BNL Very Long Baseline Neutrino Oscillation Expt.

Similar documents
BNL Very Long Baseline Neutrino Oscillation Expt.

Very Long Baseline Oscillations

Neutrino oscillation physics potential of Hyper-Kamiokande

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Physics Potential of existing and future LBL ν beams

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

New Results for ν µ ν e oscillations in MINOS

Gadolinium Doped Water Cherenkov Detectors

Recent T2K results on CP violation in the lepton sector

Neutrino Oscillation and CP violation

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Recent Results from T2K and Future Prospects

Results from T2K. Alex Finch Lancaster University ND280 T2K

Marcos Dracos IPHC, Université de Strasbourg, CNRS/IN2P3, F Strasbourg, France

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

NEUTRINOS II The Sequel

The T2K Neutrino Experiment

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Neutrino Oscillations and the Matter Effect

The NOνA Experiment and the Future of Neutrino Oscillations

From Here to a Neutrino Factory: Neutrino Oscillations Now and Again

Neutrino Oscillations

The ESS neutrino facility for CP violation discovery

MINOS experiment at Fermilab

Long Baseline Neutrinos

Neutrinos & the MINOS Experiment

Neutrino Oscillations

Leptons and the Weak Interaction

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Advanced Neutrino Sources

Neutrino-Nucleus Scattering at MINERvA

JHFnu at J-PARC neutrino oscillation experiment

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Latest results from MINOS

Oak Ridge and Neutrinos eharmony forms another perfect couple

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

Future Experiments with Super Neutrino Beams

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Technological challenges of future Super Beam projects

Physics with a detector at Homestake

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010

N u P J-PARC Seminar August 20, 2015

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Study of possible opportunities for leptonic CP violation and mass hierarchy at LNGS

Recent results from Super-Kamiokande

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

New Results from the MINOS Experiment

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

Comparisons and Combinations of Oscillation Measurements

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Camillo Mariani Center for Neutrino Physics, Virginia Tech

PoS(FPCP2017)023. Latest results from T2K. Jennifer Teresa Haigh, for the T2K Collaboration

arxiv: v1 [hep-ex] 11 May 2017

Radio-chemical method

Application of GLoBES: GLACIER on conventional neutrino beams

A method for detecting ν τ appearance in the spectra of quasielastic CC events

Solar Neutrino Oscillations

Detecting ν τ appearance in the spectra of quasielastic CC events

New Physics with a High Intensity PS (in Italy)

Neutrino Experiments with Reactors

The NOνA Neutrino Experiment

The Hyper-Kamiodande Project A New Adventure in n Physics


Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

The LENA Neutrino Observatory

MINOS Oscillation Results from The First Year of NuMI Beam Operation

Sterile Neutrino Experiments at Accelerator

The Hyper-Kamiokande project

Neutrino Studies at an EIC Proton Injector. Jeff Nelson College of William & Mary

Particle Physics: Neutrinos part I

Long Baseline Neutrino Experiments

Final results from K2K and status of T2K

Existing and future long-baseline neutrino oscillation experiments

Review of νe Appearance Oscillation Experiments

K2K and T2K experiments

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

Neutrino Event Tagging Based On Nucleon Energy Spectra

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

An Introduction to Modern Particle Physics. Mark Thomson University of Cambridge

Why a muon collider?

What If U e3 2 < 10 4? Neutrino Factories and Other Matters

Review of Neutrino Oscillation Experiments

Neutrino mixing. Outline: description/review of mixing phenomenology possible experimental signatures short review of existing experimental results

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

arxiv: v1 [hep-ex] 30 Nov 2009

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

Sensitivity of the DUNE Experiment to CP Violation. Lisa Whitehead Koerner University of Houston for the DUNE Collaboration

Neutrino oscillation experiments: Recent results and implications

JAPAN PROTON ACCELERATOR RESEARCH COMPLEX

Introduction to the Neutrino Factory

Neutrinos Induced Pion Production in MINERvA

Long baseline experiments

Transcription:

Mary Bishai, BNL 1 p.1/36 BNL Very Long Baseline Neutrino Oscillation Expt. Next Generation of Nucleon Decay and Neutrino Detectors 8/04/2005 Mary Bishai mbishai@bnl.gov Brookhaven National Lab.

Mary Bishai, BNL 2 p.2/36 Outline The case for a very long baseline ν experiment Highlights from BNL s Conceptual Design Report Physics sensitivies for L = 2540km and L = 1290 km Conclusions

THE CASE FOR A SUPER NEUTRINO BEAM Mary Bishai, BNL 3 p.3/36

Mary Bishai, BNL 4 p.4/36 Why a Very Long Baseline? Sensitivity to atmospheric ( m 2 32 ) AND solar ( m2 21 ) oscillation scales Verify oscillation behaviour by observing multiple nodes Resolution of E νµ < 1GeV/c 2 dominated by Fermi motion maximize L = O(1000) km Higher energies = larger crosssections Very long baseline = multiple node pattern is detectible for all m 2 32 range. More nodes = higher precision. Energy (GeV) Oscillation Nodes for m 2 = 0.0025 ev 2 7 6 5 4 3 2 1 0 FNAL-SOUDAN π/2 3π/2 BNL-HOMESTAKE 5π/2 Fermi motion dominated 0 500 1000 1500 2000 2500 3000 Baseline (km)

Mary Bishai, BNL 5 p.5/36 VLB Disappearance Sensitivity For a BNL-Homestake 2540 km baseline: Test point for ν µ disapp Test point for Anti-ν µ disapp m 32 2 ev 2 0.006 0.005 Small oval is for BNL-HS 90 % C.L. contours Stat. + Syst. m 32 2 ev 2 0.006 0.005 Small oval is for BNL-HS 90 % C.L. contours Stat. + Syst. 0.004 0.003 0.002 MINOS 90 % SuperK 90 % 0.004 0.003 0.002 MINOS 90 % 2003 SuperK 90 % 0.001 0.001 0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Sin 2 2θ 23 0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 Sin 2 2θ 23 1% resol on m 2 32 and sin2 2θ 23 if detector energy scale uncert 1%

Mary Bishai, BNL 6 p.6/36 VLB ν µ ν e Sensitivity Matter effects in two flavor oscillations: In neutrino oscillations with θ 13 0, matter effects change ν µ ν e oscillation probability. More matter = larger effects Marciano (hep-ph/0108181): CP asymmetry in ν µ ν e, A, grows with L Flux at far detector goes as 1/L 2. FOM = A 2 N ν /(1 A 2 ) is constant P(ν µ ν e ) 0.14 0.12 0.1 0.08 0.06 0.04 1 GeV neutrino, vacuum numu cp=90 numu cp=45 numu cp=0 anumu cp=45 anumu cp=90 SK best fit LMA-I sin 2 (2θ) 13 = 0.04 0.02 FOM independent of baseline 0 0 500 1000 1500 2000 2500 3000 3500 4000 Brett Viren, bv@bnl.gov, 06/04/2004 Baseline (km)

Mary Bishai, BNL 7 p.7/36 Sensitivity to δ cp & sign( m 32 ) Matter effects enhance (suppress) ν µ ν e oscillation probability for E ν > 3 GeV/c 2 if m 3 > m 2 > m 1 (m 2 > m 1 > m 3 ) For 1 < E ν < 3 GeV/c 2 appearance spectrum is sensitive to δ cp Probability 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 ν µ ν e Oscillation BNL-HS 2540 km, matter effects sin 2 2θ (12,23,13) = (0.86, 1.0, 0.04) m (21,31) 2 = (7.3e-5, 2.5e-3) ev 2 Neutrino Running m 32 2 > 0, δ CP = 45 o m 32 2 > 0, δ CP = 0 o m 32 2 < 0, δ CP = 0 o 0 1 2 3 4 5 6 7 8 9 10 E ν (GeV) Enhancement at < 2 GeV is that expected from solar parameters.

Mary Bishai, BNL 8 p.8/36 Separating Multiple ν µ ν e Effects energy sin 2 2θ 13 m 2 32 δ CP = θ 23 (GeV) > 0 (> 0, < 0) ( π 4, π 4 ) (< π 4, > π 4 ) ν 0 1.2,,, 1.2 2.2,,, > 2.2,,, ν 0 1.2,,, 1.2 2.2,,, > 2.2,,, Need a broadband beam with E ν = 1 to 6 GeV For 3 generations we do not need ν!

THE CASE FOR BROOKHAVEN AS THE SUPER BEAM FACILITY Mary Bishai, BNL 9 p.9/36

Mary Bishai, BNL 10 p.10/36 BNL baselines The US is 4500 km coast-to-coast. Brookhaven National Lab is located on the eastern coast ideal for O(2000) km baselines. BNL-Homestake mine = 2540 km BNL-Henderson mine = 2700 km

Mary Bishai, BNL 11 p.11/36 The AGS as a proton source The Alternating Gradient Synchrotron at BNL accelerates 1.5 GeV/c protons from the Booster up to 33 GeV/c. Typical intensity achieved for slow extracted beam is 6.7 10 13 protons at a rep rate of 0.5 Hz the most intense proton beam in the world

Mary Bishai, BNL 12 p.12/36 BNL ν beam spectrum Detailed simulation of a 28 GeV proton beam on a graphite target with a wideband focusing horn. Beam can be run in either neutrino or anti-neutrino mode. BNL Wide Band. Proton Energy = 28 GeV nu/gev/m 2 /POT at 1 km 10-5 10-6 Distance = 1 km ν µ A combination of neutrino and anti-neutrino running will constrain sin 2 θ 13 0.003. 10-7 10-8 ν e ν e /ν µ = 0.007 0 2 4 6 8 10 12 14 E ν (GeV) AGS 28 GeV protons will produce a spectrum of E ν = 1 to 10 GeV/c 2 Well matched to baseline 2000 km

Mary Bishai, BNL 13 p.13/36 BNL Conceptual Design Report BNL-73210-2004-IR available at http://raparia.sns.bnl.gov/nwg ad/

Mary Bishai, BNL 14 p.14/36 AGS MW Beam Requirements Very long baseline = low ν flux at the far detector need 1-2 MW beam and megaton detectors present AGS 1MW 2 MW Total power (MW) 0.14 1 2 Beam Energy (GeV) 24 28 28 Rep. rate 0.5 2.5 2.5 Avg. current (µa) 6 36 72 Avg. circulating current (A) 4.2 5 10 No. of bunches at extraction 6 24 24 Protons per fill 0.7 10 14 0.9 10 14 1.8 10 14 AGS ONLY: upgrade cost = FY 04 $ 70.6 M To increase rep rate from 0.5-2.5 replace booster.

Mary Bishai, BNL 15 p.15/36 Super Conducting Linac Linac design is driven by lenght constrain = 120m. We need a 1.2-1.5 GeV linac to replace booster. A 1 GeV proton SCL for the Spallation Neutron Source has already been built High Intensity Source plus RFQ 200 MeV Drift Tube Linac 200 MeV 400 MeV Superconducting Linacs 800 MeV SCL BOOSTER 1.2 GeV To Target Station SNS AGS 1.2 GeV 28 GeV 0.4 s cycle time (2.5 Hz) 0.2 s 0.2 s To RHIC RF frequency(mhz) 805 & 1610 805 Accelerating gradient (MeV/m) 10-23 10-15 Cells/cavity 8 6 Inner cavity space (cm) 32 & 16 38.5 Warm to cold transition (cm) 30 75

Mary Bishai, BNL 16 p.16/36 SCL vs SNS layout Cost estimate of this SCL = FY 04 $ 122M

Mary Bishai, BNL 17 p.17/36 Alternative SCL design SCL design requires development of new 1610 MHz cavities. BNL is costing an alternative design based on upgrading the existing 200 MeV Linac to 400 MeV using the FERMILAB upgrade technology completed in 1993: Replace 4/9 drift-tube linac (DTL) tanks with 805 MHz coupled-cavity linac (CCL) modules. CCL modules are smaller than DTL = will fit. The SCL can then accelerate up to 1.5 GeV using only SNS 805 MHz cavities.

Mary Bishai, BNL 18 p.18/36 Target and horn design Temperature rise per pulse in CC target is T = 270.

Target irradiation studies Mary Bishai, BNL 19 p.19/36

Horn irradiation studies Mary Bishai, BNL 20 p.20/36

Mary Bishai, BNL 21 p.21/36 Getting the beam to Homestake Beam needs to point downwards at 11.3 to reach detector at 2540 km Build a hill instead of a tunnel! = hadrons above water

Location of The Hill Mary Bishai, BNL 22 p.22/36

Mary Bishai, BNL 23 p.23/36 Elevation view of The Hill Civil engineering costs (including linac gallery) = FY 04 $ 69 M

Mary Bishai, BNL 24 p.24/36 BNL 1MW ν beam cost estimate Total direct cost is FY 04 $ 273.4 M. Total estimated cost is FY 04 $ 406.9 M (including 30% contingency)

Construction Schedule Mary Bishai, BNL 25 p.25/36

Mary Bishai, BNL 26 p.26/36 PHYSICS POTENTIAL OF BNL-HS (2540 km) and FNAL-HS (1290 km) VERY LONG BASELINE EXPT. M. Diwan, The Case for a Super Neutrino Beam. Conference proceedings of Heavy Quarks and Leptons, San Juan, Puerto Rico, June 1-June 5, 2004, hep-ex/0407047.

Mary Bishai, BNL 27 p.27/36 Raw Event Counts 1 (2) MW ν ( ν), 500 kt, L=2540km, 5 10 7 sec. Strong ν e π 0 background rejection in Water Cherenkov detectors is very feasible - see next talk. CC ν µ N µ X 51800 (30050) NC ν µ N ν µ X 18323 (11540) CC ν e N e X 380 (106) QE ν µ n µ p 11767 (11868) NC elastic 4575 (3882) QE ν e n e p 84 (80) CC Single π 22053 (11872) NC Single π 7741 (5074) CC Two π 10143 (3336) NC Two π 3557 (1630) CC > 2 π 4882 (500) NC > 2 π 1729 (560) CC ν τ N τ X 110 (40) (depends on m 2 )

Mary Bishai, BNL 28 p.28/36 ν µ Disappearance Results for clean QE µ. MC includes fermi motion, detector resolution and non-qe backgrounds ν µ disappearance ν µ disappearance Events/bin 250 BNL to Homestake 2540 km sin 2 2θ 23 = 1.0 Events/bin 1000 FNAL to Homestake 1290 km sin 2 2θ 23 = 1.0 m 2 32 = 2.5e-3 ev2 Beam 1 MW, Det. 0.5 MT, Run 5e7 sec 200 m 2 32 = 2.5e-3 ev2 800 Beam 1 MW, Det. 0.5 MT, Run 5e7 sec 150 No oscillations: 13290 evts With oscillations: 6535 evts 600 No oscillations: 51500 evts With oscillations: 20305 evts 100 400 50 200 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν µ Energy (GeV) 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν µ Energy (GeV) Oscillation pattern in spectrum = low sensitivity to flux normalization Both baselines will determine m 2 32 and sin2 2θ 32 to 1%

Mary Bishai, BNL 29 p.29/36 ν e appearance (normal hierarchy) Longer baseline oscillation visible ν e APPEARANCE ν e APPEARANCE Events/bin 100 Events/bin 250 FNAL-HS 1290 km sin 2 2θ ij (12,23,13) = 0.86/1.0/0.04 m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 1 MW, 0.5 MT, 5e7 sec 80 60 40 BNL-HS 2540 km sin 2 2θ ij (12,23,13) = 0.86/1.0/0.04 m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 1 MW, 0.5 MT, 5e7 sec CP 135 o : 591 evts CP 45 o : 450 evts CP -45 o : 299 evts Tot Backg.: 146 evts ν e Backg.: 70 evts 200 150 100 CP 135 o : 1711 evts CP 45 o : 1543 evts CP -45 o : 1114 evts Tot Backg.: 566 evts ν e Backg.: 272 evts 20 50 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν Energy (GeV) 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν Energy (GeV) Already assuming 10% background uncertainty More detailed discussion of background suppression in following talk

Mary Bishai, BNL 30 p.30/36 Sensitivity to δ cp (normal heirarchy) Resolution δ CP vs Sin 2 2θ 13 Resolution δ CP vs Sin 2 2θ 13 δ CP (deg.) 150 100 ν µ Running Only δ CP (deg.) 150 100 ν µ Running Only 50 90 % C.L. 3 cntrs: STAT only 50 90 % C.L. 3 cntrs: STAT only 0 STAT+10% SYST STAT+20% SYST 0 STAT+10% SYST STAT+20% SYST -50-50 -100-100 -150 BNL-HS 2540 km sin 2 2θ ij (12,23,13) = 0.86/1.0/0.04, δ CP =45 o m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 1 MW, 0.5 MT, 5e7 sec -150 FNAL-HS 1290 km sin 2 2θ ij (12,23,13) = 0.86/1.0/0.04, δ CP =45 o m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 1 MW, 0.5 MT, 5e7 sec 0 0.02 0.04 0.06 0.08 0.1 0.12 Sin 2 2θ 13 0 0.02 0.04 0.06 0.08 0.1 0.12 Sin 2 2θ 13 Although CP resolution is independent of baseline Shorter baseline = systematics limited

Mary Bishai, BNL 31 p.31/36 Appearance of ν e when θ 13 = 0 If sin 2 2θ 13 is small δ cp measure- ν e APPEARANCE ment not possible BUT observation of ν e appearance is still possible from the current value of the solar parameters Events/bin 45 40 35 30 25 20 BNL-HS 2540 km sin 2 2θ ij (12,23,13) = 0.86/varied/0.0 m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 1 MW, 0.5 MT, 5e7 sec Resolving Θ 23 ambiguity With Θ 13 = 0 1 deg. Off axis beam Θ 23 =35 o : 212 evts Θ 23 =45 o : 181 evts Θ 23 =55 o : 151 evts Better S:B off axis capability is built into 15 10 5 Tot Backg.: 90 evts ν e Backg.: 52 evts baseline BNL proposal 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν Energy (GeV) Only feasible with the longer baseline (2540 km) because of better S:B

Mary Bishai, BNL 32 p.32/36 ν e appearance (normal hierarchy) Lower cross-sections need 2 MW beam Anti-ν e APPEARANCE ν e APPEARANCE Events/bin 80 70 Events/bin 100 60 50 BNL-HS 2540 km sin 2 2θ ij (12,23,13) = 0.86/1.0/0.04 m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 2 MW, 0.5 MT, 5e7 sec 80 60 BNL-HS 2540 km sin 2 2θ ij (12,23,13) = 0.86/1.0/0.04 m ij 2 (21,32) = 7.3e-5/2.5e-3 ev 2 1 MW, 0.5 MT, 5e7 sec 40 30 20 CP -45 o : 422 evts CP 45 o : 357 evts CP 135 o : 263 evts Tot Backg.: 151 evts anti-ν e Backg.: 82 evts Bck and sig. including wrong-sign 40 20 CP 135 o : 591 evts CP 45 o : 450 evts CP -45 o : 299 evts Tot Backg.: 146 evts ν e Backg.: 70 evts 10 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν Energy (GeV) 0 0 1 2 3 4 5 6 7 8 9 10 Reconstructed ν Energy (GeV) Mass hierarchy resolved to better than 10 σ after ν ν running. Sensitive to new physics

Limits after ν running 90% confidence level error contours with statistical and 10% systematic errors: Regular hierarchy ν and Antiν running Regular hierarchy ν and Antiν running 150 1 MW ν, 2 MW Anti-ν, 500kT, BNL-HS 2540km 90% C.L. intervals for 32 test points δcp (deg.) 100 50 0-50 -100-150 150 1 MW ν, 2 MW Anti-ν, 500kT, FNAL-HS 1290km 90% C.L. intervals for 32 test points δcp (deg.) 100 50 0-50 -100-150 0 0.02 0.04 0.06 0.08 0.1 0.12 Sin 2 2θ 13 0 0.02 0.04 0.06 0.08 0.1 0.12 Sin 2 2θ 13 If no νe observed limit sin 2 2θ13 0.003 Mary Bishai, BNL 33 p.33/36

Mary Bishai, BNL 34 p.34/36 Conclusions: A very long baseline experiment can address both the solar and atmospheric oscillation scales. Very precise measurements of m 2 32 and sin2 θ 23 can be acheived at either 1290 or 2540 km baseline. Very good bounds on θ 13 from either baseline Longer baseline = more sensitivity to ν e appearance if θ 13 too small. If sin 2 2θ 13 not too small then δ cp can be determined from ν running only. With the longer baseline = larger mass effects = better resolution of mass heirarchy and easier extraction of δ cp. Constraints on 3-generation model and further improvements in δ cp measurement can then be achieved with ν running.

BACKUP SLIDES Mary Bishai, BNL 35 p.35/36

Mary Bishai, BNL 36 p.36/36 Running with RHIC The AGS is also the Au/proton injector for the Relativistic Heavy Ion Collider. If ν-beamline comes into operation in 2012 will share beam time with RHIC and RSVP RSVP and ν-superbeam can share 85% time during RHIC heavy ion run.