Screening mass of gluons in presence of external Abelian chromomagnetic field

Similar documents
Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

t Hooft-Polyakov Monopoles on the Lattice

String Dynamics in Yang-Mills Theory

Gluon propagators and center vortices at finite temperature arxiv: v1 [hep-lat] 26 Oct 2009

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE

Dimensional reduction near the deconfinement transition

arxiv:hep-lat/ Feb 2000

Orientifold planar equivalence.

Instantons and Monopoles in Maximal Abelian Projection of SU(2) Gluodynamics

Probing the non-perturbative dynamics of SU(2) vacuum

Deconfinement Phase Transition in QCD

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling

arxiv: v1 [hep-lat] 1 May 2011

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

arxiv: v2 [hep-lat] 13 Dec 2010

Lattice Gauge Theory: A Non-Perturbative Approach to QCD

QCD Vacuum, Centre Vortices and Flux Tubes

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics

arxiv: v1 [hep-lat] 18 Nov 2013

Center-symmetric dimensional reduction of hot Yang-Mills theory

The Confinement Problem: Critical discussion of Tomboulis s approach

A comparison between compact and noncompact formulation of the three dimensional lattice QED

arxiv:hep-lat/ v1 30 May 1995

arxiv: v2 [hep-lat] 12 Jul 2007

Suitable operator to test the Abelian dominance for sources in higher representation

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

Pushing dimensional reduction of QCD to lower temperatures

SU(2) Lattice Gauge Theory with a Topological Action

arxiv:hep-lat/ v1 18 May 2001

Spectral Properties of Quarks in the Quark-Gluon Plasma

Various Abelian Projections of SU(2) Lattice Gluodynamics and Aharonov-Bohm Effect in the Field Theory

PoS(Confinement X)058

arxiv:hep-lat/ v2 5 Dec 1998

Many faces of the Landau gauge gluon propagator at zero and finite temperature

arxiv:hep-lat/ v1 24 Jun 1998

arxiv: v2 [hep-lat] 23 Dec 2008

Q Q dynamics with external magnetic fields

Center-symmetric dimensional reduction of hot Yang-Mills theory

Real time lattice simulations and heavy quarkonia beyond deconfinement

Disintegration of quarkonia in QGP due to time dependent potential

Progress in Gauge-Higgs Unification on the Lattice

The Equation of State for QCD with 2+1 Flavors of Quarks

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Gluon Propagator and Gluonic Screening around Deconfinement

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature

Some selected results of lattice QCD

Scale hierarchy in high-temperature QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD

arxiv:hep-lat/ v1 13 Sep 1995

Lattice computation for the QCD Lambda parameter

Analytic continuation from an imaginary chemical potential

Interaction of electric charges in (2+1)D magnetic dipole gas

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

New Mexico State University & Vienna University of Technology

PoS(LATTICE 2007)338. Coulomb gauge studies of SU(3) Yang-Mills theory on the lattice

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Spontaneous magnetization of the vacuum and the strength of the magnetic field in the hot Universe

Termodynamics and Transport in Improved Holographic QCD

Numerical Study of Gluon Propagator and Confinement Scenario in Minimal Coulomb Gauge

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Isospin and Electromagnetism

Contact interactions in string theory and a reformulation of QED

arxiv: v1 [hep-lat] 25 Apr 2012

Coordinate/Field Duality in Gauge Theories: Emergence of Matrix Coordinates

Light quark masses, chiral condensate and quark-gluon condensate in quenched lattice QCD with exact chiral symmetry

arxiv:hep-lat/ v1 29 Sep 1997

Quasi-particle degrees of freedom in finite temperature SU(N) gauge theories

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

Prepotential Formulation of Lattice Gauge Theory

arxiv:hep-lat/ v1 17 Jan 2000

QGP, Hydrodynamics and the AdS/CFT correspondence

The three-quark potential and perfect Abelian dominance in SU(3) lattice QCD

Chiral symmetry breaking, instantons, and monopoles

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia

Quantum Nambu Geometry in String Theory

arxiv: v1 [nucl-th] 4 Nov 2018

Beta function of three-dimensional QED

Superinsulator: a new topological state of matter

The SU(2) quark-antiquark potential in the pseudoparticle approach

arxiv: v1 [hep-lat] 15 Nov 2016

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

Aharonov Bohm Effect in Lattice Abelian Higgs Theory

The lattice SU(2) confining string as an Abrikosov vortex

Monopole Condensation and Confinement in SU(2) QCD (1) Abstract

Topological symmetry breaking and the confinement of anyons. P.W. Irwin. Groupe de Physique des Particules, Département de Physique,

Ising Lattice Gauge Theory with a Simple Matter Field

Large N reduction in deformed Yang-Mills theories

arxiv:hep-ph/ v1 19 Feb 1999

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

arxiv:hep-ph/ v1 31 May 1999

Exceptional Deconfinement in G(2) Gauge Theory

Gauge theories on a five-dimensional orbifold

arxiv: v1 [hep-lat] 14 Jan 2009

Bulk Thermodynamics in SU(3) gauge theory

Chemical composition of the decaying glasma

Temperature dependence of shear viscosity of SU(3) gluodynamics within lattice simulation

PNJL Model and QCD Phase Transitions

Transcription:

Screening mass of gluons in presence of external Abelian chromomagnetic field N. V. Kolomoyets, V. V. Skalozub Dnepropetrovsk National University Ukraine December 5, 2018 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 1/28

Magnetic Mass Magnetic (electric) mass shows how fast magetic (electric) field decreases with distance in plasma. F µν = C(r) e mk r k (1) m = 1, λ screening length (2) λ Example: QED m 2 el = 1 3 e2 T 2 electric (Debye) mass (3) m 2 magn = 0 magnetic mass (4) Screened Long range N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 2/28

Magnetic Mass in SU(N) Gauge Theory F µν = 3 a=1 F (a) µν t a, t a generators of SU(N) group (5) 1-loop calculations: m 2 el = 1 ( 3 g2 T 2 N + N ) f 2 m 2 magn = 0 // D. Gross, R. Pisarski, and L. Yaffe, Rev. Mod. Phys. 53, 43 (1981) (6) (7) Higher orders, nonperturbative calculations: m 2 magn g 4 T 2 (8) m magn = 0 is not excluded N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 3/28

Hypothesis: not all color components of chromomagnetic field contribute to the magnetic mass N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 4/28

Magnetic Mass in the Presence of External Field External chromomagnetic field: H a µ = Hδ µ3 δ a3 High temperature: gh/t 2 << 1 SU(2) Neutral gluon field: m 2 el g2 T 2 ( 1 C gh/t ), m 2 magn = 0 (9) // M. Bordag and V. Skalozub, Phys. Rev. D 75, 125003 (2007) [hep-th/0611256] // S. Antropov, M. Bordag, V. Demchik and V. Skalozub, Int. J. Mod. Phys. A 26, 4831 (2011) [arxiv:1011.3147 [hep-ph]] Color-charged gluon fields: m 2 el g2 T 2 ( 1 C gh/t gh g 2 T m 2 magn g 4 T 2 ), m 2 magn g 2 T gh (10) // M. Bordag and V. Skalozub, Phys. Rev. D 77, 105013 (2008) [arxiv:0801.2306 [hep-th]] // M. Bordag and V. Skalozub, Phys. Rev. D 85, 065018 (2012) [arxiv:1201.1978 [hep-th]] Spontaneous field generation N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 5/28

Magnetic Mass on the Lattice SU(2) 1 T. A. DeGrand and D. Toussaint, The Behavior of Nonabelian Magnetic Fields at High Temperature, Phys. Rev. D 25, 526 (1982) Screening of the chromomagnetic field of the monopole-antimonopole string was shown Color structure could not be clarified by this method 2 S. Antropov, M. Bordag, V. Demchik and V. Skalozub, Long range chromomagnetic fields at high temperature, Int. J. Mod. Phys. A 26, 4831 (2011) [arxiv:1011.3147 [hep-ph]] Zero magnetic mass of the Abelian chromomagnetic field was shown Non-Abelian components of the chromomagnetic field were not investigated N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 6/28

Magetic Mass: Analytical Calculations vs Lattice m 0 m ch 0 m m 2 g 4 T 2 neut = 0 m 2 ch g2 T gh Perturb. On the lattice Perturb. On the lattice Perturb. The aim of this investigation: to show that m magn is produced by the charged components of the gluon field on the lattice N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 7/28

Quantum Gluodynamics on the Lattice Continuous Minkovsky space-time Euclidean 4D discrete lattice Continuous operators Discrete operators on the lattice Gluon fields SU(N) matrices at the links of the lattice Expectation value of a measured quantity O: O = 1 DU O[U]e S[U] O 1 O[U k ] (11) Z K U k Z = DU e S[U], DU = du µ(x), configurations U k are distributed with probability e S[U k ]. x,µ Lattice Wilson action: S W = β µ>ν a 0 S W 1 4g 2 x [ 1 1 N Re Tr U µν ] (12) d 4 x F (c) µν (x)f (c) µν (x) (13) U µν (x) = U µ (x)u ν (x + ˆµ)U µ(x + ˆν)U ν(x) plaquette. (14) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 8/28

Idea of the investigation: Two external chromomagnetic fields are introduced on the lattice: field of monopole-antimonopole string; Abelan field flux. Screening of combination of that fields is investigated. N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 9/28

Monopole-Antimonopole String on the Lattice S = β n µ>ν Ξ µν (n) Z(N) // T. A. DeGrand and D. Toussaint // M. Srednicki and L. Susskind, Nucl. Phys. B179, 239 (1981) [ 1 1 ] N Re Tr U µν(n)ξ µν (n), Center of the SU(N) group: Z(N) = { N 1 I} SU(2) case: Z(2) = {1 I, 1 I} Ξ µν (n) I Ξ µν (n) = I if string U µν (n) if x = 0, y = 0, z, t SU(3) case: Z(3) = { e 2 3 πi I, 1 I, e 2 3 πi I} N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 10/28

Abelian Field Flux on the Lattice Plaquette: U µν (x) = U µ (x)u ν (x + ˆµ)U µ(x + ˆν)U ν(x) U µ (n) = e iaaµ(n) // S. Antropov et al. } U µν (n) = e ia2 F µν(n) U xy = e ia2 (H z+h ext z ) = U xy e ia2 H ext z U y(0, n y, n z, n t ) = U y (0, n y, n z, n t ) e iϕ Twisted boundary conditions: U y (N x, n y, n z, n t ) = U y (0, n y, n z, n t ) e iϕ, U µ (N x, n y, n z, n t ) = U µ (0, n y, n z, n t ), µ y, ϕ = a 2 N x H ext z U µ (n x, N y, n z, n t ) = U µ (n x, 0, n z, n t ), U µ (n x, n y, N z, n t ) = U µ (n x, n y, 0, n t ), U µ (n x, n y, n z, N t ) = U µ (n x, n x, n z, 0). e iϕ = e iϕ 3σ 3 /2 = ( e iϕ 3 /2 0 0 e iϕ 3/2 ) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 11/28

Abelian Field Flux on the Lattice SU(3) e iϕ = e i(ϕ 3λ 3 +ϕ 8 λ 8 )/2 = e i(ϕ 3+ϕ 8 / 3)/2 0 0 0 e i( ϕ 3+ϕ 8 / 3)/2 0 0 0 e iϕ 8/ 3 (15) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 12/28

Ext. Field through the Flux vs Ext. Field through the Strength TBC Cosmai & Cea // P. Cea and L. Cosmai, Phys. Rev. D 60, U µν (n) = e ia2 F µν(n) a 2 F xy (n) a 2 [ F xy (n) + Hz ext ] U µ (n) = e iaaµ(n) 094506 (1999) [hep-lat/9903005] A µ (n) A µ (n) + H ext z xδ µ2 t 3 /2 U µ (x + N x, y, z, t) = U µ (x, y, z, t) Hz ext N x a = 2πk, k Z 2 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 13/28

Outline of the Investigation Lattices: N t N 3, N t = const Measured quantity: U = Re Tr U µν Investigated quantity: f(n) = U field U 0 U µν (n) = e ia2 F µν(n) 1 + ia 2 F µν (n), a 0 (16) U µν (n) ia 2 F µν (n) F (ϕ) = T ln Z(ϕ), free energy, Z(ϕ) = Z(0) S(ϕ) = S(0) + 1 n S(ϕ) n! ϕ n n Z(ϕ) = DU e S(0) e Sϕ(ϕ) F (ϕ) = T S ϕ (ϕ) = T (S(ϕ) S(0)) (17) DU e S(ϕ) (18) ϕ=0 ϕ n = S(0) + S ϕ (ϕ) (19) f(n) F (n) β Z(ϕ) Z(0) = e Sϕ(ϕ) (20) (21) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 14/28

Outline of the Investigation Lattices: N t N 3, N t = const Measured quantity: U = Re Tr U µν Investigated quantity: f(n) = U field U 0 Possibilities for f: f 1/N 2 flux tubes, the flux is conserved; f 1/N 4 Coulombic behavior, flux spreads out over the available area; f e kn 2 screening of the field; k = m 2 magn; f 1/N spontaneous field generation, flux increases with distance. Simulations are performed in absence of external Abelian field flux ϕ; in presence of external Abelian field flux ϕ: ϕ is directed parallel to the monopole-antimonopole string. N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 15/28

Simulations Setup; SU(2) Lattices used: 4 N 3, N = 6, 8,..., 72 External Abelian field flux ϕ = 0.08 ( 10 4 MeV 2 ) β = 2.835 (T 1.2 GeV) β = 3.020 (T 1.9 GeV) β = 3.091 (T 2.3 GeV) Simulations are performed with the QCDGPU program (https://github.com/vadimdi/qcdgpu, V. Demchik, N. K., Comp. Sc. and Appl.,1, 1 (2014) [arxiv:hep-lat/1310.7087]) N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 16/28

χ 2 -analysis of the Data log f 7 8 9 10 11 12 13 6 8 10 12 14 N f i = U field U 0 i The data are fitted through minimization of χ 2 function: K χ 2 [y i log f(n i ; a)] 2 (a) =, (22) i=1 σ 2 i y i = log f i, f(n i ; a) = A N b e kn q. χ 2 min = χ2 (â) χ 2 ν; ν = K L; L = Length a Hypothesis testing: H 0 : f(n i ; a) describes the data; χ 2 min χ2 ν;0.05 H 1 : f(n i ; a) does not describe the data. χ 2 min > χ2 ν;0.05 Functions describing the data χ 2 = χ 2 (a) χ 2 min χ2 L χ 2 (a) χ 2 min + χ2 L;0.05 95% CIs for a CIs for screening parameters N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 17/28

SU(2) Results: Data at ϕ = 0 f(n) = U field U 0 0.0010 0.0008 ϕ = 0, β = 2. 835 ϕ = 0, β = 3. 020 ϕ = 0, β = 3. 091 7 8 ϕ = 0, β = 2. 835 ϕ = 0, β = 3. 020 ϕ = 0, β = 3. 091 0.0006 9 f log f 10 0.0004 11 0.0002 12 0.0000 6 8 10 12 14 N 13 6 8 10 12 14 N N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 18/28

SU(2) Results: Fitting at ϕ = 0 Function β = 2.835 χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = 3.020 χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = 3.091 χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 A/N 137 9.49 509 9.49 190 9.49 A/N 2 80.4 9.49 247 9.49 102 9.49 A/N 4 14.0 9.49 19.5 9.49 9.53 9.49 A e kn 0.40 7.81 63.9 ± 10.9 2.19 7.81 54.4 ± 4.5 0.98 7.81 56.8 ± 8.0 A e kn2 3.18 7.81 3.68 ± 0.63 11.8 7.81 3.33 ± 0.28 10.3 7.81 3.18 ± 0.45 (A/N) e kn 0.60 7.81 51.7 ± 10.9 4.14 7.81 41.5 ± 4.5 0.64 7.81 44.8 ± 8.0 (A/N) e kn2 1.49 7.81 2.99 ± 0.63 4.09 7.81 2.55 ± 0.28 5.10 7.81 2.52 ± 0.45 (A/N 2 ) e kn 0.99 7.81 39.5 ± 10.9 7.29 7.81 28.6 ± 4.5 0.77 7.81 32.7 ± 8.0 (A/N 2 ) e kn2 0.63 7.81 2.30 ± 0.63 2.16 7.81 1.78 ± 0.28 1.89 7.81 1.85 ± 0.45 (A/N 4 ) e kn 2.32 7.81 15.1 ± 10.9 17.2 7.81 2.80 ± 4.52 2.45 7.81 8.65 ± 7.96 (A/N 4 ) e kn2 1.36 7.81 0.91 ± 0.63 15.5 7.81 0.23 ± 0.28 1.58 7.81 0.52 ± 0.45 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 19/28

SU(2) Results: Fitting at ϕ = 0 Function β = 2.835 χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = 3.020 χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 β = 3.091 χ 2 min χ2 ν;0.05 a / r ˆk ± 2σ CI 10 2 A/N 137 9.49 509 9.49 190 9.49 A/N 2 80.4 9.49 247 9.49 102 9.49 A/N 4 14.0 9.49 19.5 9.49 9.53 9.49 A e kn 0.40 7.81 63.9 ± 10.9 2.19 7.81 54.4 ± 4.5 0.98 7.81 56.8 ± 8.0 A e kn2 3.18 7.81 3.68 ± 0.63 11.8 7.81 3.33 ± 0.28 10.3 7.81 3.18 ± 0.45 (A/N) e kn 0.60 7.81 51.7 ± 10.9 4.14 7.81 41.5 ± 4.5 0.64 7.81 44.8 ± 8.0 (A/N) e kn2 1.49 7.81 2.99 ± 0.63 4.09 7.81 2.55 ± 0.28 5.10 7.81 2.52 ± 0.45 (A/N 2 ) e kn 0.99 7.81 39.5 ± 10.9 7.29 7.81 28.6 ± 4.5 0.77 7.81 32.7 ± 8.0 (A/N 2 ) e kn2 0.63 7.81 2.30 ± 0.63 2.16 7.81 1.78 ± 0.28 1.89 7.81 1.85 ± 0.45 (A/N 4 ) e kn 2.32 7.81 15.1 ± 10.9 17.2 7.81 2.80 ± 4.52 2.45 7.81 8.65 ± 7.96 (A/N 4 ) e kn2 1.36 7.81 0.91 ± 0.63 15.5 7.81 0.23 ± 0.28 1.58 7.81 0.52 ± 0.45 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 20/28

SU(2) Results: Data at ϕ = 0.08 f(n) = U field U 0 0.0010 0.0008 0.0006 ϕ = 0, β = 2. 835 ϕ = 0, β = 3. 020 ϕ = 0, β = 3. 091 ϕ = 0. 08, β = 2. 835 ϕ = 0. 08, β = 3. 020 ϕ = 0. 08, β = 3. 091 7 8 9 ϕ = 0, β = 2. 835 ϕ = 0, β = 3. 020 ϕ = 0, β = 3. 091 ϕ = 0. 08, β = 2. 835 ϕ = 0. 08, β = 3. 020 ϕ = 0. 08, β = 3. 091 f log f 10 0.0004 11 0.0002 12 0.0000 10 20 30 40 50 60 70 N 13 10 20 30 40 50 60 70 N N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 21/28

SU(2) Results: Fitting at ϕ = 0.08 β = 2.835 β = 3.020 β = 3.091 Function χ 2 min χ2 ν;0.05 a /r χ 2 min χ2 ν;0.05 a /r χ 2 min χ2 ν;0.05 a /r A/N b 91.2 16.9 170 15.5 223 18.3 (A/N b ) e kn 30.0 15.5 44.9 14.1 69.0 16.9 (A/N b ) e kn2 47.2 15.5 73.7 14.1 118 16.9 A e B/N e kn 5.33 15.5 7.14 14.1 7.00 16.9 B = 20.3 ± 2.64 k = (1.09 ± 0.91) 10 2 B = 20.1 ± 1.84 k = (1.08 ± 0.75) 10 2 B = 21.3 ± 2.01 k = (6.90 ± 6.76) 10 3 18 0.045 16 0.040 0.035 14 0.030 B, GeV 1 12 10 k, GeV 0.025 0.020 0.015 8 0.010 0.005 6 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 T, GeV 0.000 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 T, GeV N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 22/28

Comparison of the results f(n) = A e B/N e kn χ 2 min β = 2.835 χ2 ν;0.05 a /r χ 2 min β = 3.020 χ2 ν;0.05 a /r χ 2 min β = 3.091 χ2 ν;0.05 a /r ϕ = 0 0.36 5.99 1.34 5.99 0.64 5.99 B = 2.81 ± 37.6 k = (6.83 ± 5.76) 10 1 B = 4.95 ± 14.2 k = (6.29 ± 2.46) 10 1 B = 5.04 ± 23.9 k = (4.92 ± 3.66) 10 1 ϕ = 0.08 5.33 15.5 7.14 14.1 7.00 16.9 B = 20.3 ± 2.64 k = (1.09 ± 0.91) 10 2 B = 20.1 ± 1.84 k = (1.08 ± 0.75) 10 2 B = 21.3 ± 2.01 k = (6.90 ± 6.76) 10 3 30 2.5 B, GeV 1 20 10 0 10 20 k, GeV 2.0 1.5 1.0 0.5 m 0 = 1.26 ± 0.41 GeV m 0.08 = (1.83 ± 0.87) 10 2 GeV at 95% CL 30 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 T, GeV 0.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 T, GeV N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 23/28

SU(3) Results: Data at ϕ = 0 4 N 3 lattices, N = 6,..., 88 f(l s ) β = 6.4 (T 580 MeV) - 4-6 - 8-10 0 20 40 60 80 L s χ 2 = 20.2 χ 2 ν;0.05 = 32.7 b = 2.00 ± 0.02 flux tubes χ 2 > χ 2 ν;0.05 rejection at 95% CL N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 24/28

SU(3) Results: Data at ϕ = 0 4 N 3 lattices, N = 6,..., 88 f(l s ) β = 6.4 (T 580 MeV) - 8.4-8.6-8.8-4 - 9.0-9.2-6 - 8 60 65 70 75 80 85 χ 2 = 3.05 χ 2 ν;0.05 = 12.6 b = 1.99 ± 0.23-10 0 20 40 60 80 L s - 8.4-8.6 χ 2 = 20.2 χ 2 ν;0.05 = 32.7 b = 2.00 ± 0.02 flux tubes χ 2 > χ 2 ν;0.05 rejection at 95% CL - 8.8-9.0-9.2 60 65 70 75 80 85 χ 2 = 2.24 χ 2 ν;0.05 = 12.6 b = (2.70 ± 0.32) 10 2 N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 25/28

Comparison with Literature SU(3) B. Grossman, S. Gupta, U. M. Heller and F. Karsch, Glueball - like screening masses in pure SU(3) at finite temperatures, Nucl. Phys. B 417, 289 (1994) [hep-lat/9309007]. External field sources are not introduced m el and m magn are measured through Plyakov loop correlators 2m magn = 5.8(4)T @ T = 1.5T c N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 26/28

Conclusions Both monopole-antimonopole string and external Abelian field flux are introduced on the lattice. Results of the previous investigations for SU(2) gauge group are reproduced. In SU(2) it is shown that adding of the Abelian field flux weakens the screening of the string field. This confirms that for the Abelian field m magn = 0; m magn of the monopole-antimonopole string field is produced by its non-abelian components. In SU(3) formation of flux tubes is obtained. N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 27/28

Conclusions Both monopole-antimonopole string and external Abelian field flux are introduced on the lattice. Results of the previous investigations for SU(2) gauge group are reproduced. In SU(2) it is shown that adding of the Abelian field flux weakens the screening of the string field. This confirms that for the Abelian field m magn = 0; m magn of the monopole-antimonopole string field is produced by its non-abelian components. In SU(3) formation of flux tubes is obtained. Thank you for your attention! N. V. Kolomoyets Screening mass of gluons in presence of external Abelian chromomagnetic field 28/28