x 5.5400x v drop 5.7557 0. current 1.0389u 0. power 5.9798u 0. **** bipolar junction transistors

element 0:q1 0:q2 model 0:t2n5089 0:t2n5089 ib 4.2862n 4.2911n ic 1.0432u 1.0389u vbe 486.2917m 486.3309m vce 4.4071 4.0341 vbc 3.9208 3.5477 vs 10.2102 14.2443 power 4.5996u 4.1932u betad 243.3912 242.1135 gm 40.5868u 40.4199u rpi 7.9810x 7.9717x rx 10.0000 10.0000 ro 63.5443x 63.4475x cpi 6.3432p 6.3432p cmu 2.2479p 2.3081p cbx 0. 0. ccs 0. 0. betaac 323.9234 322.2144 ft 751.8870k 743.5888k **warning** zero value is used for the non existance output variable in the expression. you may have output variables with a long path name.

**** the results of the sqrt of integral (v**2 / freq) using more points from fstart to fstop results in more accurate total noise values. **** total output noise voltage = 319.7846u volts **** total equivalent input noise = 7.9248m 1****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** ****** *design example 1 ****** operating point information tnom= 25.000 temp= 25.000 ***** ***** operating point status is all simulation time is 12.5000u node =voltage node =voltage node =voltage +0:2 = 6.2895 0:3 = 10.2059 0:5 = 5.8032 +0:6 = 430.9225m 0:7 = 11.2462u 0:8 = 35.8302a +0:22 = 10.6966 0:33 = 13.8134 0:vcc = 20.0000 **** voltage sources element 0:vcc 0:vin volts 20.0000 35.8302a current 2.3521u 224.9243n power 47.0426u 8.059e 24 total voltage source power dissipation= 47.0426u watts **** resistors

element 0:rs 0:r11 0:r12 0:re1 0:r21 0:r22 r value 50.0000 22.9200x 10.5900x 5.5400x 14.6000x 16.9000x v drop 11.2462u 13.7105 6.2895 5.8032 9.3034 10.6966 current 224.9243n 598.1897n 593.9085n 1.0475u 637.2213n 632.9331n power 2.5295p 8.2015u 3.7354u 6.0789u 5.9283u 6.7702u element 0:rc2 0:rl r value 5.5400x 5.5400x v drop 6.1866 430.9225m current 1.1167u 77.7838n power 6.9087u 33.5188n **** bipolar junction transistors element 0:q1 0:q2 model 0:t2n5089 0:t2n5089 ib 4.2879n 4.8732n ic 1.0437u 1.2223u vbe 486.3028m 490.6902m vce 4.4027 3.6075 vbc 3.9164 3.1168 vs 10.2059 13.8134 power 4.5971u 4.4120u betad 243.4066 250.8289 gm 40.6052u 47.5545u rpi 7.9778x 7.0006x

rx 10.0000 10.0000 ro 63.5114x 53.5752x cpi 6.3433p 6.3610p cmu 2.2486p 2.3868p cbx 0. 0. ccs 0. 0. betaac 323.9413 332.9102 ft 752.1644k 865.1892k **** the results of the sqrt of integral (v**2 / freq) using more points from fstart to fstop results in more accurate total noise values. **** total output noise voltage = 315.3993u volts **** total equivalent input noise = 7.2842m 1****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** ****** *design example 1 ****** operating point information tnom= 25.000 temp= 25.000 ***** ***** operating point status is all simulation time is 25.0000u node =voltage node =voltage node =voltage +0:2 = 6.2895 0:3 = 10.2156 0:5 = 5.8032 +0:6 = 45.6912m 0:7 = 11.4324u 0:8 = 71.6604a +0:22 = 10.6966 0:33 = 14.1986 0:vcc = 20.0000

**** voltage sources element 0:vcc 0:vin volts 20.0000 71.6604a current 2.2826u 228.6481n power 45.6519u 1.639e 23 total voltage source power dissipation= 45.6519u watts **** resistors element 0:rs 0:r11 0:r12 0:re1 0:r21 0:r22 r value 50.0000 22.9200x 10.5900x 5.5400x 14.6000x 16.9000x v drop 11.4324u 13.7105 6.2895 5.8032 9.3034 10.6966 current 228.6481n 598.1907n 593.9064n 1.0475u 637.2212n 632.9332n power 2.6140p 8.2015u 3.7354u 6.0789u 5.9283u 6.7702u element 0:rc2 0:rl r value 5.5400x 5.5400x v drop 5.8014 45.6912m current 1.0472u 8.2475n power 6.0751u 376.8393p **** bipolar junction transistors

element 0:q1 0:q2 model 0:t2n5089 0:t2n5089 ib 4.2844n 3.6658n ic 1.0427u 841.5494n vbe 486.2801m 480.9296m vce 4.4125 3.9830 vbc 3.9262 3.5020 vs 10.2156 14.1986 power 4.6031u 3.3536u betad 243.3783 229.5655 gm 40.5682u 32.7410u rpi 7.9843x 9.3616x rx 10.0000 10.0000 ro 63.5787x 78.2749x cpi 6.3432p 6.3221p cmu 2.2471p 2.3159p cbx 0. 0. ccs 0. 0. betaac 323.9090 306.5072 ft 751.6189k 603.2536k **** the results of the sqrt of integral (v**2 / freq) using more points from fstart to fstop results in more accurate total noise values.

**** total output noise voltage = 317.8525u volts **** total equivalent input noise = 8.7240m 1****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** ****** *design example 1 ****** operating point information tnom= 25.000 temp= 25.000 ***** ***** operating point status is all simulation time is 37.5000u node =voltage node =voltage node =voltage +0:2 = 6.2895 0:3 = 10.2059 0:5 = 5.8032 +0:6 = 438.4022m 0:7 = 11.2463u 0:8 = 187.4267a +0:22 = 10.6966 0:33 = 13.8059 0:vcc = 20.0000 **** voltage sources element 0:vcc 0:vin volts 20.0000 187.4267a current 2.3535u 224.9252n power 47.0696u 4.216e 23 total voltage source power dissipation= 47.0696u watts **** resistors element 0:rs 0:r11 0:r12 0:re1 0:r21 0:r22 r value 50.0000 22.9200x 10.5900x 5.5400x 14.6000x 16.9000x

v drop 11.2463u 13.7105 6.2895 5.8032 9.3034 10.6966 current 224.9252n 598.1897n 593.9085n 1.0475u 637.2213n 632.9331n power 2.5296p 8.2015u 3.7354u 6.0789u 5.9283u 6.7702u element 0:rc2 0:rl r value 5.5400x 5.5400x v drop 6.1941 438.4022m current 1.1181u 79.1340n power 6.9255u 34.6925n **** bipolar junction transistors element 0:q1 0:q2 model 0:t2n5089 0:t2n5089 ib 4.2878n 4.8736n ic 1.0437u 1.2223u vbe 486.3026m 490.6930m vce 4.4027 3.6000 vbc 3.9164 3.1093 vs 10.2059 13.8059 power 4.5971u 4.4028u betad 243.4062 250.8071 gm 40.6049u 47.5543u rpi 7.9779x 7.0000x rx 10.0000 10.0000 ro 63.5119x 53.5693x cpi 6.3433p 6.3610p cmu 2.2486p 2.3883p

cbx 0. 0. ccs 0. 0. betaac 323.9407 332.8806 ft 752.1589k 865.0400k **** the results of the sqrt of integral (v**2 / freq) using more points from fstart to fstop results in more accurate total noise values. **** total output noise voltage = 315.3011u volts **** total equivalent input noise = 7.2829m ***** job concluded 1****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** ****** *design example 1 ****** job statistics summary tnom= 25.000 temp= 25.000 ***** ****** Machine Information ****** CPU: model name : Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz cpu MHz : 2672.609 OS: Linux version 2.6.39.3 URI_Build_AMD64 (root@boomhauer) (gcc version 4.5.4 (Gen

too 4.5.4 p1.0, pie 0.4.7) ) #2 SMP PREEMPT Mon Apr 29 19:32:51 EDT 2013 ****** HSPICE Threads Information ****** Command Line Threads Count : 1 Available CPU Count : 8 Actual Threads Count : 1 ****** Circuit Statistics ****** # nodes = 14 # elements = 16 # resistors = 8 # capacitors = 4 # inductors = 0 # mutual_inds = 0 # vccs = 0 # vcvs = 0 # cccs = 0 # ccvs = 0 # volt_srcs = 2 # curr_srcs = 0 # diodes = 0 # bjts = 2 # jfets = 0 # mosfets = 0 # U elements = 0 # T elements = 0 # W elements = 0 # B elements = 0 # S elements = 0 # P elements = 0 # va device = 0 # vector_srcs = 0 # N elements = 0 ****** Runtime Statistics (seconds) ****** analysis time # points tot. iter conv.iter op point 0.00 1 14 ac analysis 0.86 16001 64004 transient 0.69 4001 5124 2562 rev= 0 readin 0.00 errchk 0.00 setup 0.00 output 0.00

peak memory used 195.85 megabytes total cpu time 0.92 seconds total elapsed time 1.13 seconds job started at 17:03:13 07/09/2013 job ended at 17:03:14 07/09/2013 lic: Release hspice token(s) lic: total license checkout elapse time: 0.21(s)