Activity Overview. Background. Concepts. Kepler s Third Law

Similar documents
ASTROMATH 101: BEGINNING MATHEMATICS IN ASTRONOMY


Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Ch. 22 Origin of Modern Astronomy Pretest

Astronomy Test Review. 3 rd Grade

Observational Astronomy - Lecture 4 Orbits, Motions, Kepler s and Newton s Laws

Modeling Data with Functions

VISUAL PHYSICS ONLINE

Mathematical Ideas Modelling data, power variation, straightening data with logarithms, residual plots

KEPLER S LAWS OF PLANETARY MOTION

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Conceptual Explanations: Modeling Data with Functions

Motion in the Heavens

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

PHYS 155 Introductory Astronomy

Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:

What's Up In Space? In the Center. Around the Sun. Around Earth. Space Facts! Places in Space

October 19, NOTES Solar System Data Table.notebook. Which page in the ESRT???? million km million. average.

Write and Apply Exponential and Power Functions

Lecture 13. Gravity in the Solar System

Planetary Mechanics:

The Solar System by Edward P. Ortleb and Richard Cadice

Introduction To Modern Astronomy II

Name Class Date. Chapter 23 Touring Our Solar System Investigation 23

Earth Science Lesson Plan Quarter 4, Week 5, Day 1

4. What verb is used to describe Earth s

Announcements. Topics To Be Covered in this Lecture

ASTRONOMY QUIZ NUMBER 1

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Pedagogical information

Unit: Planetary Science

Transit Tracks. Activity G14. What s This Activity About? Tips and Suggestions. What Will Students Do? What Will Students Learn?

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

Universal Gravitation

2.4 The Birth of Modern Astronomy

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Planetary Alignment and Kepler s Law of Periods

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1

Yes, inner planets tend to be and outer planets tend to be.

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

TEACHER NOTES MIDDLE GRADES SCIENCE NSPIRED

,.~ Readlng ~ What,~,~~ is a geocentric system? Chapter3 J 73

Unit 1 Astronomy: Kepler s Laws Of Planetary Motion Assessed Activity (66 marks total)

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Section 37 Kepler's Rules

D. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified

Great Science Adventures

Prelab 4: Revolution of the Moons of Jupiter

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Earth Science, 13e Tarbuck & Lutgens

Chapter. Origin of Modern Astronomy

ELECTROMAGNETIC WAVES IN THE SOLAR* SYSTEM. By C. O Connor

Monday, October 3, 2011

Planetary Orbits: Kepler s Laws 1/18/07

Regression and Nonlinear Axes

Celestial Objects. Background Questions. 1. What was invented in the 17 th century? How did this help the study of our universe? 2. What is a probe?

Reading Preview. Models of the Universe What is a geocentric model?

7.4 Universal Gravitation

TEKS Cluster: Space. identify and compare the physical characteristics of the Sun, Earth, and Moon

The five primary planets, Mercury, Venus, Mars, Jupiter, and Saturn, enclose the sun in their orbits.

7 Study Guide. Gravitation Vocabulary Review

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

Contents: -Information/Research Packet. - Jumbled Image packet. - Comic book cover page. -Comic book pages. -Example finished comic

Chapter 2 The Science of Life in the Universe

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Chapter 23. Our Solar System

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets. Chapter Four

Explaining Planetary-Rotation Periods Using an Inductive Method

The Solar System. Name Test Date Hour

UNIT 12 ~ More About Regression

Chapter 02 The Rise of Astronomy

Galaxies: enormous collections of gases, dust and stars held together by gravity Our galaxy is called the milky way

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

Gravitation and the Motion of the Planets

Eclipses and Forces. Jan 21, ) Review 2) Eclipses 3) Kepler s Laws 4) Newton s Laws

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Investigating the Solar System

Cycles. 1. Explain what the picture to the left shows. 2. Explain what the picture to the right shows. 3. Explain what the picture to the left shows.

Kepler, Newton, and laws of motion

Introduction To Modern Astronomy I

Intro to Astronomy. Looking at Our Space Neighborhood

Notes: The Solar System

3.4. Properties of Logarithmic Functions

Planets in the Sky ASTR 101 2/16/2018

The History of Astronomy

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

Gravity and the Laws of Motion

DeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE.

Gravity and the Orbits of Planets

Locating Planets in Sky Using Manual Calculations

Occam s Razor: William of Occam, 1340(!)

Lesson 1 The Structure of the Solar System

6. Summarize Newton s Law of gravity and the inverse square concept. Write out the equation

USING THE EXCEL CHART WIZARD TO CREATE CURVE FITS (DATA ANALYSIS).

CH 8. Universal Gravitation Planetary and Satellite Motion

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

Transcription:

By Michele Impedovo Grade level: secondary (Years 10-12) Subject: mathematics Time required: 2 hours Activity Overview Johannes Kepler (1571-1630) is remembered for laying firm mathematical foundations for modern astronomy through his study of the motions of the planets. Although nearly blind himself, Kepler used the precise planetary data of astronomer Tycho Brahe and discovered the mathematics behind these thousands of observations, collected over many years. Kepler s first and second laws describe the elliptical paths and the velocity of the planets as they move around the sun. Kepler s Third Law compares the motion of the various planets. Each of them is characterised by two quantities in particular: the mean distance from the sun the time of revolution around the sun Are these two quantities related? The aims of this activity are: to establish whether a power function is a good fit for the data to discover the power function that best matches the data Background The historical background is the Scientific Revolution of the 1600s. Kepler's merit was that he believed there was a regular function that would fit the observed data. Subsequent work by Newton proved that the law linking the planets time of revolution T to their distance from the sun R was: R GM = T, 4! 3 2 2 where G is the universal gravitational constant (approximately 6.67 10 11 Nm 2 /kg 2 ) and M is the sun s mass (approximately 2 10 24 kg). Concepts Regression line, the least squares method, power functions, logarithmic properties 2007 Texas Instruments Incorporated Page 1

Teacher preparation This activity requires prior knowledge of the notion of "regression lines", which may have been covered when dealing with quadratic functions. For one approach to introducing this important concept, refer to the Appendix as the end of this activity. Classroom management tips Students should work in small groups on the initial examination of the problem. This stage is useful for teasing out all its implications. It is also a good idea for the teacher to go back to the students approaches at the end, comparing them with the solution found. Students prerequisites Linear functions Quadratic functions Power functions Basic knowledge of the Calculator, Graphs & Geometry, Lists & Spreadsheet applications Step-by-step directions 1. The activity begins with the following table showing, for the planets visible to the naked eye, the mean distance r (measured in 10 9 m) and the time of revolution t (measured in 10 6 s). A B r C t D Mercury 58 8 Venus 108 19 Earth 150 32 Mars 228 59 Jupiter 778 375 Saturn 1423 929 From the table, we may observe that t increases with r: More distant planets require longer to revolve around the sun. What type of increase is it? For example, is it linear? The answer is not obvious just from studying the table. For a better understanding of the problem, let us plot a graph with the points. 2007 Texas Instruments Incorporated Page 2

The graph shows a regular pattern but not a linear one: time increases more quickly than distance. Whatever curve fits the data, it appears to be more than linear ; it also passes through the origin (0,0). We can now give the students (purely at an experimental level for the time being) the problem of selecting a function, and observe and guide their approaches. For instance, the fact that the desired curve appears to pass through the origin argues against the choice of an exponential function, of the type y = ab x. A reasonable choice, which students might suggest, is the function y = ax 2. Let us try defining the function f1(x)=x 2 and changing its amplitude a with the cursor: we can see that while the curve fits the points for the planets closest to the sun, it is quite a long way from those for Jupiter and Saturn. Also, we cannot approximate these last two points in any convincing way. 2. Based on the analyses and discussion with the students, and on the observations we have made so far, we can suggest that a good model for the data may be a power function, i.e. a function of the type y = ax b where b > 1. We may then ask students to work in small groups and look experimentally for a power function (and therefore look for the parameters a and b) that fits the observed data as closely as possible. The following graph shows the power function when a = 0.005 and b = 1.7. 2007 Texas Instruments Incorporated Page 3

The teacher thus has material for discussion at the end of the activity. 3. Let us now provide convincing proof that the power function is a good model. If x and y were linked by a relationship of the type y = ax b then, taking logarithms, we would have ln(y) = ln(a)+bln(x) In other words, a linear relationship between X=ln(x) and Y=ln(y) with slope b and intercept ln(a): Y = bx+ln(a). We now go back to the table and add columns D and E, in which we calculate ln(r) and ln(t) respectively. 2007 Texas Instruments Incorporated Page 4

Graphing these points, with the logarithm of r on the horizontal axis and the logarithm of t on the vertical axis, clearly shows a linear progression. 4. We now have to calculate the linear function that best fits these data, using the least squares method. In Calculator mode, we define r1=ln(r) and t1=ln(t) and calculate the regression line. The line which best fits the linear progression between ln(r) and ln(t) is therefore approximately Y = 1.5X 4 2007 Texas Instruments Incorporated Page 5

Since ln(a) = 4, then a = exp( 4) 0.018, and b = 1.5. The power function we are seeking is approximately y = 0.018 1.5 x The graph for this power function is a good fit for the observed data. Moreover, if we calculated the power function directly using the least squares method (via the PowerReg command in Calculator) we would obtain the same result. 2007 Texas Instruments Incorporated Page 6

5. We can now compare the students approaches in stage 2 with the solution identified; we can see who got closest to the solution by calculating n " axi! yi ; i = 1 b T(a,b) = ( ) 2 The person closest to the solution (according to the least squares method) is the one with the lowest value for S. For the teacher. N.B.: the values a and b that minimise T(a,b) are not the same as those that minimise n " ln( a) + bln( xi )! ln( yi ) ; S(a,b) = ( ) 2 i = 1 however, in general, they represent a good approximation. Minimising T(a,b) implies solving a non-linear system of equations which, in general, does not allow for a symbolic solution; however, by using the following substitutions X = ln(x) Y = ln(y) A = b B = ln(a) we obtain the linear function Y = AX+B S(a,b) is therefore linear, and to minimise S we can use a simple property of quadratic functions, as we have seen. 2007 Texas Instruments Incorporated Page 7

Assessment and evaluation Possible questions may include: Calculate the power function which (according to the least squares method) best fits the points (2,1), (4,2), (5,4). Establish which of the power functions y=0.3x 1.4, y=0.4x 1.5 best fits the points (2,1), (4,2), (5,4). An asteroid revolves around the sun at a mean distance of 500 million km. What is its time of orbit? Uranus takes approximately 30 700 days for one complete orbit of the sun. What is its mean distance from the sun? Activity extensions The most obvious next step is to move on to the exponential regression function, i.e. for a given n points, calculate the function of the type y = ab x which fits them best. Using a method similar to that for the power function, by taking logarithms we obtain ln(y) = ln(a) + xln(b); in other words, two quantities x and y are in an exponential relationship if x and ln(y) are in a linear relationship, with slope ln(b) and intercept ln(a). 2007 Texas Instruments Incorporated Page 8

APPENDIX: A TI-Nspire CAS Introduction to Least Squares Regression For one approach, students could be given the following problem, with no preparation: Find the "best-fit line" y=ax+b which passes through the points (1,3), (3,4), (4,6). If the best-fit line is defined as the one that minimises the sum of the squares of the differences between the observed ordinate y i and the "theoretical" ordinate ax i +b y i 3 2 " i i = i = 1 S(a,b) = ( ax + b! y ) (a+b 3) 2 +(3a+b 4) 2 +(4a+b 6) 2 we can easily use the CAS Calculator Application to calculate the parameters a and b of the regression line. S(a,b) is actually a quadratic function of a and b. If we consider b to be fixed, then S(a,b) is a quadratic function of a, with a positive coefficient whose minimum value corresponds to the point: a = (39 8b)/26 2007 Texas Instruments Incorporated Page 9

Similarly, if we consider a to be fixed, we obtain a quadratic function of b whose minimum value is: We may then solve the simultaneous equations b = (13 8a)/3 26a+8b = 39 8a+3b = 13 The desired regression line is therefore y = 13/14x+13/7. We can now go back to the approaches developed by the students. 2007 Texas Instruments Incorporated Page 10