FK5/J helio. ecliptic osc. elements (au, days, deg., period=julian yrs):

Similar documents
1 of 4 8/27/10 12:19 AM

Earth Risk Corridor Computations for 2011 AG 5 on 5 February Introduction

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

Horizons Tips for Spitzer Solar System Observers Document version 4.0, 19 Oct 06

These notes may contain copyrighted material! They are for your own use only during this course.

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1

Geometry of Earth Sun System

Horizons JPL s On-Line Solar System Data and Ephemeris Computation Service. Any Body - Anytime

IAU 2006 NFA GLOSSARY

for more please visit :

Modern Navigation. Thomas Herring

PHYSICS 1030 Homework #9

The Position of the Sun. Berthold K. P. Horn. necessary to know the position of the sun in the sky. This is particularly

PHSC 1053: Astronomy Time and Coordinates

Essential Astrophysics

Coordinates on the Sphere

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Lunar Eclipses:

Time, coordinates and how the Sun and Moon move in the sky

JPL Horizons (Version 3.75) Apr 04, 2013

M2 GLOSSARY aphelion: the point in an orbit that is the most distant from the Sun. apocenter: the point in an orbit that is farthest from the origin o

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Discovering the Night Sky

Discovering the Night Sky

aberration (of light): aberration, annual: aberration, diurnal: aberration, E-terms of: aberration, elliptic: aberration, planetary:

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Homework #1 Solution: March 8, 2006

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS

Computer Activity #3 SUNRISE AND SUNSET: THE SEASONS

Equatorial Telescope Mounting

Chapters 1, 2: Introduction, Earth and Sky

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

Astronomy 291. Professor Bradley M. Peterson

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener

PHYSICS 1030 Homework #9

Celestial mechanics in a nutshell

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link

Introduction to the sky

Astronomical Techniques I

Question 1. What motion is responsible for the apparent motion of the constellations (east to west) across the sky?

The Flammarion engraving by an unknown artist, first documented in Camille Flammarion's 1888 book L'atmosphère: météorologie populaire.

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

Exam #1 Covers material from first day of class, all the way through Tides and Nature of Light Supporting reading chapters 1-5 Some questions are

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky

Introduction to Astronomy

A2 Principi di Astrofisica. Coordinate Celesti

Introduction To Modern Astronomy I: Solar System

Fundamentals of Satellite technology

Astrodynamics (AERO0024)

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

Modern Navigation. Thomas Herring

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

Hd1_Ceres_1801_Piazzi_17_obs_Theta=RA_plot.xmcd 6/21/2016 1

Welcome to Astronomy 402/602

Massachusetts Institute of Technology Instrumentation Laboratory Cambridge, Massachusetts

CELESTIAL COORDINATES

Satellite Communications

Astrodynamics (AERO0024)

Week 2. Problem Set 1 is due Thursday via Collab. Moon awareness Weather awareness

AST 443 / PHY 517. Astronomical Observa<onal Techniques. Prof. F.M. Walter

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT I PART A

Oberth: Energy vs. Momentum

Lecture 2 Motions in the Sky September 10, 2018

NGA GNSS Division Precise Ephemeris Parameters

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Sun ephemeris comparison

Astronomy 103: First Exam

In all cases assume the observer is located at the latitude of Charlottesville (38 degrees north).

Guiding Questions. Discovering the Night Sky. iclicker Qustion

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

Celestial Sphere Spectroscopy (Something interesting; e.g., advanced data analyses with IDL)

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles:

Time and Diurnal Motion

Astronomy. The Seasons

A Sky Full of Stars - II.

Modern Navigation

Observational Astronomy - Lecture 5 The Motion of the Earth and Moon Time, Precession, Eclipses, Tides

Third Body Perturbation

The Sky Perceptions of the Sky

PHAS 1511: Foundations of Astronomy

6/17. Universe from Smallest to Largest:

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

Aileen A. O Donoghue Priest Associate Professor of Physics

One sine wave is 7.64 minutes peak to peak variation. Two sine waves is 9.86

The Calendar-Sky. Astro-Calendar User Profile Space Weather Ocean Tides Meteo Graphical Day&Night Calendar Weather Balloons Islam.

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Earth Departure Trajectory Reconstruction of Apollo Program Components Undergoing Disposal in Interplanetary Space

Newton s Universal Law of Gravitation and planetary orbits. Gravity (cont.) / Night Sky / Seasons 1/23/07

The sky and the celestial sphere

Unit 2: Celestial Mechanics

EE Properties of Sunlight. Y. Baghzouz Professor of Electrical Engineering

Transcription:

JPL/HORIZONS Lovejoy (C/2014 Q2) 2014-Dec-31 13:12:36 Rec #:904040 (+COV) Soln.date: 2014-Dec-23_11:43:30 # obs: 821 (175 days) FK5/J2000.0 helio. ecliptic osc. elements (au, days, deg., period=julian yrs): EPOCH= 2456967.5!= 2014-Nov-06.0000000 (CT) RMSW= n.a. EC=.9977564139340256 QR= 1.290355098587446 TP= 2457052.570665814 OM= 94.97532070203013 W= 12.39577630730043 IN= 80.30301653276683 A= 575.1306438191092 MA= 359.993920972 ADIST= 1148.970932539631 PER= 13792.975870678 N= 7.145899999999999E-5 ANGMOM=.027618961 DAN= 1.30556 DDN= 101.07819 L= 97.0954627 B= 12.2159155 MOID=.320326 TP= 2015-Jan-30.0706658140 Comet physical (GM= km^3/s^2; RAD= km): GM= n.a. RAD= n.a. M1= 8.2 M2= 12.1 k1= 12. k2= 5. PHCOF=.030 COMET comments 1: soln ref.= JPL#15, data arc: 2014-07-01 to 2014-12-23 2: k1=12., k2=5., phase coef.=0.03; Ephemeris / WWW_USER Wed Dec 31 13:12:36 2014 Pasadena, USA / Horizons Target body name: Lovejoy (C/2014 Q2) {source: JPL#15} Center body name: Earth (399) {source: DE-0431LE-0431} Center-site name: (user defined site below) Start time : A.D. 2014-Dec-31 00:00:00.0000 UT Stop time : A.D. 2015-Jan-30 00:00:00.0000 UT Step-size : 180 minutes Target pole/equ : No model available Target radii : (unavailable) Center geodetic : 262.391700,38.8350000,7.112E-13 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 262.391700,4974.83427,3978.0652 {E-lon(deg),Dxy(km),Dz(km)} Center pole/equ : High-precision EOP model {East-longitude +} Center radii : 6378.1 x 6378.1 x 6356.8 km {Equator, meridian, pole} Target primary : Sun Vis. interferer : MOON (R_eq= 1737.400) km {source: DE-0431LE-0431} Rel. light bend : Sun, EARTH {source: DE-0431LE-0431} Rel. lght bnd GM: 1.3271E+11, 3.9860E+05 km^3/s^2 Small-body perts: Yes {source: SB431-BIG16} Atmos refraction: YES (Earth refraction model) RA format : HMS Time format : CAL EOP file : eop.141230.p150323 EOP coverage : DATA-BASED 1962-JAN-20 TO 2014-DEC-30. PREDICTS-> 2015-MAR-22 Units conversion: 1 au= 149597870.700 km, c= 299792.458 km/s, 1 day= 86400.0 s Comet_Lovejoy_horizons_results_added_Range Page 1 of 5

Table cut-offs 1: Elevation (-90.0deg=NO ),Airmass (>38.000=NO), Daylight (NO ) Table cut-offs 2: Solar Elongation ( 0.0,180.0=NO ),Local Hour Angle( 0.0=NO ) Initial FK5/J2000.0 heliocentric ecliptic osculating elements (au, days, deg.): EPOCH= 2456967.5!= 2014-Nov-06.0000000 (CT) RMSW= n.a. EC=.9977564139340256 QR= 1.290355098587446 TP= 2457052.570665814 OM= 94.97532070203013 W= 12.39577630730043 IN= 80.30301653276683 Comet physical (GM= km^3/s^2; RAD= km): GM= n.a. RAD= n.a. M1= 8.2 M2= 12.1 k1= 12. k2= 5. PHCOF=.030 ******** $$SOE Date_(UT) HR:MN RA (apparent) DEC (apparent) Azimuth Elevation T-mag N-mag Range Velocity 2015-Jan-08 0:00 N 4 15 40-2 25 47 116.2 25.3 8.05 12.12 0.469 1.3 2015-Jan-08 3:00 m 4 14 54-2 7 26 166.5 48.2 8.05 12.12 0.469 1.8 2015-Jan-08 6:00 m 4 14 6-1 48 15 228.2 37.4 8.05 12.12 0.469 2.4 2015-Jan-08 9:00 m 4 13 40-1 24 39 263.6 5.7 8.05 12.12 0.469 2.8 2015-Jan-09 0:00 N 4 8 57 0 5 47 116.3 29.0 8.05 12.14 0.471 3.6 2015-Jan-09 3:00 4 8 11 0 24 13 169.9 51.1 8.04 12.14 0.471 4.2 2015-Jan-09 6:00 m 4 7 24 0 43 21 232.8 37.8 8.04 12.15 0.471 4.8 2015-Jan-09 9:00 m 4 7 1 1 7 15 267.2 5.2 8.04 12.15 0.472 5.2 2015-Jan-10 0:00 N 4 2 22 2 36 26 116.5 32.6 8.04 12.17 0.474 6.0 2015-Jan-10 3:00 4 1 36 2 54 47 173.7 53.9 8.05 12.18 0.474 6.5 2015-Jan-10 6:00 m 4 0 50 3 13 43 237.4 38.1 8.05 12.18 0.474 7.1 2015-Jan-10 9:00 m 4 0 30 3 37 52 270.8 4.7 8.05 12.19 0.475 7.5 2015-Jan-11 0:00 N 3 55 54 5 5 10 116.6 36.2 8.05 12.21 0.478 8.3 2015-Jan-11 3:00 3 55 10 5 23 17 178.0 56.5 8.05 12.22 0.478 8.8 2015-Jan-11 6:00 m 3 54 25 5 41 55 241.9 38.2 8.05 12.22 0.479 9.4 2015-Jan-11 9:00 m 3 54 9 6 6 16 274.4 4.3 8.06 12.23 0.480 9.7 2015-Jan-12 0:00 N 3 49 36 7 31 3 116.8 39.7 8.06 12.26 0.483 10.5 2015-Jan-12 3:00 3 48 52 7 48 49 182.8 59.0 8.07 12.27 0.484 11.0 2015-Jan-12 6:00 m 3 48 8 8 7 2 246.4 38.1 8.07 12.27 0.485 11.5 2015-Jan-12 9:00 m 3 47 56 8 31 36 277.9 3.8 8.07 12.28 0.486 11.9 2015-Jan-13 0:00 N 3 43 27 9 53 19 116.9 43.2 8.08 12.31 0.490 12.6 2015-Jan-13 3:00 3 42 44 10 10 37 188.2 61.1 8.09 12.32 0.491 13.1 2015-Jan-13 6:00 3 42 1 10 28 21 250.7 37.8 8.09 12.33 0.492 13.6 2015-Jan-13 9:00 m 3 41 54 10 53 7 281.3 3.4 8.09 12.34 0.493 14.0 2015-Jan-14 0:00 N 3 37 27 12 11 17 117.1 46.5 8.11 12.37 0.498 14.6 2015-Jan-14 3:00 3 36 45 12 28 3 194.0 63.0 8.11 12.38 0.499 15.1 2015-Jan-14 6:00 3 36 4 12 45 13 254.9 37.5 8.11 12.39 0.500 15.6 2015-Jan-14 9:00 m 3 36 2 13 10 15 284.5 3.0 8.12 12.4 0.502 15.9 2015-Jan-15 0:00 C 3 31 38 14 24 27 117.2 49.8 8.13 12.44 0.507 16.5 2015-Jan-15 3:00 3 30 57 14 40 37 200.4 64.6 8.14 12.44 0.509 17.0 2015-Jan-15 6:00 3 30 18 14 57 10 258.9 37.0 8.14 12.45 0.510 17.5 2015-Jan-15 9:00 m 3 30 21 15 22 32 287.7 2.6 8.15 12.46 0.511 17.8 2015-Jan-16 0:00 C 3 25 59 16 32 26 117.3 52.9 8.17 12.5 0.518 18.3 2015-Jan-16 3:00 3 25 20 16 47 58 207.3 65.9 8.17 12.51 0.519 18.8 2015-Jan-16 6:00 3 24 41 17 3 52 262.7 36.5 8.18 12.52 0.520 19.2 2015-Jan-16 9:00 3 24 51 17 29 39 290.8 2.2 8.18 12.53 0.522 19.5 2015-Jan-17 0:00 C 3 20 31 18 34 59 117.4 55.9 8.2 12.57 0.529 20.0 2015-Jan-17 3:00 3 19 53 18 49 51 214.5 66.8 8.21 12.58 0.530 20.4 Comet_Lovejoy_horizons_results_added_Range Page 2 of 5

2015-Jan-17 6:00 3 19 16 19 5 5 266.4 35.8 8.21 12.59 0.532 20.8 2015-Jan-17 9:00 3 19 32 19 31 23 293.8 1.8 8.22 12.6 0.533 21.1 2015-Jan-18 0:00 C 3 15 13 20 31 58 117.5 58.9 8.25 12.64 0.541 21.5 2015-Jan-18 3:00 3 14 37 20 46 9 221.8 67.3 8.25 12.65 0.542 21.9 2015-Jan-18 6:00 3 14 2 21 0 42 269.8 35.1 8.26 12.66 0.544 22.3 2015-Jan-18 9:00 3 14 24 21 27 40 296.6 1.5 8.26 12.67 0.546 22.5 2015-Jan-19 0:00 C 3 10 7 22 23 20 117.6 61.7 8.29 12.72 0.554 22.9 2015-Jan-19 3:00 3 9 32 22 36 50 229.0 67.5 8.29 12.73 0.555 23.3 2015-Jan-19 6:00 3 8 58 22 50 43 273.1 34.3 8.3 12.73 0.557 23.7 2015-Jan-19 9:00 3 9 28 23 18 28 299.4 1.2 8.31 12.74 0.559 23.9 2015-Jan-20 0:00 C 3 5 11 24 9 9 117.6 64.4 8.33 12.79 0.567 24.2 2015-Jan-20 3:00 3 4 37 24 21 58 236.0 67.5 8.34 12.8 0.569 24.6 2015-Jan-20 6:00 3 4 5 24 35 11 276.1 33.6 8.35 12.81 0.571 24.9 2015-Jan-20 9:00 3 4 42 25 3 51 302.0 1.0 8.35 12.82 0.573 25.1 2015-Jan-21 0:00 Cm 3 0 26 25 49 31 117.6 66.9 8.38 12.86 0.582 25.4 2015-Jan-21 3:00 2 59 54 26 1 41 242.7 67.1 8.39 12.87 0.584 25.8 2015-Jan-21 6:00 2 59 23 26 14 16 279.0 32.7 8.39 12.88 0.585 26.1 2015-Jan-21 9:00 3 0 8 26 43 55 304.6 0.7 8.4 12.89 0.587 26.2 2015-Jan-22 0:00 Cm 2 55 52 27 24 36 117.6 69.4 8.43 12.93 0.597 26.5 2015-Jan-22 3:00 2 55 21 27 36 9 248.8 66.6 8.44 12.94 0.599 26.8 2015-Jan-22 6:00 2 54 52 27 48 7 281.8 31.9 8.44 12.95 0.601 27.1 2015-Jan-22 9:00 2 55 44 28 18 50 307.0 0.5 8.45 12.96 0.603 27.2 2015-Jan-23 0:00 Cm 2 51 28 28 54 38 117.5 71.8 8.48 13 0.612 27.4 2015-Jan-23 3:00 2 50 59 29 5 34 254.3 65.9 8.49 13.01 0.614 27.8 2015-Jan-23 6:00 2 50 31 29 16 58 284.3 31.1 8.49 13.02 0.616 28.1 2015-Jan-23 9:00 2 51 30 29 48 46 309.3 0.3 8.5 13.03 0.618 28.1 2015-Jan-24 0:00 Cm 2 47 15 30 19 49 117.3 74.1 8.53 13.07 0.629 28.3 2015-Jan-24 3:00 m 2 46 46 30 30 11 259.4 65.0 8.54 13.08 0.631 28.6 2015-Jan-24 6:00 2 46 20 30 41 2 286.8 30.3 8.55 13.09 0.633 28.9 2015-Jan-24 9:00 2 47 25 31 13 55 311.5 0.2 8.55 13.1 0.635 29.0 2015-Jan-25 0:00 Cm 2 43 12 31 40 26 117.0 76.2 8.59 13.14 0.645 29.1 2015-Jan-25 3:00 m 2 42 44 31 50 15 263.9 64.0 8.59 13.15 0.647 29.4 2015-Jan-25 6:00 2 42 20 32 0 35 289.1 29.5 8.6 13.16 0.649 29.7 2015-Jan-25 9:00 2 43 30 32 34 29 313.7 0.0 8.61 13.17 0.652 29.7 2015-Jan-26 0:00 Cm 2 39 18 32 56 42 116.5 78.3 8.64 13.21 0.662 29.8 2015-Jan-26 3:00 m 2 38 52 33 6 1 267.9 63.0 8.65 13.22 0.664 30.1 2015-Jan-26 6:00 m 2 38 29 33 15 52 291.3 28.7 8.65 13.23 0.667 30.3 2015-Jan-26 9:00 2 39 44 33 50 43 315.7-0.1 8.66 13.24 0.669 30.4 2015-Jan-27 0:00 Cm 2 35 34 34 8 54 115.7 80.3 8.69 13.28 0.680 30.4 2015-Jan-27 3:00 m 2 35 9 34 17 44 271.6 61.9 8.7 13.28 0.682 30.7 2015-Jan-27 6:00 m 2 34 47 34 27 8 293.3 27.9 8.71 13.29 0.684 30.9 2015-Jan-27 9:00 2 36 6 35 2 49 317.7-0.2 8.71 13.3 0.686 30.9 2015-Jan-28 0:00 Cm 2 31 59 35 17 18 114.5 82.2 8.75 13.34 0.697 31.0 2015-Jan-28 3:00 m 2 31 36 35 25 41 274.8 60.9 8.75 13.35 0.700 31.3 2015-Jan-28 6:00 m 2 31 15 35 34 40 295.3 27.1 8.76 13.36 0.702 31.5 2015-Jan-28 9:00 2 32 36 36 11 3 319.6-0.2 8.77 13.36 0.704 31.5 2015-Jan-29 0:00 Cm 2 28 33 36 22 7 112.4 84.1 8.8 13.4 0.716 31.5 2015-Jan-29 3:00 m 2 28 11 36 30 5 277.8 59.7 8.81 13.41 0.718 31.8 2015-Jan-29 6:00 m 2 27 51 36 38 42 297.1 26.4 8.82 13.42 0.720 31.9 2015-Jan-29 9:00 m 2 29 14 37 15 38 321.4-0.3 8.82 13.43 0.722 31.9 Comet_Lovejoy_horizons_results_added_Range Page 3 of 5

2015-Jan-30 0:00 Cm 2 25 16 37 23 37 108.5 85.8 8.86 13.46 0.734 31.9 $$EOE ****** Column meaning: TIME Prior to 1962, times are UT1. Dates thereafter are UTC. Any 'b' symbol in the 1st-column denotes a B.C. date. First-column blank (" ") denotes an A.D. date. Calendar dates prior to 1582-Oct-15 are in the Julian calendar system. Later calendar dates are in the Gregorian system. Time tags refer to the same instant throughout the universe, regardless of where the observer is located. The dynamical Coordinate Time scale is used internally. It is equivalent to the current IAU definition of "TDB". Conversion between CT and the selected non-uniform UT output scale has not been determined for UTC times after the next July or January 1st. The last known leap-second is used over any future interval. NOTE: "n.a." in output means quantity "not available" at the print-time. SOLAR PRESENCE (OBSERVING SITE) Time tag is followed by a blank, then a solar-presence symbol: '*' Daylight (refracted solar upper-limb on or above apparent horizon) 'C' Civil twilight/dawn 'N' Nautical twilight/dawn 'A' Astronomical twilight/dawn ' ' Night OR geocentric ephemeris LUNAR PRESENCE (OBSERVING SITE) The solar-presence symbol is immediately followed by a lunar-presence symbol: 'm' Refracted upper-limb of Moon on or above apparent horizon ' ' Refracted upper-limb of Moon below apparent horizon OR geocentric ephemeris R.A._(r-apparent) DEC. = Refracted apparent right ascension and declination of the target center with respect to the Earth's true-equator and the meridian containing the Earth true equinox-of-date. Adjusted for light-time, the gravitational deflection of light, stellar aberration, precession, nutation and approximate atmospheric refraction. Units: HMS (HH MM SS.ff) and DMS (DD MM SS.f) Azi_(r-appr)_Elev = Refracted apparent azimuth and elevation of target center. Adjusted for light-time, the gravitational deflection of light, stellar aberration, precession, nutation and approximate atmospheric refraction. Azimuth measured North(0) -> East(90)-> South(180) -> West(270) -> North (360). Elevation is Comet_Lovejoy_horizons_results_added_Range Page 4 of 5

with respect to plane perpendicular to local zenith direction. TOPOCENTRIC ONLY. Units: DEGREES T-mag N-mag = Comet's approximate apparent visual total magnitude ("T-mag") and nuclear magnitude ("N-mag") by following standard IAU definitions: T-mag = M1 + 5*log10(delta) + k1*log10(r) N-mag = M2 + 5*log10(delta) + k2*log10(r) + phcof*beta Units: MAGNITUDES delta deldot = Range ("delta") and range-rate ("delta-dot") of target center with respect to the observer at the instant light seen by the observer at print-time would have left the target center (print-time minus down-leg light-time); the distance traveled by a light ray emanating from the center of the target and recorded by the observer at print-time. "deldot" is a projection of the velocity vector along this ray, the light-time-corrected line-of-sight from the coordinate center, and indicates relative motion. A positive "deldot" means the target center is moving away from the observer (coordinate center). A negative deldot means the target center is moving toward the observer. Units: AU and KM/S Computations by... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect : telnet://ssd.jpl.nasa.gov:6775 (via browser) telnet ssd.jpl.nasa.gov 6775 (via command-line) Author : Jon.Giorgini@jpl.nasa.gov Comet_Lovejoy_horizons_results_added_Range Page 5 of 5