Metal Organic interfaces

Similar documents
Dipole formation at metal/ptcda interfaces: Role of the Charge Neutrality Level

cule/électrodelectrode

Surface Transfer Doping of Diamond by Organic Molecules

Barrier formation at metal organic interfaces: dipole formation and the charge neutrality level

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

Electronic Supporting Information for

Organic Electronic Devices

Fermi level, work function and vacuum level

Metal Semiconductor Contacts

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

How does a polymer LED OPERATE?

Meghan P. Patankar, Kapil Joshi a and K.L.Narasimhan b. Homi Bhabha Road, Colaba, Mumbai

From Order to Disorder

Numerical model of planar heterojunction organic solar cells

Schottky diodes. JFETs - MESFETs - MODFETs

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

ELEMENTARY BAND THEORY

Semiconductor Physics and Devices

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

8. Schottky contacts / JFETs

Current mechanisms Exam January 27, 2012

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Drift diffusion simulation of organic semiconducting devices

Organic semiconductor heterointerfaces containing bathocuproine

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

MENA9510 characterization course: Capacitance-voltage (CV) measurements

Induced Density of States model for weakly-interacting organic semiconductor interfaces

Chapter 7. The pn Junction

* motif: a single or repeated design or color

Energy-level alignment at interfaces between metals and the organic semiconductor 4,4 -N,N -dicarbazolyl-biphenyl

Semiconductor Detectors

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Leakage Mechanisms. Thin films, fully depleted. Thicker films of interest for higher voltage applications. NC State

Chemical and electrical properties of interfaces between magnesium and aluminum and tris- 8-hydroxy quinoline aluminum

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Semiconductor Devices

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

Novel Soft Materials: Organic Semiconductors

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Plastic Electronics. Joaquim Puigdollers.

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

V BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

Introduction to Molecular Electronics. Lecture 1: Basic concepts

ECE236A Semiconductor Heterostructure Materials Basic Properties of Semiconductor Heterostructures Lectures 2 & 3 Oct. 5, 2017

Effective masses in semiconductors

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Semiconductor Junctions

Mesoporous titanium dioxide electrolyte bulk heterojunction

Charge Extraction. Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Semiconductor Polymer

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

1. Binary III-V compounds 2 p From which atoms are the 16 binary III-V compounds formed?...column III B, Al, Ga and In...column V N, P, As and Sb...

3. Two-dimensional systems

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Electrons, Holes, and Defect ionization

Lecture 9: Metal-semiconductor junctions

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Defects and diffusion in metal oxides: Challenges for first-principles modelling

an introduction to Semiconductor Devices

Electronics go everywhere

Modeling thermionic emission-limited current voltage curves of metal/organic/metal devices

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

Chapter 3 Engineering Science for Microsystems Design and Fabrication

organic semiconductors Henning Sirringhaus

Chem 481 Lecture Material 3/20/09

Energy Spectroscopy. Ex.: Fe/MgO

Observation of electron injection in an organic field-effect transistor with electroluminescence *

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

Schottky Rectifiers Zheng Yang (ERF 3017,

Making OLEDs efficient

ORGANIC SEMICONDUCTOR 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA)

Electronic Structure and Electrical Properties of Interfaces between Metals and -Conjugated Molecular Films

Introductory Nanotechnology ~ Basic Condensed Matter Physics ~

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

KINETICS OF OXIDE GROWTH ON METAL SURFACES

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

Towards a deeper understanding of polymer solar cells

Section 12: Intro to Devices

Semiconductor Device Physics

EE 3329 Electronic Devices Syllabus ( Extended Play )

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Citation for published version (APA): Woudenbergh, T. V. (2005). Charge injection into organic semiconductors s.n.

Transport gap of organic semiconductors in organic modified Schottky contacts

Modelling energy level alignment at organic interfaces and density functional theory

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Semiconductor-Detectors

Semiconductor Physics fall 2012 problems

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Why thermodynamics for materials?

PHYS208 P-N Junction. Olav Torheim. May 30, 2007

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Module-6: Schottky barrier capacitance-impurity concentration

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Solid Surfaces, Interfaces and Thin Films

The negatively charged insulator-semiconductor structure: Concepts, technological considerations and applications

Transcription:

ORGANIC ELECTRONICS Principles, devices and applications Metal Organic interfaces D. Natali Milano, 23-27 Novembre 2015

Outline general concepts energetics Interfaces: tailoring injection mechanisms

Thermal Equilibrium (1) @Thermal Equilibrium a common Fermi level is established by means of charge transfer E F1 E F2..from higher lying to lower lying Fermi level

Thermal Equilibrium (2) Interface dipole layer Space charge region Scott, J.Vac.Sci.Tech. A 21(3) 2003 521 Tung Mat.Sci.Eng R 35 2001 1

Thermal Equilibrium (2) Interface dipole layer Depleted, poorly conductive (poorer than bulk) space charge region Scott, J.Vac.Sci.Tech. A 21(3) 2003 521 Tung Mat.Sci.Eng R 35 2001 1

Thermal Equilibrium (2) Interface dipole layer Accumulated, highly conductive (higher than bulk) space charge region Scott, J.Vac.Sci.Tech. A 21(3) 2003 521 Tung Mat.Sci.Eng R 35 2001 1

Metal-semiconductor contacts E VACUUM LUMO E F HOMO metal semiconductor F Be barrier to electron injection F Bh barrier to hole injection

Interface dipoles (1) E VACUUM LUMO E F metal HOMO Barriers F Be and F Bh do change!!

Interface dipoles (1) E VACUUM D LUMO E F metal HOMO Barriers F Be e F Bh do change!!

Interface dipoles (2) E VACUUM D E F metal - - + + LUMO HOMO semiconductor

Spectroscopical techniques Kahn Adv.Mat. 2003 15 271 Zahn, Chemical Reviews, 2007, Vol. 107, No. 4 1181

Salaneck Adv.Mater. 2009 21 1-23 Interface interaction strength

Metal/organic interfaces:

Metal/organic interfaces:

Real Metal surfaces: pushback effect

Real Metal surfaces: pushback effect charge density charge density metal vacuum metal vacuum positive charge negative charge surface dipole surface dipole x x

Real Metal surfaces: pushback effect upon adsorption of a Xe monolayer

Metal/organic interfaces:

Physisorptive regime

Physisorptive regime

Physisorptive regime: who cares F B? n 1 N eff exp -F B/kT x L en 1 1 1 2 L 1 n th 1 Rose Photoconducitivty and allied problems 1963

Lange at al. PRL106,216402 (2011) Physisorptive regime: effect of disorder s

Lange at al. PRL106,216402 (2011) Physisorptive regime: effect of disorder s

Oehzelt et al. Nat. Commun., vol. 5, no. May, p. 4174, Jan. 2014. Lange at al. PRL106,216402 (2011) Physisorptive regime: effect of disorder s Band bending occurs on tens of nm scale, to be compared with device length! Bobbert Phys. Status Solidi A209, No. 12, 2354 2377 (2012)

0 Physisorptive regime: image charge A 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 0,4-0,6 0,2 LUMO -0,8 0-0,4 0,0-0,2 0,0 E-0,4 F 0,2-0,6 Reduced transport gap HOMO Nominal gap -0,8 few nm 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 A 0,4

Clean Metal/molecule interfaces: weak chemisorption

Induced Density of states model Charge Neutrality Level In organic molecule CNL accounts for: all Molecular Orbitals Metal induced orbitals broadening-> midgap states

Charge Neutrality Level PTCDA CBP Y. Morikawa et al. / Current Applied Physics 12 (2012) S2-S9 Kahn, Org. El. 8 2007 241

Charge Neutrality Level E F CNL=S(ϕ M CNL) Δ IDIS =(1 S)(ϕ M CNL) S=dE F /dϕ M = 0<S<1, screening parameter S describes the degree of pinning of the Fermi level at the interface Applied Surface Science Volume 254, Issue 1, 31 October 2007, Pages 378 382

CNL: Theory vs Experiment

Metal/ordered molecule interfaces: n-poles Quadrupoles and intrinsic dipoles Phys. Status Solidi RRL 6, No. 7, 277 293 (2012

Strong chemical interaction @ Interface

Chemisorption

Chemisorption: Alq3/Mg (1) Unexpected electron flow!! e-

Chemisorption: Alq3/Mg (2) Chemistry induced electronic states formation: a new Mg:Alq3 organometallic complex

Interface energetics: summary Integer charge transfer IDIS and partial C.T. Chemical reactions @ interface

Polymers on metal Integer charge transfer IDIS and partial C.T. Chemical reactions @ interface Solvents passivates metals-> no intimate metal organic contact -> no IDIS nor chemical reaction

Metal on Polymers Integer charge transfer IDIS and partial C.T. Chemical reactions @ interface Intimate metal organic contact is possible due to (Ultra) High Vacuum metal evaporation

Metal-Polymers-Metal interfaces ICT barriers < 0.3/0.4 ev Band bending? Chemical reaction IDIS dipole Pushback: Pt Ef=5.65eV Hwang Materials Science and Engineering R 64 (2009) 1 31

[Metal/Small molecule] [Small molecule/metal] interfaces Integer charge transfer IDIS and partial C.T. Chemical reactions @ interface Intimate metal organic contact is possible due to (Ultra) High Vacuum metal and molecule evaporation

Molecules: Clean Vs. contaminated metal A. Wan et Organic Electronics 6 (2005) 47 54

A. Wan et Organic Electronics 6 (2005) 47 54 Molecules: Clean Vs. contaminated metal counter-intuitively The contaminated metal has the smaller work function BUT yields the lower hole barrier Contaminants give: a pushback effect but also a less intimate contact (hence less IDIS)

Effect of deposition technique Vacuum deposited vs liquid phase deposition: solvents/air passivates interfaces Metal upon Organics vs Organics upon Metal Metal Diffusion But often this does not give different electrical behavior

Materials Theory practice

Materials Theory practice

practice Transition metal oxides: n-type semiconductors with low-lying CB, are useful hole inj./extr. layers J. Mater. Chem. C, 2013, 1,4796 Adv. Mater. 2012, 24, 5408 5427

ITO (I) anion vacancy (16) lattice anion (48) d site cation (24) b site cation (8) In 2 O 3 In 2(1-x) Sn 2x O 3+x 1-x In 2(1-x) Sn 2x O 3+x-y 1-(x-y) E N-type degenerate semiconductor In 2 O 3 ITO k

ITO (II) 2 1/ 2 2 p ne p e0m 1, > p, >0 transparent insulator < p, <0 reflective conductor p ITO 900nm

Interface functionalization Salaneck J. Appl. Phys., Vol. 84, No. 12, 15 December 1998

Interface functionalization PEDOT PSS on ITO: 10-5 100 S/cm depending on processing and composition

Interface functionalization PEDOT PSS on ITO: 10-5 100 S/cm depending on processing and composition Phys. Status Solidi RRL 6, No. 7 (2012)

So Adv. Funct. Mater. 2006, 16, 1075 1080 Interface functionalization: multilayer From single large F B to many smaller F Bi

Khodabakhsh Ad.Funct.Mat. 14 2004 1205 Interface functionalization(4) polar SAM on ITO

Doping Walzer et al. Chemical Reviews, 2007, Vol. 107, No. 4

Doping Leo, JOURNAL OF APPLIED PHYSICS 106, 103711 2009

Charge injection

Classic models Through the barrier: Fowler-Nordheim J BF Needs bands and triangualr barrier 2 exp b F Over the barrier: Richardson-Schottky J * A T 2 exp D cf kt 1/ 2 Does not take hopping into account

Injection in organics potential energy [ev] 0.4 0.2 0.0 E F -0.2 0 5 10 15 20 25 30 35 electrode distance [Å] E=0 V/cm E=10 5 V/cm E=10 6 V/cm Ingredients: hopping transport Schottky effect Energetic disorder Scott J.Vac.Sci.Technol. A(21)3 2003 521 Wolf et al PhysRevB 59 (1999) 7507

Schottky effect(1) + - + = 1 r Schottky DV Barrier lowering x max DF B exp F F: 10 5 V/cm 2x10 6 V/cm V: 1 V 20 V su 100nm DF B : 0.06 V 0.28 V X max : 3.2nm 0.7 nm

Hopping & image potential thermalization collection excitation E F backflow

Thermalization length High mobility Eg inorganics low mobility Eg. organics E F Blossey PhysRevB 9 (1974) 5183

Under thermal equilibrium Injection ( ) + - Recombination with image charge ( )

Under Applied voltage Injection ( ) + - Recombination with image charge ( )

Injection & mobility 100% TPD:PC, from 30% to 100% 30% For a given energetics, the larger the mobility, the higher the injection efficency Malliaras et al. PhysRevLett 86 (2001) 3867

Electron energy Disorder & injection -0,8-0,6-0,4-0,2 0,0 0,2 0,4 F B E E F 0,0 0,00000 0,5 1,0 0,00002 1,5 0,00004 2,0 2,5 3,0 3,5 4,0 DOS ODOS 0,00006 0,00008 4,5 0,00010 5,0 0,00012 5,5 200K 250K 300K Gauss100 DF B The higher the disorder, the lower F B ODOS center is at σ2 kt

Electron energy Disorder & injection -0,8-0,6-0,4-0,2 0,0 0,2 0,4 F B E E F 0,0 0,00000 0,5 1,0 0,00002 1,5 0,00004 2,0 2,5 0,00006 3,0 3,5 0,00008 4,0 DOS ODOS 4,5 0,00010 5,0 0,00012 5,5 200K 250K 300K σ 2 Gauss100 1 2 kt DF B

Disorder & injection potential energy [ev] 0.4 0.2 0.0 E=0 V/cm E=10 5 V/cm E=10 6 V/cm -0.2 0 5 10 15 20 25 30 35 electrode distance [Å] σ 2 1 2 kt b s = 2 3/2 / 3[qas 2 /(kt) 3 ] 0.5 Marohn Phys. Rev. Lett. 2007 66101

Disorder & injection Enhanced disorder at interface: Injection is not the most diffult step But! Image charge attenuates interface disorder.. So what?! Baldo PhysRevB 64(2001) 85201 S. V. Novikov, Physica Status Solidi C - Current Topics in Solid State Physics, Vol 5, No 3 2008, 5, 750

Organic Organic interfaces Low charge density -> no pillow effect Active forces: Van der waals Electrostatic interfaction Repulsion forces Degree of interaction CT@gnd state (eg. alkyl chains prevent initmate contact) Orbital mixing @gnd state (short range interaction) Polarizations (long range interaction) INTERFACE DIPOLE! D. Beljonne, J. Cornil, L. Muccioli, C. Zannoni, J. L. Bredas, F. Castet, Chemistry of Materials 2011, 23, 591

The End